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Abstract

Image classification with deep neural networks has seen a surge of technological
breakthroughs with promising applications in areas such as face recognition, object
detection, etc. However, in engineering problems, e.g. high-speed imaging of
engine fuel injector sprays, deep neural networks face a fundamental challenge -
the availability of adequate and diverse data. Typically, only hundreds or thousands
of samples are available for training. In addition, the transition between different
spray classes is a "continuum" and requires a high level of domain expertise to label
images accurately. Thus, this work leverages pre-trained Neural Network models to
build classifiers and employed Mixup to systematically deal with the data scarcity
and ambiguous class boundaries found in industrial spray applications. Comparing
to traditional data augmentation methods, Mixup that linear interpolates different
classes naturally aligns with the continuous transition between different classes in
spray applications. Results also show that Mixup can train a more accurate and
robust deep neural network classifier with only hundreds samples.

1 Introduction

Deep Convolutional Neural Networks (CNNs) have led to a series of technological breakthroughs in
computer vision applications [9]. Among the most important factors that contributed to this tremen-
dous success are publicly available, large, high-quality datasets such as ImageNet [2], CIFAR [6],
CelebA [7]. However, pre-trained deep CNNs face unique challenges when directly applied to
problems in scientific domains where datasets are not only very different but also scarce and require
expert domain knowledge for accurate labeling and annotation. The data scarcity, combined with
class overlap, naturally leads to overfitting and poor model performance.

Although many strategies such as less complex models, data augmentation, dropout [8], and reg-
ularization can be used to prevent overfitting, their effectiveness in small datasets that contain
only hundreds of training samples can be limited. In addition, these methods often lack physical
interpretation, as is critical for model acceptance in scientific applications.

In this work, we aim to apply a pre-trained deep CNNs to build classifiers for such an engineering
problem where high speed images of engine fuel sprays need to be classified into different categories.
Those images are collected using Mie scattering and are used to help engine experts to understand
the mechanisms of spray breakup and mixture formation. It is generally accepted that, depending on
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Figure 1: Continuous transition between different spray morphology classes: (a), (c) and (e) show
distinct features of the corresponding classes, (b) and (d) show "blending" of two neighbor classes.

the macroscopic features of spray images, spray morphology can be classified into three regimes - no
collapse, transitional, and collapse. It is also widely accepted that spray collapse should be avoided at
all cost since it can worse engine performance and increase combustion emissions. Unfortunately,
the spray collapse phenomenon is not well understood. The detection of spray collapse has so far
remained a manual and time consuming process, and is highly relied on domain experts.

To build accurate and robust classifier for such applications, there are two main challenges. First,
the transition between different spray classes is not sharp or even perceptibly different, as is shown
in Figure 1, where fuel sprays injected into a constant volume chamber were recorded with Mie-
Scattering imaging. Three spray morphology classes - no collapse, transitional, and collapse are
shown in (a), (c), and (e), respectively. It is clear that the transition between spray morphologyies is a
"continuum" and some spray images exhibit features from two different classes, as shown in (b) and
(d). These mixed images, represent class overlap and are difficult to label even for domain experts.
For example, (b) can be labeled as no collapse, but its close variant from the next camera frame may
be labeled as transitional. This might unintentionally lead to some "corrupt labels" in the training set,
and results in poor model performance despite the remarkable capability of deep learning.

The second challenge is small data size. Due to limited testing resources and testing/labeling
manpower, initially only 900 images are collected and labeled from lab. The combination of a small
data set and "corrupt labels" impact data quality and balance, thereby affecting model performance.

To overcome those challenges in a physically meaningful manner, the Mixup approach proposed
by Zhang et al. [10] is employed for data augmentation. Our study suggests that a convex linear
interpolation of Mixup naturally aligns with the continuous class transition observed in the spray
dataset. Depending on whether two candidate images belong to a same class or not, Mixup can either
function as a data augmentation technique that reduces overfitting or a label smoothing technique
that mimics the continuous class transitions. Our study also shows that though traditional data
augmentation can mitigate overfitting to some degree, it does not bring additional benefits and may
negate the performance boost if stacked with Mixup.

The key contributions of this work are listed below:
1. Proposed an explainable training technique to build robust and accurate deep CNN classifier for
engineering applications that have limited data, exist continuum between classes and ’corrupt labels’.
2. Showcased that Mixup worked well with small datasets (900 images collected from continuously
transitioning industrial sprays). This benefit has not been discussed in the original work by Zhang et
al. [10], nor such engineering applications have not yet been discussed in literature to our knowledge.

2 Data, methods and results

2.1 Introduction of training data and baseline model development

In this study, the entire dataset is composed of proprietary spray images collected from internal spray
lab. We aim to built classifier that is capable of classifying spray structures over various testing
conditions, injection timings, and experimental parameters. This allows using this model for spray
images collected from multiple sources, covering a wide range of operating conditions, injector
geometries, and measurement events. In addition, to cover the entire injection event, an additional
class named "Pre/Post" (short for pre-injection and post-injection) is added to the dataset so the final
model can take any input from the Mie Scattering without human attention.

In total, there are 878 images collected- 173 pre/post, 199 no collapse, 241 transitional, and 265
collapse. Here, 75% of data is set for training, 15% for validation, and 10% for testing. Examples of
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Figure 2: Examples of training images after Mixup data generator. Note that both the frequency and
strength of interpolation increase as α increases from 0.2 to 0.6.

spray images in each class are shown in Appendix B. Since the data were collected from multiple
sources, they are not necessarily the same size. In addition, some images may carry auxiliary
boundary lines and/or text annotations processed by Mie Scattering tool. Those lines were remained
during the manual labeling process and we anticipate the model would either treat them as noise or
recognize them as useful features.

Given small dataset, the most feasible starting point is transfer learning by reusing lower layers of
pre-trained models. This study employed TensorFlow version 2.4.1 [1]. Among many available
pre-trained models on Keras, ResNet [4] family is employed after an internal evaluation. All images
were pre-processed as 224× 224 pixel as expected by ResNet. Finally, with 5-fold cross validation,
the ResNet50 is selected out of 7 ResNet model variants due to its best accuracy and least overfitting.
Detailed model architecture and performance comparison are shown in Appendix C.

2.2 Mixup and data augmentation

Mixup is a simple and data-agnostic method proposed by Zhang et al. [10]. Given two images, it
can either select one input image as the output or blend both input images and generate a linearly
interpolated image. The detailed Mixup introduction is shown in Appendix D. It is noted that there
are many choices of Mixup implementations as suggested by Zhang et al. [10], while this work
implemented the vanilla version

Figure 2 shows some examples after Mixup with different α values. Note that we only tested α up to
0.6 as Zhang et al. [10] found Mixup only improved performance over traditional data augmentation
with α < 0.4. For larger α values, Mixup leads to underfitting. At α = 0.2, four (circled in
Figure 2,a)) out of 20 randomly selected images are visually discernible as being augmented by
Mixup. Among those four images, one of them was interpolated between two images belonging
to a same class as highlighted by a green circle. The resulting image expands data distribution of
that class and hence Mixup acts as a data augmentation tool. The other three (circled in red) were
interpolated between two different classes, the resulting labels are no longer one-hot vectors. This
is considered critical to our application as those cross-class augmented images mimic the smooth
transition observed in the spray dataset. As α increases, the interpolation becomes stronger, and more
images can be observed as being interpolated.

Data augmentation is widely used to combat overfitting of deep neural networks. However, among
many choices of data augmentation methods such as shifting, rotation, flip, zooming, one must be
careful as the effectiveness of data augmentation is dataset dependent and use of domain knowledge is
usually needed. Although Mixup was found to improve performance over data augmentation [10], they
can easily work together. In this work, Mixup is performed before any alternate data augmentation
since it guarantees that there will be only one injector tip located on the top of each augmented
spray image. If image augmentation such as rotation and shifting are applied first, then the Mixup
augmented image may have two injector tips, which violates physics pollutes training data.

To compare different data augmentation techniques, we first fine tuned the baseline model-ResNet50
with only tranditional data augmentation (without Mixup). Again, only the last block of ResNet50
(i.e., conv5 block3) is retrained with our training data. To align with our experiment setup, the
following traditional data augmentation is applied: random rotation up to 20 degrees since our
injector can only be installed at a slightly angled position; random shifting up to 20% as the spray
image is always centered at the camera window. Horizontal flip but not vertical flip since it gives an
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Table 1: Training-validation gaps averaged over the last 50 epochs for ResNet50 with different data
augmentation and Mixup methods

Model Gap Test Acc. Model+Mixup Train Acc Gap Test Acc.

Baseline 4.9% 94.8% Baseline 99.7% 4.9% 94.8%
Rot 10 3.9% 96.5% α = 0.2 96.5% 0.9% 98%
Rot 20 4.3% 96.5% α = 0.4 95.1% 0.3% 98%
Shift 0.1 1.6% 96.5% α = 0.6 94.3% 0.3% 98%
Shift 0.2 1.3% 96.5%
H. Flip 3.5% 97.7%
Shift 0.2+H.Flip 1.3% 96.5%
Rot 10+H.Flip 5.3% 96.5%
Shift 0.2+Rot10 2.2% 96.5%
Shift0.1/Rot10/H.Flip 2.8% 96.5%

upside-down image that makes no physical sense. Brightness, saturation, hue, or contrast adjustments
are excluded given Mie Scattering imaging produces consistent images without much distortion.

The ensemble-averaged training-validation accuracy gaps over the last 50 epochs and the test accuracy
for each final model are reported in Table 1. Comparing to the baseline model without any data
augmentation, all single data augmentations lead to improved generalization. Also, combining two or
three augmentation methods do not bring additional benefits.

Next, we evaluated Mixup without data augmentation. As shown on Table 1, all Mixup tests lead
to improved performance over data augmentation. The training-validation accuracy gaps are below
1.0% with all three α values. Larger α leads to better generalization, but under-fits the training set as
evidenced by the decreasing ensemble-averaged training accuracies. This finding is consistent with
the work by Zhang et al. [10], though they used much bigger datasets (ImageNet).

In addition, Zhang et al. [10] showed Mixup can mitigate the memorization of "corrupted labels" by
replacing up to 80% images with "corrupted" labeled images in the CIFAR dataset. In our application,
"corrupted labels" are unintentionally introduced because of blurry boundaries between continuous
class transitions. We hypothesize that Mixup can help combat the memorization of those "corrupted
labels" as well. For example, if a "collapse/transitional" image is labeled as "collapse" and its
neighbor from the next camera frame is labeled as "transitional", then a neural network without
Mixup would learn to memorize those labels and over-fit the data. On the other hand, all training
images are generated from Mixup (although not all of them are interpolated), so those two images
may produce a new training image with an interpolated label. This is equivalent to labeling the newly
generated image as "collapse/transitional", thereby reduces the memorization of "corrupted labels".
From the physics point of view, this interpolation aligns with the actual transition in the experiments.

At last, we performed a test with Mixup (α = 0.2) followed by the "best-practice" data augmentation
i.e., shifting by 20% plus horizontal flip. The training accuracy drops to 93.7% and the test accuracy
is lower than all Mixup-only tests. This indicates additional data augmentation may add excessive
regularization.

3 Conclusion

Data scarcity is one of main challenges that large deep neural networks face when applied to scientific
problems. In this paper, we showcased a robust and accurate training method for an industrial engine
injector spray classification problem where the transition between classes is a "continuum". With
Mixup, a deep CNN classifier (ResNet50) can be built with only hundreds images with 98% accuracy
on a real-world spray dataset. The study showed that Mixup improved performance over data
augmentation methods, and can provide benefit of reducing the memorization of "corrupted labels"
that unintentionally introduced during manual labeling. As we understand, the linear interpolation of
both data and labels also agrees with the "continuum" nature of class transitions in injector sprays.

As future work, we are interested in incorporating simulation data from high-fidelity computational
fluid dynamics (CFD) tools into the experimental dataset and continue to explore the properties of
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Mixup and variants. We also wish to understand the impact of Mixup on assisting these models to
grasp knowledge that embedded differently in simulation and experiment datasets.
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A Background of fuel injection spray applications

Although the automotive industry appears to be on the verge of transitioning to electric vehicles, the
vast majority of passenger cars and commercial vehicles on the road are still powered by Internal
Combustion Engines (ICE). ICEs are complex systems that convert the energy stored in the hydro-
carbon bonds of chemical compounds in fossil fuels to mechanical energy used to power vehicles.
A basic ICE works like follows: the fuel system injects gasoline (or diesel) into the intake port (or
combustion chamber) via high-pressure fuel injectors, the fuel then evaporates and mixes with the
induced fresh air, the fuel-air mixture ignites by spark plug(or auto-ignites by compression), creating
a high temperature, high pressure explosion that provides motive power.

The fuel injection and mixing with ambient air is one of the most important factors impacting engine
performance (power) as well as engine emissions (such as CO2, and NO). Therefore, extensive
studies have been carried out in the combustion domain to optimize fuel sprays for maximizing the
power to emissions index. Among the many measurement techniques used in spray testing, Mie
scattering remains one of the prominent imaging methods for spray visualization [3]. Mie scattering
uses a light source (e.g., laser) and a camera to record the macroscopic spray development inside a
quiescent chamber filled with pressurized air. Light is elastically scattered by fuel droplets similar to
or larger than the wavelength of the incident light. The signal collected by a camera is proportional to
the integral of cubic of droplet diameters along the line of sight. Examples of Mie scattering imaging
are shown in Figure 1, where the dark color is background and the light color are liquid sprays. The
grayscale in each image roughly indicates the intensity of liquid volume fractions.

One of many insights gained from Mie scattering is spray morphology which helps engine experts to
understand the mechanisms of spray breakup and mixture formation. However, spray development
is a complicated process affected by many factors such as fuel volatility, fuel temperature, injector
geometry, ambient conditions, and turbulence. Despite the continuous efforts in academia and
industry, spray development is still not fully understood. It is generally accepted that, depending on
the macroscopic features of spray images, spray morphology can be classified into three regimes,
namely no collapse, transitional, and collapse. Characteristics of each regime are listed blow:

• No collapse regime: Characterized by visually discernible narrow plumes or branches. The
separations of spray plumes occur very closely to the injector tip (located on the top of the
image). This is the desirable spray pattern.

• Transitional regime: Characterized by wide spray plumes that begin to interact with each
other. The separations of plumes move downstream and the exact locations becomes hard to
visually discern. The spray structure still resembles a cone shape.

• Spray collapse regime: Characterized by one single prolonged central plume. There may be
one or two discernible spray plumes but the majority of them are coalesced.

It is widely accepted that spray collapse should be avoided at all cost since it can lead to spray
impingement, reduced total surface area for fuel-air mixing, and poor atomization. The consequences
of those issues are worsened engine performance and increased combustion emissions. Unfortunately,
the spray collapse phenomenon is not well understood. The detection of spray collapse has so far
remained a manual process requiring many hours of subjective evaluations by domain experts. This
challenge is the main motivation to use deep convolution neural networks for automating robust
classification of spray morphology and detection of spray collapse.
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B Example of training data

Examples of spray images in each class are shown in Figure 3.

Figure 3: Examples of dataset used for training deep CNN models. An additional class, namely
"Pre/Post" was added to the dataset to cover the entire injection event. Note that some examples shown
in this figure have text annotations, solid red or dotted white boundary lines from the processing tool
of Mie Scattering. During the data collection and labeling process, we did not remove these "noises"
for the sake of training a robust model.

C Baseline model network architecture

Given a small dataset, the most feasible starting point is transfer learning by reusing the lower layers
of pre-trained models. In this study, TensorFlow version 2.4.1 [1] is used. Among many available
pre-trained models on Keras, ResNet [4] family is employed after an internal evaluation. All the
images were pre-processed as 224 × 224 pixel images as expected by ResNet. In addition, the
grayscale images were loaded in Red, Green, and Blue channels.

To select a suitable model for fine tuning, 5-fold cross validation is performed using all 878 available
spray images. Seven variants of ResNet models were tested. Note that we implemented ResNet34
from scratch since it is not available from Keras. For the remaining six models, we reused all the
pre-trained lower and mid layers and only made the last block (namely, conv5 block3) trainable. This
leaves about 4.4 million trainable parameters for each model except for ResNet34. We also removed
the fully connected top layer and replaced it with global average pooling layer, followed by a dense
output layer with one neuron per class. For pre-trained ResNet models, we used Adam optimizer [5]
and fixed the learning rate, batch size, and total epochs to be 0.001, 32, and 100, respectively. For
ResNet34, we used stochastic gradient descent with a learning rate of 0.0001 and momentum of 0.9.

The ensemble-averaged test accuracies and standard deviations are reported in Table 2. ResNet50
outperforms all other models with an impressive test accuracy of 96%, though other models are not
far behind. Although ResNet101 and larger models have more representation power than ResNet50,
they are prone to overfitting with small training datasets and therefore have slightly poor performance
on the test set. On the other hand, ResNet34 seems too shallow to learn all necessary low-level
and/or high-level features. Given its highest accuracy, ResNet50 is used as the base model for further
experiments.

D Mixup introduction

Mixup is a simple and data-agnostic method proposed by Zhang et al. [10]. Suppose we have two
input image vectors, x1 and x2, and their corresponding one-hot label encoding vectors are y1 and y2,
then the Mixup augmented training image vectors are given by:

7



Table 2: Ensemble-averaged test accuracies and standard deviations of seven ResNet models for the
5-fold cross-validation. Note that ResNet34 was implemented from scratch while the other six were
pre-trained models from Keras.

Model Average test accuracy STD
ResNet34 0.9522 0.0142
ResNet50 0.9602 0.0196
ResNet50V2 0.9488 0.019
ResNet101 0.9556 0.0213
ResNet101V2 0.9351 0.0284
ResNet152 0.9476 0.018
ResNet152V2 0.9385 0.0149

x = λx1 + (1.0− λ)x2 (1)

y = λy1 + (1.0− λ)y2 (2)

where λ is the interpolation coefficient randomly drawn from the Beta distribution, λ ∼ Beta(α, α).
As shown in Figure 4, λ approaches 0 or 1.0 as α → 0, this essentially eliminates interpolation and
selects one input image as the output. As α increases, a realization of λ would have a higher chance
of being close to 0.5, leading to strong blending of both input images.

Figure 4: The interpolation coefficient λ is beta-distributed λ ∼ Beta(α, α). Note that as α increases,
a realization of λ would have a higher chance of being close to 0.5.

8


	Introduction
	Data, methods and results
	Introduction of training data and baseline model development
	Mixup and data augmentation

	Conclusion
	Background of fuel injection spray applications
	Example of training data
	Baseline model network architecture
	Mixup introduction

