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Abstract

Symbolic regression has excelled in uncovering equations from physics, chem-
istry, biology, and related disciplines. However, its effectiveness becomes less
certain when applied to experimental data lacking inherent closed-form expres-
sions. Empirically derived relationships, such as entire stress-strain curves, may
defy concise closed-form representation, compelling us to explore more adaptive
modeling approaches that balance flexibility with interpretability. In our pursuit,
we turn to Generalized Additive Models (GAMs), a widely used class of models
known for their versatility across various domains. Although GAMs can capture
non-linear relationships between variables and targets, they cannot capture intricate
feature interactions. In this work, we investigate both of these challenges and
propose a novel class of models, Shape Arithmetic Expressions (SHAREs), that
fuses GAM’s flexible shape functions with the complex feature interactions found
in mathematical expressions. SHAREs also provide a unifying framework for both
of these approaches. We also design a set of rules for constructing SHAREs that
guarantee transparency of the found expressions beyond the standard constraints
based on the model’s size.

1 Introduction

Symbolic Regression. Symbolic regression (SR) is an area of machine learning that aims to construct
a model in the form of a closed-form expression. Such an expression is a combination of variables,
arithmetic operations (+,−,×,÷), some well-known functions (trigonometric functions, exponential,
etc), and numeric constants. For instance, 3 sin(x1 + x2) × e2x

2
3 . Such equations, if concise, are

interpretable and well-suited to mathematical analysis. These properties have led to applications
of SR in many areas such as physics [37], medicine [4], material science [48], and biology [12].
Symbolic regression is usually validated on synthetic datasets with closed-form ground truth equations
[44, 32, 6]. However, as we investigate in Section 2.1, closed-form functions are often inefficient in
describing some relatively simple relationships producing overly long expressions. They are also not
compatible with categorical variables. Further discussion on symbolic regression methods can be
found in Appendix D.

Generalized Additive Models. Widely used transparent models are Generalized Additive Models
(GAMs) [17, 25]. They model the relationship between the features xi and the label y as

g(y) = f1(x1) + . . .+ fn(xn) (1)

where g is called the link functions and the fk’s are called shape functions. These models allow
arbitrary complex shape functions but exclude more complicated interactions between the variables.
They are deemed transparent as each function fk can be plotted, and thus the contribution of xk

can be understood. Extensions of GAMs that include pairwise interactions have also been proposed
(GA2M) [26]. In these settings, the model can contain 2D shape functions that can be visualized
using a heatmap. The main disadvantage of such models is their inability to model more complicated
interactions, for instance, x1x2

x3
(see Section 2). See Appendix D for more discussion about GAMs.
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Transparency of closed-form expressions. A model is considered transparent if by itself it is
understandable—a human understands its function [5]. The transparency of symbolic regression can
be compromised if the found expressions become too complex to comprehend. In many scenarios,
an arbitrary closed-form expression is unlikely to be considered transparent. Most of the current
works limit the complexity of the expression by introducing a constraint based on, e.g., the number
of terms [41], the depth of the expression tree [13], or the description length [43]. Although these
metrics often correlate with the difficulty of understanding a particular equation, size does not always
reflect the equation’s complexity as it does not focus on its semantics. Some recent works introduce
a recursive definition of complexity that takes into account the type and the order of operations
performed [46, 23]. Although they are a step in the right direction, they are not grounded in how the
model will be analyzed, and thus, it is not clear if they capture how comprehensible the model is
(further discussion in Appendix D).

Contributions and outline. In Section 2, we investigate the limitations of SR and GAMs. In Section
3, we introduce a novel class of models called SHape ARithmetic Expressions (SHAREs) that
combine GAM’s flexible shape functions with the complex feature interactions found in closed-form
expressions thus providing a unifying framework for both approaches. In Section 4, we introduce a
new kind of transparency that goes beyond the standard constraints based on the model’s size and
apply it to SHAREs. We also investigate theoretical properties of transparent SHAREs. Finally, we
demonstrate their effectiveness through experiments in Section 5.

2 Limitations of current approaches

2.1 Symbolic regression struggles with non-closed-form expressions.

Symbolic regression excels in settings where the ground truth is a closed-form expression [44].
However, its effectiveness becomes less certain when applied to scenarios with no underlying closed-
form expressions. Some phenomena do not have a closed-form expression (e.g., non-linear pendulum),
and many functions in physics are determined experimentally rather than derived from a theory and
are not inherently closed-form (e.g., current-voltage curves, drag coefficient as a function of Reynolds
number, phase transition curves). This is even more relevant in life sciences, where the complexity of
the studied phenomena makes it more difficult to construct theoretical models. We claim symbolic
regression struggles to find a compact expression for some relatively simple univariate functions.

Example: stress-strain curves. To illustrate our point, we try to fit a symbolic regression model
to an experimentally obtained stress-strain curve. We use data of stress-strain curves in steady-state
tension of aluminum 6061-T651 at different temperatures obtained by [1]. Figure 1 (left panel) shows
a sample of these curves. These functions are relatively simple as they can be divided into a few
interpretable segments representing different behaviors of the material. We use a symbolic regression
library PySR [13] to fit the stress-strain curve of aluminum at 300◦C. We fit the model and present
some of the found expressions in Figure 1 (right panel). The size of a closed-form expression is
defined as the number of terms in its representation. For instance, sin(x+ 1) has complexity 4 as it
contains four terms: sin, +, x, and 1. We can see that small programs do not fit the data well. A good
fit is achieved only by bigger expressions. However, such expressions are much less comprehensible,
and thus, their utility is diminished.

Equation Size R2 score

y = 63.3e−x 4 0.163
y = 78.8− 285x 5 0.529
y = 74.9 cos (7.78x) 6 0.733
y = 71.2 cos

(
x

x−0.277

)
8 0.750

y = 147 cos (8.58x− 0.429)− 71.5 10 0.770
y = −428x+ 428 cos (0.0711 log (x))− 324 11 0.836
y = 428 cos (3.31x− 0.0751 log (1.16x))− 320 15 0.933
y = 168 cos(

((
7.23− cos

(
e−421x

))
(x− 2.03)

)
18 0.970

Figure 1: Left panel: examples of stress-strain curves. Right panel: Some of the equations discovered by
Symbolic regression when fitted to the stress-strain curve of aluminum at 300◦C.

2



2.2 GAMs cannot model complex interactions

The main disadvantage of GAMs is that they are poor at modeling more complicated, non-additive
interactions (involving 3 or more variables). Such interactions occur frequently in real life. For
instance, many equations from physics involve multiplying a few variables together. To illustrate
this point, we choose a few simple equations from the Feynman Symbolic Regression Database [44]
and compare the performance of GAMs and GA2Ms with a black-box machine learning model. We
implement GAMs and GA2Ms using Explainable Boosted Machines (EBMs) [25, 26] and choose
XGBoost [11] for a black-box model. We choose equations so that they represent a variety of
non-additive interactions between variables (see Table 1). For a detailed discussion, see Appendix D.

Results. We report the results in Table 1. The performance of GAMs is much lower than the
performance of a full-capacity model (whose R2 score is close to 1.0 as no noise was added to the
dataset). The gap between GAM and XGBoost is partially closed by adding pairwise interactions
in GA2Ms. This dramatically improves the score in some cases (e.g., equation I.8.14) but still
under-performs in others (e.g., equation I.32.5). It is important to note that pairwise interactions
decrease the comprehensibility of the model. In particular, 2D heatmaps are more challenging to
understand than plots of univariate functions, and the individual shape functions cannot be analyzed
independently. As the shape functions have overlapping sets of arguments, we may have to analyze
many shape functions at the same time to understand the model.

Table 1: Performance of additive models (GAM and GA2M) compared to a full capacity model (XGBoost) on
datasets from the Feynman Symbolic Regression Database containing complex variable interactions. We show
the mean R2 score and a standard deviation in the brackets.

Eq. Num Equation GAM GA2M XGBoost

I.6.20b f = e−
(θ−θ1)2

2σ2 /
√
2πσ2 0.731 (.010) 0.896 (.004) 0.997 (.000)

I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2 0.229 (.011) 0.966 (.000) 0.989 (.000)
I.12.2 F = q1q2

4πϵr2 0.676 (.011) 0.950 (.003) 0.993 (.001)
I.12.11 F = q(Ef +Bv sin(θ)) 0.675 (.004) 0.955 (.001) 0.996 (.000)
I.18.12 τ = rF sin(θ) 0.760 (.002) 0.981 (.000) 0.999 (.000)
I.29.16 x =

√
x2
1 + x2

2 − 2x1x2 cos(θ1 − θ2) 0.298 (.007) 0.902 (.002) 0.983 (.001)
I.32.5 P = q2a2

6πϵc3 0.444 (.015) 0.835 (.009) 0.988 (.001)
I.40.1 n = n0e

−magx
kbT 0.736 (.003) 0.899 (.003) 0.981 (.001)

II.2.42 P = κ(T2−T1)A
d 0.615 (.006) 0.937 (.002) 0.990 (.000)

3 Shape Arithmetic Expressions

In this section, we introduce a new type of machine learning model that connects symbolic regression’s
ability to model interactions with GAM’s power of efficiently describing univariate functions by
plots. This new family of models addresses the issues of both GAMs and symbolic regression that
we discussed in the previous section.

Inspired by the GAM literature, we define a set of shape functions S , where each s ∈ S is a univariate
function s : R→ R. This might be, for instance, a set of cubic splines or univariate neural networks.
Let B = {+,−,÷,×} be a set of binary operations. Let us denote real variables as xi. We introduce
Shape Arithmetic Expression (SHARE) as a mathematical expression that consists of a finite number
of shape functions, binary operations, variables, and numeric constants. For instance, see Equation 2,
where s1, s2, s3 ∈ S are the shape functions and need to be plotted next to the equation to understand
the whole model. Formally, we represent SHAREs as expression trees (types of graphs) where each
node is either a binary operation b ∈ B (with two children), a univariate function s ∈ S (with one
child), a variable or a numeric constant (as leaves). Equation 2 represented as a tree can be seen in
Figure 2. We borrow the terminology from SR literature and define the complexity (or size) of a
SHARE as the number of nodes in its expression tree. The depth of a SHARE is defined as the depth
of its expression tree.
Remark 1. Any GAM is an example of a SHARE. If we choose S to be a set of some well-
known functions (e.g., S = {sin, cos, exp, log}) then closed-form expression can also be considered
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SHAREs. In general, however, S is supposed to be a flexible family of functions that are fitted to the
data and are meant to be understood visually.

+

𝑠1

×

÷

−

𝑠2 𝑠3

𝑥1

𝑥2

2.3𝑥4

𝑥3

s1(x4s2(x2)) +
x1

s3(x3)− 2.3
(2)

Figure 2: Shape Arithmetic Expression represented as a tree.

Why univariate functions? We decided to only use univariate functions for two reasons: they are
easy to understand, and they are sufficient. Firstly, they are easy to comprehend because they can
always be plotted. While analyzing them, we have to keep track of only one variable, and we can
characterize them using monotonicity. Univariate functions are also much easier to edit in case we
want to fix the model. Secondly, the Kolmogorov–Arnold representation theorem [22] states that for
any continuous function f : [0, 1]n → R, there exist univariate continuous functions gq.ϕp,q such that

f(x1, . . . , xn) =

2n∑
q=0

gq

(
n∑

p=1

ϕp,q(xp)

)
(3)

That means in principle, for expressive enough shape functions, SHAREs should be able to ap-
proximate any continuous function. However, SHAREs of that form would not necessarily be very
transparent. We discuss the transparency of SHAREs in the next section.

4 Transparency

As explained in Section 1, the transparency of symbolic regression can be compromised if the
found expressions become too complex to comprehend. In many scenarios, an arbitrary closed-
form expression is unlikely to be considered transparent. To see that, it is enough to realize that
any fully connected deep neural network with sigmoid activation functions is technically a closed-
form expression. As SHAREs extend SR, they inherit the same problem. Current works introduce
constraints that are not grounded in how the model will be analyzed; thus, it is unclear whether they
capture how comprehensible the model is. That includes constraints based on model size [41, 13, 43]
and even recent semantic constraints [46, 23] (further discussion on SR constraints in Appendix D).
We take an alternative approach. We define transparency implicitly by proposing two general rules
for building machine learning models in a transparency-preserving way, and we justify why they may
be sufficient for achieving transparency in certain scenarios. These rules, in turn, allow us to define a
subset of transparent SHAREs.

Rule 1. Let s be any univariate function. s(xi) is transparent, where xi is any variable. If f is
transparent then s ◦ f is also transparent.

Rule 2. Let b ∈ B be a binary operation. If f and g are transparent and have disjoint sets of arguments
then b ◦ (f, g) is also transparent.

Motivated by research on human understanding and problem solving [29, 39, 28, 40], we assume
that in some scenarios understanding a complex expression involves decomposing it into smaller
expressions and understanding them and the interactions between them. Thus the model can be
understood from the ground up. This is in agreement with recent research in XAI that highlights
decomposability as a crucial factor for transparency, enabling more interpretable and explainable
machine learning methods [5]. The rules we propose offer a rigorous way to encode this criterion for
some classes of machine learning models. Below, we justify why these rules may often be sufficient.

Let us start with Rule 1. Let s be any univariate function. Then s(xi) is transparent because we can
visualize it and create a mental model of its behavior. Let us now consider a transparent function f .
As it is transparent, we should have a fairly good understanding of the properties of f . For instance,
what range of values it attains, or whether it is monotonic for some subsets of the data. As we can
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visualize s, it is reasonable to expect that we can infer these properties about s ◦ f as well. We can
analyze s and f separately and then use that knowledge to analyze s ◦ f .

Let us now justify Rule 2. Let b ∈ B be a binary operation and let f and g be transparent functions
with non-overlapping sets of arguments. As these functions are transparent, we can understand their
various properties. As they do not have any common variables, they act independently. Thus, we can
combine them using the binary operation b and directly use the previous analysis to understand the
new model b ◦ (f, g). Thus, it is considered transparent. See Appendix D for a practical example.

Although Rule 2 seems like a strong constraint, many common closed-form equations used to describe
natural phenomena can be put in a form that satisfies this rule. In particular, 82 out of 100 equations
from Feynman Symbolic Regression Database [44] satisfy Rule 2. Thus, in many cases, the space of
transparent models should be rich enough to find a good fit.

Restricting the search space. The current definition of SHAREs contains certain redundancies. For
instance, it allows for a direct composition of two shape functions. This unnecessarily complicates
the model as the composition of two shape functions is just another shape function (given that the
class of shape functions is expressive enough). As any binary operation applied to a function and a
constant can be interpreted as applying a linear function, we can remove the constants without losing
the expressivity of SHAREs (given that the shape functions can model linear functions).

We can now use these two rules and the above observations to define transparent SHAREs.
Definition 1. A transparent SHARE is a SHARE that satisfies the following criteria:

• Any binary operator is applied to two functions with disjoint sets of variables.
• The argument of a shape function cannot be an output of another shape function, i.e., s1(s2(x)) is

not allowed.
• It does not contain any numeric constants.
Remark 2. By this definition, any GAM is a transparent SHARE. This is consistent with the fact that
GAMs are generally considered transparent models [17, 9].

Transparent SHAREs have some useful properties. For instance, there is no need to arbitrarily
limit the size of the expression tree (as might be the case for many SR algorithms). The following
proposition demonstrates some useful properties of SHAREs, including that the depth and the number
of nodes of a transparent SHARE are naturally constrained.
Proposition 1. Let f : Rn → R be a transparent SHARE. Then

• Each variable node appears at most once in the expression tree.
• The number of binary operators is d− 1, where d is the number of variable nodes (leaves)
• The depth of the expression tree of f is at most 2n.
• The number of nodes in the expression tree of f is at most 4n− 2.

Proof. Appendix A.

For comparison, the expression tree of a GAM has 3n− 1 nodes. That demonstrates that transparent
SHAREs are not only naturally constrained, but even the largest possible expressions are not signifi-
cantly longer than the expression for a GAM, even though it can capture much more complicated
interactions. The immediate corollary of this proposition is useful for the implementation.
Corollary 1. SHARE f satisfies Rule 2 iff each variable appears at most once in its expression tree.

5 SHAREs in Action

In this section, we perform a series of experiments to show how SHAREs work in action. First, we
justify our claim that SHAREs extend GAMs (Section 5.1) and SR (Section 5.2). Finally, we show an
example that cannot be fitted by GAM or by SR. For details about the experiments, see Appendix C.

Implementation. We use nested optimization to implement SHAREs. The outer loop employs
a modified genetic programming algorithm (based on gplearn [41] used for symbolic regression),
while the inner loop optimizes shape functions as neural networks via gradient descent. Although
not a key contribution due to its limited scalability, this implementation demonstrates SHAREs’
potential to outperform existing transparent methods and enhance interpretability, given more efficient
optimization algorithms. We note that optimization of transparent models is usually harder than that
of black boxes [35]. For further implementation details, see Appendix B.
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5.1 SHAREs extend GAMs

As we discussed earlier, GAMs (without interactions) are examples of SHAREs. That means that, in
a particular, if we have a dataset that can be modeled well by a GAM, SHAREs should also model it
well. To verify this, we generate a semi-synthetic dataset inspired by the application of GAMs to
survival analysis described in [18]. In this work, GAMs are used to model the risk scores of patients
taking part in a clinical trial for the treatment of node-positive breast cancer. We choose three of the
covariates considered and assume that the risk score (log of hazard ratio) can be modeled as a GAM
of age, body mass index (BMI), and the number of nodes examined. We recreate the shape functions
to resemble the ones reproduced in the original paper. Then we choose the covariates uniformly from
the prescribed ranges and calculate the risk scores.

We fit SHAREs to this dataset and show the results in Figure 3. Each row shows the best equation
with the corresponding number of shape functions and the shape functions of the equation with three
shape functions are shown on the right side of the figure.

#s Equation R2 score

0 y = xnodes

xage
-1.241

1 y = (xnodes + xage)s3(xbmi) 0.623
2 y = s2(xage) + s3(xbmi) 0.855
3 y = s1(xnodes) + s2(xage) + s3(xbmi) 0.992
4 y = s0(

s2(xage)s3(xbmi)
s1(xnodes)

) 0.992 0 50
xnodes

0.5

0.0

0.5

1.0

s 1

50 60 70
xage

1.0
0.5
0.0
0.5

s 2

20 40
xbmi

2

1

0

s 3

Ground truth
SHARE

Figure 3: Results of fitting SHAREs to the risk score data. Each row in the table shows the best found equation
with the corresponding number of shape functions (#s). On the right side, shape functions from the fourth row
compared to the ground truth.

We see that the equation in the fourth row achieves a high R2 score. It is also in the desired form.
When we plot the shape functions in Figure 3 we see that they match the ground truth well (the
vertical translation is caused by the fact that shape functions can always be translated vertically).

5.2 SHAREs extend SR

Torque equation. Consider equation I.18.12 (Table 1) used to calculate torque, given by τ =
rF sin(θ). We sample 100 rows from the Feynman dataset corresponding to this expression and we
run our algorithm. Each row of the table in Figure 4 shows the best equation with the corresponding
number of shape functions. The right side of the figure shows the shape functions of the equations in
the second and fourth rows.

# s Equation R2 score

0 τ = F
θ -0.011

1 τ = rFs3(θ) 0.999
2 τ = s1(r)Fs3(θ) 0.999
3 τ = s1(r)s2(F )s3(θ) 0.999
4 τ = s0(s1(r)s1(F )s3(θ)) 0.999

0 1 2 3 4 5
1.0

0.5

0.0

0.5

1.0

Va
lu

e

= rFs3( )
sin
s3

0 1 2 3 4 5
r / F / 

4

2

0

2

4

Va
lu

e

= s1(r)s2(F)s3( )
s1
s2
s3

Figure 4: Equations found by fitting SHAREs to a torque equation τ = rF sin(θ). Each row in the table shows
the best found equation with the corresponding number of shape functions (#s). Central panel: shape function
from the second row compared to ground truth. Right panel: shape functions from the fourth row.

The equation that is symbolically equivalent to the ground truth is in the second row, τ = rFs3(θ).
It achieves a nearly perfect R2 score. By plotting s3, we can verify that it matches sin function well
(Figure 4, central panel).

What are the shape functions of the longer equations? Consider the expression in row 4 from the
table in Figure 4, τ = s1(r)s2(F )s3(θ). It might look complicated because it contains three shape
functions. But, if we inspect s1 and s2 (Figure 4, right panel), we see that they are linear functions.
We can extract the line equations and put them into the found SHARE to get a simple expression
(−0.2r − 0.56)(0.34F + 0.78)s3(θ).

6



5.3 SHAREs go beyond SR and GAMs

We consider the following problem. Given m grams of water (in a liquid or solid form) of temperature
t0 (in ◦C), what would be the temperature of this water (in a solid, liquid, or gaseous form) after
heating it with energy E (in calories). We restrict the initial temperature to be from -100 ◦C to 0 ◦C.
This is a relatively simple problem with only 3 variables but we will show that both GAMs and SR
are not sufficient to properly (and compactly) model this relationship.

GAMs. First, we fit GAMs without interactions using EBM [25, 30]. The shape functions of EBM
are presented in Figure 5 (right panel). The R2 score on the validation set is 0.758. We can also see
that the two of the shape function are very jagged. They do not seem to fit our definition of a simple
univariate function. This makes it difficult to gain insight into the studied phenomenon.

GA2Ms. Now, we fit GAMs with pairwise interactions [26], once again using the EBM algorithm.
The shape functions of EBM are presented in Figure 8 in Appendix C.3. Although the R2 score has
been improved to 0.875, EBM’s transparency is reduced even further by adding pairwise interactions.

Symbolic Regression. We fit symbolic regression using the PySR library [13]. We limit the
complexity of the program to 40 and we present the results in the table in Figure 5. Only the most
complex equations give us a performance comparable to a GAM with interactions: 0.867. The last
equation from the table is shown below. We argue that its complexity hinders its transparency.

y =
x2

log (x0)
−1.72ee

cos ( 0.0103x0
x1

)
+80.1+56.3 cos

(
log

(
0.58x0

x1
+ 31.7 cos

(
0.021x0

x1
+ 0.93

)))

Equation Complexity R2 score

y = 13.5 log (E) 4 0.384
y = 0.193E

m 5 0.485
y = 39.4 log

(
E
m

)
− 141 8 0.733

Appendix C.3 17 0.768
Appendix C.3 23 0.817
Appendix C.3 33 0.840
Appendix C.3 40 0.867 0 2000

E (cal)

100

0

100

s 1

2 4
m (g)

20

0

20

40
s 2

100 0
t0 ( C)

10

0

10

20

s 3

EBM (no interactions)

Figure 5: Left panel: Equations found by SR when fitted to the temperature data. The last four equations do not
fit in the table; they are reproduced in Appendix C.3. Right panel: shape functions from the GAM fitted to the
temperature dataset.

SHAREs. We finally fit SHAREs to the temperature data. The found expressions are shown in
Figure 6. We immediately see a very good performance from all models apart from the one not using
any shape functions at all. The scores are also much better than the scores achieved by GAMs (with
or without interactions) and SR. Let us investigate the equation in the third row; the shape functions
are presented in Figure 6 (right panel).

We note that the expression s1
(
(Em + s2(t0)

)
has a better performance than GAMs and SR, a more

compact symbolic representation than SR, and simpler shape functions than GAM. This exemplifies
how, by combining the advantages of GAMs and SR, we can address their underlying limitations.
Let us see how this particular SHARE can aid in understanding the phenomenon it fits. We first
recognize that s1 is contingent on the energy-to-mass ratio, which is offset by a function of the initial
temperature, t0. As shown in Figure 6’s right panel, s2 appears linear, with an irregularity around
−40 ◦C, which regularization may have eliminated. Replacing s2 with an equivalent linear function
and adjusting the equation gives us: t = s1

(
E
m + 0.507t0 + 24.973

)
Analyzing s1, we find that without energy input, E

m+0.507t0+24.973 ranges from−26 (t0 = −100)
to 25 (t0 = 0), aligning with the first linear part of the s1 curve. Increasing energy per mass initially
raises the temperature linearly to 0 ◦C, then plateaus, characteristic of an ice-water mixture. When all
ice melts, the temperature rises linearly again to 100 ◦C, remaining constant until all water evaporates,
after which steam temperature again increases linearly.
The shape functions also provide quantitative insights. The slopes of s1’s linear parts approximate
the specific heat capacities of ice, water, and steam. The constant parts’ widths estimate the heat
of fusion and vaporization. We compare these estimates from s1 with the physical ground truth in
Table 6 in Appendix C.3 (the same values were used for data generation).
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#s Equation R2 score

0 t = m -3.513
1 t = s1

(
E+t0
m

)
0.979

2 t = s1
(
(Em + s2(t0)

)
0.999

3 t = s1
(
(s0(

E
m )s2(t0)

)
0.999

4 t = s1

(
(s3

(
s0(E)
m

)
+ s2(t0)

)
0.999

0 250 500 750
E
m  (cal/g)

100

0

100

200

s 1

100 50 0
t0 ( C)

20

0

20

s 2

SHARE

Figure 6: Equations found by fitting SHAREs to the temperature dataset. Each row in the table shows the
best-found equation with the corresponding number of shape functions (#s). Right panel: shape functions of the
found SHARE s1

(
( E
m

+ s2(t0)
)

(third row).

6 Discussion

Applications. SHAREs can be beneficial in settings where transparent models are needed or preferred,
such as risk prediction in healthcare and finance. They can also be useful in AI applications for
scientific discovery (AI4Science). Currently, a lot of work in AI4Science is focused on developing
better symbolic regression methods. We believe that for AI4Science to advance beyond the synthetic
experiments based on simple physical equations, we need to add more flexibility to our models.
Transparent SHAREs add this flexibility without compromising the comprehensibility.

Limitations. The current implementation of SHAREs is time-intensive and thus does not scale
to bigger datasets. We are confident that further optimizations will enable wider adoption of this
novel approach. We hope that future work will address the limitation of our implementation and will
enhance the ability to fit SHAREs to even larger and more complex datasets.
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A Theoretical results

In this section, we provide proof of the properties listed in Proposition 1.

First, let us define active variables and a subtree of a node.

Definition 2 (Active variables). Consider a SHARE f : Rn → R and its expression tree. The set of
active variables of the tree (or of f ) is the set of variables present in the tree.

For instance, a function f(x1, x2, x3) = x1 + x2, represented as a tree with 3 nodes: +, x1, x2, has
the set of active variables {x1, x2} and a set of not active variables {x3}.
Definition 3 (Subtree of a node). Consider an expression tree T . For each node A in T , we define
the subtree of A as a subtree of T containing A and all its descendants. We call fA the function
represented by the subtree of A.

For the rest of the section, we assume that f : Rn → R is a transparent SHARE (according to
Definition 1) and its expression tree is called T

A.1 Variable nodes

Claim: Each variable node appears at most once in the expression tree. The maximum number of
leaves is n.

Proof. Assume for contradiction there are two nodes, A and B, describing the same variable x.
Consider the lowest common ancestor of A and B called C. If C was a shape function then the child
of C would be a lower common ancestor of A and B. Thus C is a binary function with children C1

and C2. Without loss of generality, assume that A is in the subtree of C1. Then B has to be in the
subtree of C2 (otherwise B would have to be in a subtree of C1 and C1 would be a lower common
ancestor of A and B). Thus the functions fC1 , fC2 have a non-empty set of active variables (contains
at least x). Thus C is a binary operator applied to two functions with an overlapping set of active
variables. Thus f does not satisfy Rule 2 which contradicts f being transparent.

Thus each variable node appears only once in the expression tree. As there are n variables, there are
at most n variable nodes. This is the same as the number of leaves as variable nodes are the only
kinds of leaves.

A.2 Useful lemma

In the next proofs, the following lemma will be helpful.

Lemma 1. Consider a node A that corresponds to a binary operator. Let us call the children of
A, A1, and A2. If fA1

has a active variables fA2
has b active variables then fA has a + b active

variables. Also a, b < a+ b.

Proof. The set of active variables of fA is the union of active variables of fA1
and fA2

. As these
functions have disjoint sets of active variables (because f is transparent), the number of active
variables of fA is just a sum of the numbers of active variables of fA1

and fA2
.

A.3 Number of binary operators

Claim: The number of binary operators is d− 1 where d is the number of active variables of f .
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Proof. Let us prove the following, more general, statement: Consider the node B. If the number of
active variables of fB is k then the number of binary operators in the subtree of B is k − 1.

We prove it by strong induction on k.

When k = 1 (we cannot have k = 0 as we do not have any constants) then the subtree of B is either a
variable node or a shape function with a node variable as a child. In both cases, the number of binary
operators is 0.

Let us assume the statement is true for all m < k + 1. Assume that the subtree of B has k + 1 active
variables. B is either a shape function or a binary operator. If B is a binary operator then it has two
children. Let us call them B1 and B2. Let us denote the number of active variables of fB1 as a and
of fB2 as b. From Lemma 1, k + 1 = a + b and a < k + 1, and b < k + 1. From the induction
hypothesis, the subtree of B1 has a − 1 binary operators and the subtree of B2 has b − 1 binary
operators. Thus the subtree of B has (a− 1) + (b− 1) + 1 = a+ b− 1 = k binary operators. If B
is a shape function then its child is a binary operator and the same argument follows.

By induction, if the number of active variables of fB is k then the number of binary operators in the
subtree of B is k − 1.

Now f has d active variables, so it has d− 1 binary operators.

A.4 Depth of the expression tree

Let d be the number of active variables of f . By the previous result it has d−1 binary operators. That
means that on the path from the root to the variable node there are at most d− 1 binary operators. On
this path, every pair of consecutive binary operators can be separated by at most one shape function
(the same is true for a binary operator and a variable node). Thus the maximum number of nodes
on the path from root to the variable node is a sum of d − 1 (number of binary operators), d − 2
(number of shape functions between the operators), 1 (shape function between the operator and
the variable node), 1 (shape function as a root), 1 (the variable node itself). This gives a total of
(d− 1) + (d− 2) + 1 + 1 + 1 = 2d. Thus the maximum depth of the tree is 2d. As d ≤ n, we get
that the maximum depth of the tree is 2n.

A.5 Size of the expression tree

Claim: The number of nodes in a tree is at most 4n− 2.

Proof. Let us prove the following, more general statement: Consider a node A. If the number of
active variables of fA is k then the maximum number of nodes in the subtree of A is 4k − 2 if A is a
shape function and 4k − 3 otherwise.

Let us prove it by strong induction on k.

Consider k = 1. The subtree of A is either a variable node, or a shape function with a variable node
as a child. The number of nodes is either 1 if it is a variable node or 2 if it is a shape function. As
4× 1− 2 = 2 and 4× 1− 3 = 1, the base case is satisfied.

Let us assume the statement is true for all m < k + 1.

Consider a node A whose subtree has k + 1 active variables. If A is a binary operator then it has
two children A1 and A2. Their subtrees have respectively a and b active variables. From Lemma 1,
a + b = k + 1. By the induction hypothesis, the maximum number of nodes in the subtree of A1

is 4a− 2 and 4b− 2 in the subtree of A2. Thus the maximum number of nodes in the subtree of A
is (4a − 2) + (4b − 2) + 1 = 4(a + b) − 3 = 4(k + 1) − 3. This proves one part of the claim. If
A is a shape function then its child is a binary operator with k + 1 active variables. But we have
just proved that the subtree of this operator has at most 4(k + 1) − 3 nodes. That means that the
maximum number of nodes in the subtree of A is 4(k + 1)− 3 + 1 = 4(k + 1)− 2 as required.

The claim is true by induction. Now we want to show that such a tree always exists. Consider a binary
operator node A1 whose subtree has k active variables {x1, . . . , xk}. Let its children be two shape
functions B1 and C1. Let the child of C1 be a variable node corresponding to x1. Let the child of B1

be a binary operator A2. We repeat the process. In general, binary operator node Ai has two children
Bi and Ci. The child of Ci is a variable node corresponding to xi and the child of Bi is the binary

13



operator Ai+1. We can repeat the process until i = k− 1. At this point the child of Bk−1 needs to be
a variable node corresponding to xk. Overall, we have k − 1 binary operators A1, . . . , Ak−1. k − 1
shape functions B1, . . . , Bk−1, k − 1 shape functions C1, . . . , Ck−1, and k variable nodes. Thus the
total number of nodes is 3(k − 1) + k = 4k − 3. If the first node is a shape function then its child is
the binary operator node A1 and the total number of nodes is 4k − 2.

As the number of active variables in the whole tree is less than n, then the maximum number of nodes
is 4n− 2.

B Implementation

We implement SHAREs using nested optimization. The outer loop is a modified genetic programming
algorithm (based on gplearn [41] that is used for symbolic regression) that finds a symbolic expression
with placeholders for the shape functions and the inner loop optimizes the shape functions. We
implemented the shape functions as neural networks and optimize the model using a gradient descent
algorithm.

B.1 Modifications to the genetic algorithm

Gplearn is a symbolic regression algorithm that represents equations as expression trees and uses
genetic programming to alter the equations (programs) from one generation to the next one based
on their fitness score. We modify this algorithm so that the found expressions contain placeholders
for the shape function. To compute the fitness of an expression the whole equation is fitted to the
data and the shape functions are optimized using gradient descent. To guarantee that all equations are
transparent (i.e., they satisfy Definition 1) we change the way the initial population is created and
modify some of the rules by which the equations evolve. We describe the details of the modifications
below.

Initial population. We disable the use of constants and allow only binary operations in B and shape
functions. We grow the expression trees at random starting from the root. The next node is chosen
randomly and constrained such that: a) if the parent node is a shape function then the child cannot
be a shape function, and b) no variable can appear twice in the tree. By the Corollary 1, the second
condition is equivalent to satisfying Rule 2.

Crossover. We call the variables present in a tree active variables. During crossover, we select a
random subtree from the program to be replaced. We take the union between the active variables in
the subtree and the variables that are not active in the whole program. A donor has a subtree selected
at random such that its set of active variables is contained in the previous set. This subtree is inserted
into the original parent to form an offspring. This guarantees that no variable appears twice in the
offspring.

Subtree mutation. We perform the same procedure as in crossover but instead of taking a subtree
from a donor, we create a new program with variables from the allowed set.

Point mutation. This procedure selects a node and replaces it for a different one. A binary operation
is replaced by a different binary operation. Shape functions are not replaced. All variables that are
supposed to be replaced are collected in a set. This set is enlarged by the variables that are not active.
For each mutated node the variable is drawn from this set without replacement.

Reproduction and hoist mutation has not been altered. For more details about the genetic programming
part of the algorithm, please see the official documentation of gplearn.

Binary operations B. We choose the set of binary operations to be B = {+,×,÷} (we remove "−"
to remove redundancy and reduce the search space.

B.2 Optimization of the shape functions

Shape functions S . We choose the set of shape functions S to be a family of Neural Networks with
5 hidden layers, each with a width of 10. Each layer, excluding the last one, is followed by an ELU
activation function. We apply batch normalization before the input layer.
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Dataset vs. batch normalization. We do not perform any kind of normalization on the whole dataset
before training. This is driven by the fact that we want to use the form of the equation for analysis,
debugging or gaining insights. Dataset normalization makes the feature less interpretable by, de facto,
changing the units in which they are measured. Moreover, such normalization might make certain
invariances more difficult to detect. Translational or scale invariances are present in many physical
systems and, in fact, have been used to discover closed-form expressions from data [44]. Consider
equation (x2 − x1)

2. The value of the expression does not depend directly on the values of x1 and
x2 but rather on their difference x2 − x1. Detecting this relationship is important for both creating
equations with interpretable terms and for pruning the search space. As we tend to use a consistent
and familiar set of units, we want to capitalize on that as much as we can. However, features on
different scales make neural networks (and other machine learning algorithms) notoriously difficult
to train. That is why we perform batch normalization before passing the data to a shape function.
That allows to perform a series of binary operations in the original units before a shape function is
applied. This is what happens in the example in Section 5, where given the energy and the mass of
the substance, their ratio (energy per 1 gram) is discovered to be a more meaningful feature.

B.3 Pseudocode and a diagram

Block diagram. The training procedure for SHAREs implemented with symbolic regression and
neural networks is depicted in Figure 7.

Data
Genetic 

Programming
Equation

𝑠1(𝑥1 + 𝑠2 𝑥2 𝑠3(𝑥3))

Neural Network
Suggest Encode

𝑥2 𝑥3

𝑥1 ×

+

𝑦

𝑠2 𝑠3

𝑠1

Loss

Fit

𝑿, 𝒚

Figure 7: This figure shows a block diagram depicting our implementation of SHAREs

Pseudocode. The pseudocode for SHAREs implemented with symbolic regression and neural
networks is described in Algorithm 1.

C Experiments

C.1 Hyperparameters

gplearn. Gplearn hyperparameters used for experiments are presented in Table 2.

Optimization of shape functions.

Hyperparameters used for optimizing the shape function are presented in Table 3.
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Algorithm 1 SHARE implemented using symbolic regression and neural networks
Input: Data X , y
Input: Symbolic regression optimization algorithm Osymbolic
Input: Gradient-based optimization algorithm Ogradient
Output: SHARE

procedure LOSS(fe)
Encode expression fe as a neural network f
f ← Ogradient

(
||y − f(X)||22

)
return ||y − f(X)||22

end procedure
fe = Osymbolic(LOSS)
return fe

Table 2: Gplearn hyperparameters used in the experiments

Hyperparameter Value

Population size 500
Generations 10
Tournament size 10
Function set +,×,÷, shape
Constant range None
p_crossover 0.4
p_subtree_mutation 0.2
p_point_mutation 0.2
p_hoist_mutation 0.05
p_point_replace 0.2
Parsimony coefficient 0.0

Table 3: Hyperparameters used in shape function optimization

Hyperparameter Value

Algorithm Adam [21]
Maximum num. of epochs 1000
Early stopping patience 10 (evaluated every 10 epochs)
Early stopping tolerance 0.001
Learning rate Tuned automatically for each equation

PySR. PySR hyperparameters used in the experiments are presented in Table 4.

Table 4: PySR hyperparameters

Hyperparameter Value

Binary operations +,−,×,÷
Unary operators log, exp, cos
maxsize 40
populations 30
niterations 400
population_size 50

EBM. EBM hyperparameters used in the experiments are presented in Table 5
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Table 5: EBM hyperparameters

Hyperparameter Value

max_bins 256
max_interaction_bins 32
binning quantile
interactions 0 or 3
outer_bags 8
inner_bags 0
learning_rate 0.01
validation_size 0.15
early_stopping_rounds 50
early_stopping_tolerance 0.0001
max_rounds 5000
min_samples_leaf 2
max_leaves 3

C.2 Data generation

Risk scores dataset. [18] describes a process of applying GAMs to a dataset of patients taking part
in a clinical trial for the treatment of node-positive breast cancer. In the paper, three shape functions
that resulted from this fitting are presented (Figure 1). To generate the risk scores data we use for
experiments in Section 5, we use these plots to create similar-looking functions using BSplines. We
sample uniformly each of the covariates from their corresponding ranges, i.e., xnodes ∈ (0, 50),
xage ∈ (45, 70), and xbmi ∈ (17, 45). We then apply the created shape functions to these covariates
and add their values together. We create 200 samples. Half of them is used for training and the other
half for validation.

Temperature dataset. Data used in temperature experiments in Section 5 was generated by simulating
the temperature of water based on the laws of physics and constants shown in Table 6. m was
uniformly sampled from (1, 4) and t0 was sampled uniformly from (−100, 0). The energy E was
calculated by first sampling energy per mass uniformly from (1, 800) and then multiplying it by the
mass m. If the energy was uniformly sampled directly then the ratio E

m would have very non-uniform
distribution which would inhibit learning. We draw 2000 samples. Half of them is used for training
and the other half for validation.

C.3 Additional results

GA2M fitted to the temperature dataset. We present the shape functions of GA2M fitted to the
temperature dataset in Section 5.

Equations from PySR fitted to the temperature dataset. We present the equations found by PySR
when fitted to the temperature dataset in Section 5. These equations did not fit into the table with the
results.

y = 74.0 cos

(
log

(
0.739E

m
+ 19.1

))
+ 39.1 +

t0
E

(4)

y =
t0

log (E)
+ 65.0 cos

(
log

(
E

m
+ 41.5 cos

(
0.0275E

m

)))
+ 50.9 (5)

y = −1.63ee
cos ( 0.0101E

m )

+ 58.6 cos

(
log

(
0.653E

m
+ 27.1 cos

(
0.0261E

m

)))
+ 67.6

(6)

y =
x2

log (x0)
−1.72ee

cos ( 0.0103E
m )

+56.3 cos

(
log

(
0.582E

m
+ 31.7 cos

(
0.0214E

m
+ 0.925

)))
+80.1

(7)

Water properties extracted from found shape functions in Section 5 can be found in Table 6.
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Figure 8: Shape functions from the GA2M fitted to the temperature dataset

Table 6: Properties of water extracted from shape function s1 compared to the ground truth.

Property From s1 Ground truth

Spec. heat cap. of ice ( cal
g◦C ) 0.46 0.50

Spec. heat cap. of water ( cal
g◦C ) 0.98 1.00

Spec. heat cap. of steam ( cal
g◦C ) 0.48 0.48

Heat of fusion ( calg ) 82.81 79.72
Heat of vaporization ( calg ) 589.88 540.00

C.4 Additional experiments

We performed an additional experiment on the Boston House Prices dataset [16], and Concrete
Compressive Strength dataset [50] from the UCI repository. The Boston dataset contains 13 features,
including both numerical and categorical variables (note that standard Symbolic Regression is not
well suited to categorical variables). We compare SHAREs with Linear Regression, GAMs, and
XGBoost. We consider three kinds of GAMs: GAMs with splines (GAM-S) as implemented in the
PyGAM library [38], EBMs without interactions (EBM-1) [25], and EBMs with pairwise interactions
(EBM-2) [26]. Both are implemented in InterpretML package [30]. The results can be seen in Table 7.
We present the shape functions found by SHAREs in Figure 9, by GAM-S in Figure 10, by EBM-1 in
Figure 11, and by EBM-2 in Figure 12. Our analysis reveals that SHARE surpasses all other white
box methodologies in performance on the Boston dataset, while maintaining superior interpretability
of its shape functions. When applied to the Concrete dataset, SHARE is superior to Linear Regression
and GAM-S, both of which are transparent algorithms. It is noteworthy that EBM-1 and EBM-2 also
have a much more complex shape functions (Figure 11 and Figure 12).

C.5 Computation time

The experiments were performed on 12th Gen Intel(R) Core(TM) i7-12700H with 64 GB of RAM.
The total time of running all experiments was around 1h 45m.
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Table 7: Results on two UCI datasets. The higher the score the better.

Algorithm Boston (R2 score) Concrete (R2 score)

Linear Regression 0.711 (0.072) 0.593 (0.068)
GAM-S 0.817 (0.054) 0.877 (0.019)
EBM-1 0.812 (0.064) 0.901 (0.015)
EBM-2 0.838 (0.058) 0.928 (0.013)
XGBoost 0.879 (0.048) 0.929 (0.018)
SHARE 0.840 (0.073) 0.890 (0.018)

Figure 9: SHARE shape functions found when fitted to the Boston House Prices dataset

Figure 10: GAM-S shape functions found when fitted to the Boston House Prices dataset

C.6 Software used

We use PySR [13] to run Symbolic Regression experiments.

We use the implementation of EBM [25, 26] available in the InterpretML package [30].

We use PMLB [31] package to access the Feynman Symbolic Regression Dataset.

C.7 Licenses

The licenses of the software used in this work are presented in Table 8
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Figure 11: EBM-1 shape functions found when fitted to the Boston House Prices dataset

Figure 12: EBM-2 shape functions found when fitted to the Boston House Prices dataset

D Discussion

D.1 Equivalent solutions

As SHAREs are defined by their symbolic representation, it is possible that there are two different
symbolic expressions that describe the same equation (especially as shape functions are flexible). We
address this problem in three ways that tackle three types of equivalence relations:

1. In our implementation, we restrict the set of binary operations to {+,×,÷} (Table 2). As
subtraction ("−") is not included, we do not get the equivalence s1(x1)+s2(x2) = s1(x1)−s′2(x2)
by s′2 = −s2.

2. A common way two mathematical expressions can be equivalent is through the distributive
property, i.e., x1 × (x2 + x3) = x1 × x2 + x1 × x3. However, thanks to our definition of
transparency, the second expression will never appear in our search space (because the binary
operators need to be disjoint).

3. We do not allow constants in transparent SHAREs to prevent equivalence of the type: s(x) =
s′(x× a) for any a ∈ R \ {0} and s′(x) = s(xa )
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Table 8: Software used and their licenses

Software License

gplearn BSD 3-Clause "New" or "Revised" License
scikit-learn BSD 3-Clause "New" or "Revised" License
numpy liberal BSD license
pandas BSD 3-Clause "New" or "Revised" License
scipy liberal BSD license
python Zero-Clause BSD license
PySR Apache License 2.0
interpret MIT License
pmlb MIT License
pytorch BSD-3
pytorch lightning Apache License 2.0
tensorboard Apache License 2.0
py-xgboost Apache License 2.0
pyGAM Apache License 2.0

Another type of equivalence relation can arise from the use of exponential and logarithmic functions.
For instance, s0(s1(x1)+s2(x2)) can be represented as s′0(s

′
1(x1)×s′2(x2)) by taking s′1 = es1 , s′2 =

es2 , s′0(x) = s0(log(x)). This can be observed in rows 3 and 4 in the table in Figure 6. First, we
note that, in these cases, the fact that these equivalent expressions (rather than something completely
different) appear in the table is a sign of the robustness of our method. Even if we allow for more
flexibility, we get expressions that are meaningful and can be transformed into simpler representations.
Second, the other forms of expressions require more shape functions. Thus, as they have the same
predictive power, the user can choose the one with a smaller number of shape functions for better
understanding.

D.2 Limitations of the current implementation

The current implementation of SHAREs is time-intensive and thus does not scale to bigger datasets -
thus it is not a main contribution of our paper. We hope that future work will address the limitation
of our implementation and will enhance the ability to fit SHAREs to even larger and more complex
datasets.

The main bottleneck comes from the nested optimization and the necessity of fitting a separate neural
network for every equation. Nevertheless, we want to highlight a few things we have done to make
this problem more tractable:

1. The constants are not optimized by random mutations but implicitly by fitting the shape functions
using gradient descent.

2. By considering only transparent SHAREs, we efficiently reduce to search space of expressions.
By Proposition 1, the size of a SHARE is bounded by 4n− 2, linear in the number of variables.

3. During training we cache the scores for found expressions so that they can be retrieved if they
appear once again during the evolution.

D.3 Taking advantage of units

Variables in the dataset are often expressed in certain units. These units often provide a lot of
information and are frequently used in SR algorithms. Either explicitly [44] or implicitly by assuming
that certain arithmetic operations make sense. For instance, adding two variables makes little sense
if they are not measured in the same units. Of course, units may easily be changed by an affine
transformation, but such transformations increase the length of the equation. As many SR algorithms
penalize based on the length of the expression, the change of units changes the score of the expression.
On the other hand, the datasets often combine observations of very different phenomena that might
be measured in wildly different units.

So, we want to use the information about units when possible but we do not want to depend on it.
This was one of the motivations behind SHAREs. They allow to use the binary operations on the
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raw variables, capitalizing on the units in which they were described but also allow to first pass a
variable through a shape function that can transform the variable. In certain cases (such as an affine
transformation) this corresponds to a change of units.

D.4 Related works

As SHAREs are very much related to GAMs and SR, we provide an overview of these two types of
models below.

Generalized Additive Models. Generalized Additive Models (GAMs) were introduced in [17].
Initially, splines and other simple parametric functions were used as shape functions. In recent years
many different classes of functions were proposed, including, tree-based, gradient boosted [25], deep
neural networks [3, 33] or neural oblivious decision trees [10]. GAMs have also been extended
to include pairwise interaction that can be visualized using heat maps [26]. A few neural network
architectures closely tied to GAMs have also been proposed [42, 49].

Symbolic Regression. Symbolic Regression (SR) is a branch of machine learning that aims to
construct a model in the form of a closed-form expression. Traditionally Genetic Programming [24]
has been used for this task [7, 37, 14, 41]. Recently, this area attracted a lot of interest from the
deep learning community. Neural networks have been used to prune the search space of possible
expressions [44, 43] or to represent the equations directly by modifying their architecture and
activation functions [27, 36]. A different approach is proposed in [6], where a neural network is
pre-trained using a curated dataset. A similar approach is employed in [15, 20]. Methods using deep
reinforcement learning [32] have also been proposed, as well as a hybrid of the two approaches [19].

Complexity metrics used in symbolic regression. Most of the metrics used in symbolic regression
are based on the "size" of the equation. That includes the number of terms [41], the depth of a tree
[13, 32], and the description length [43]. Pretrained methods often control the complexity of the
generated equations by constraining the training set using the above methods [6]. Methods that
directly represent the equation as a neural network (with modified activation functions) employ
sparsity in the network weights [36]. Although these metrics are often correlated with the difficulty
of understanding a particular equation, size does not always reflect the equation’s complexity as it
disregards its semantics. Some approaches try to address this issue. [46] introduces a metric based
on "order of nonlinearity" with the assumption that nonlinearity measures the complexity of the
function. Although simpler models tend to be more linear, and nonlinearity may be important for
generalization properties, it is not clear how it aids in model understanding. Similarly, [45] uses
curvature as an inspiration for their metric. Although curvature may be well-suited for characterizing
bloat and overfitting, it does not directly relate to how the model is understood. [23] introduces a
metric that is supposed to reflect the difficulty in understanding an equation. However, the exact
rules chosen to calculate the complexity seem arbitrary. For instance, it is not clear why applying
some well-known functions (such as sin, log) increases the complexity in a widely different manner
than squaring or taking a square root. We also dispute the motivating example that demonstrates that
esin

√
x is nearly 4000 times more complex than 7x2 + 3x+ 5. It is not clear under what assumptions

such a result would be intuitive.

D.5 Meaning of the word transparent

In our paper, we have used a widely accepted term: transparent [5]. However, other terms could
also be used. That includes: inherently interpretable [34], intrinsically interpretable [47], intelligible
[25, 26], or white boxes [30]. For this paper, we assume all of these terms refer to the same class of
models.

D.6 Choice of equations

We choose equations in Section 2.2 so that they represent a variety of non-additive interactions
between variables. Equations I.8.14 and I.29.16 describe the Euclidean distance in two dimensions
and the Law of Cosines. Both of them involve a square root of a sum of terms. Equations I.12.2,
I.18.12, I.32.5, II.2.42 can be used to describe an electric force between charged bodies, a torque, a
rate of radiation of energy, and a heat flow. All of them are either products or fractions of products.
Equations I.6.20b and I.40.1 describe a Gaussian distribution and a particle density. They both contain
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exponential functions. Lastly, equation I.12.11 describes a Lorentz force via a sum of products, one
of which contains a trigonometric function.

D.7 Complexity of univariate functions.

Rule 1 in Section 4 is based on the assumption that any univariate function can be understood by
plotting it. This assumption is tacitly made in many works on GAMs that introduce algorithms
producing sometimes very complicated shape functions [25, 9, 3]. However, in some scenarios
this assumption is too strong and some recent works introduce GAMs that take into account the
complexity of shape functions [2]. Rule 1 can be modified to include these stronger assumptions. In
our implementation, we use neural networks, which are known for their expressiveness, and we took
a few design choices that made them simple in practice. We believe their simplicity is a result

• choosing a smooth ELU activation function instead of ReLU or ExU [3] that encourage more
jagged functions

• employing early stopping when training the neural networks to prevent over-fitting
• optimizing using backprop - models learned that way were shown to be biased toward smooth

solutions [8]

If these techniques are not sufficient to arrive at a desirable level of simplicity, a user can add a
regularisation term to the loss function while training the neural networks. Our formulation of
SHAREs allows for different kinds of shape functions, and thus, there is a way to enforce simplicity
by using splines instead of neural networks. This assumes that our definition of simplicity concerns
the smoothness and the number of inflection points. By choosing the number of knots, we can choose
the level of simplicity we desire.

D.8 Rules: practical example.

We propose a practical example when Rule 1 and Rule 2 are satisfied. Let us assume that our definition
of transparency concerns (maybe, among other things) understanding the set of possible values the
expression outputs given a particular set of inputs. We characterize the set of inputs by specifying an
interval for every feature. That is, we are interested in the range of values of f(x1, . . . , xn) where
x1 ∈ [a1, b1], . . . xn ∈ [an, bn]. Let us fix the input intervals. Let us assume that an expression
f(x1, . . . , xn) is transparent if we can easily find an interval [c, d] that is an image of this function for
the specified inputs. Clearly, xi is transparent. But so is f(xi) for any univariate f as long as we are
able to characterize the extrema of f at interval [ai, bi]. Let us assume that a given f is transparent,
i.e., we know its image is an interval [c, d]. Then, we can compute the image of s ◦ f (as long as we
are able to characterize the extrema of s at interval [c, d]). Thus, we can see how Rule 1 conforms
to our notion of transparency. As Rule 2 requires the functions to be transparent and have disjoint
sets of arguments, we can easily calculate the range of the whole model by applying the interval
arithmetic. The example above demonstrates that our rules have practical application for a broad
set of shape functions—the only requirements are being continuous and having easily identifiable
extrema at given intervals (which can be found by plotting the function).
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