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ABSTRACT

In this work, we present a compact, modular framework for constructing new
recurrent neural architectures. Our basic module is a new generic unit, the Transi-
tion Based Recurrent Unit (TBRU). In addition to hidden layer activations, TBRUs
have discrete state dynamics that allow network connections to be built dynami-
cally as a function of intermediate activations. By connecting multiple TBRUs,
we can extend and combine commonly used architectures such as sequence-to-
sequence, attention mechanisms, and recursive tree-structured models. A TBRU
can also serve as both an encoder for downstream tasks and as a decoder for
its own task simultaneously, resulting in more accurate multi-task learning. We
call our approach Dynamic Recurrent Acyclic Graphical Neural Networks, or
DRAGNN. We show that DRAGNN is significantly more accurate and efficient
than seq2seq with attention for syntactic dependency parsing and yields more ac-
curate multi-task learning for extractive summarization tasks.

1 INTRODUCTION

To apply deep learning models to structured prediction, machine learning practitioners must address
two primary issues: (1) how to represent the input, and (2) how to represent the output. The seq2seq
encoder/decoder framework (Kalchbrenner & Blunsom, 2013; Cho et al., 2014; Sutskever et al.,
2014) proposes solving these generically. In its simplest form, the encoder network produces a
fixed-length vector representation of an input, while the decoder network produces a linearization
of the target output structure as a sequence of output symbols. Encoder/decoder is state of the art
for several key tasks in natural language processing, such as machine translation (Wu et al., 2016).

However, fixed-size encodings become less competitive when the input structure can be explicitly
mapped to the output. In the simple case of predicting tags for individual tokens in a sentence, state-
of-the-art taggers learn vector representations for each input token and predict output tags from
those (Ling et al., 2015; Huang et al., 2015; Andor et al., 2016). When the input or output is a
syntactic parse tree, networks that explicitly operate over the compositional structure of the network
typically outperform generic representations (Dyer et al., 2015; Li et al., 2015; Bowman et al., 2016).
Implictly learned mappings via attention mechanisms can significantly improve the performance
of sequence-to-sequence (Bahdanau et al., 2015; Vinyals et al., 2015), but require runtime that’s
quadratic in the input size.

In this work, we propose a modular neural architecture that generalizes the encoder/decoder concept
to include explicit structure. Our framework can represent sequence-to-sequence learning as well as
models with explicit structure like bi-directional tagging models and compositional, tree-structured
models. Our core idea is to define any given architecture as a series of modular units, where con-
nections between modules are unfolded dynamically as a function of the intermediate activations
produced by the network. These dynamic connections represent the explicit input and output struc-
ture produced by the network for a given task.

We build on the idea of transition systems from the parsing literature (Nivre, 2006), which linearize
structured outputs as a sequence of (state, decision) pairs. Transition-based neural networks have
recently been applied to a wide variety of NLP problems; Dyer et al. (2015); Lample et al. (2016);
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Figure 1: High level schematic of a Transition-Based Recurrent Unit (TBRU), and common network
architectures that can be implemented with multiple TBRUs. The discrete state is used to compute
recurrences and fixed input embeddings, which are then fed through a network cell. The network
predicts an action which is used to update the discrete state (dashed output) and provides activations
that can be consumed through recurrences (solid output). Note that we present a slightly simplified
version of Stack-LSTM (Dyer et al., 2015) for clarity.

Kiperwasser & Goldberg (2016); Zhang et al. (2016); Andor et al. (2016), among others. We gen-
eralize these approaches with a new basic module, the Transition-Based Recurrent Unit (TBRU),
which produces a vector representation for every transition state in the output linearization (Figure
1). These representations also serve as the encoding of the explicit structure defined by the states.
For example, a TBRU that attaches two sub-trees while building a syntactic parse tree will also pro-
duce the hidden layer activations to serve as an encoding for the newly constructed phrase. Multiple
TBRUs can be connected and learned jointly to add explicit structure to multi-task learning setups
and share representations between tasks with different input or output spaces (Figure 2).

This inference procedure will construct an acyclic compute graph representing the network archi-
tecture, where recurrent connections are dynamically added as the network unfolds. We therefore
call our approach Dynamic Recurrent Acyclic Graphical Neural Networks, or DRAGNN.

DRAGNN has several distinct modeling advantages over traditional fixed neural architectures. Un-
like generic seq2seq, DRAGNN supports variable sized input representations that may contain ex-
plicit structure. Unlike purely sequential RNNs, the dynamic connections in a DRAGNN can span
arbitrary distances in the input space. Crucially, inference remains linear in the size of the input,
in contrast to quadratic-time attention mechanisms. Dynamic connections thus establish a compro-
mise between pure seq2seq and pure attention architectures by providing a finite set of long-range
inputs that ‘attend’ to relevant portions of the input space. Unlike recursive neural networks (Socher
et al., 2010; 2011) DRAGNN can both predict intermediate structures (such as parse trees) and uti-
lize those structures in a single deep model, backpropagating downstream task errors through the
intermediate structures. Compared to models such as Stack-LSTM (Dyer et al., 2015) and SPINN
Bowman et al. (2016), TBRUs are a more general formulation that allows incorporating dynamically
structured multi-task learning (Zhang & Weiss, 2016) and more varied network architectures.

In sum, DRAGNN is not a particular neural architecture, but rather a formulation for describing
neural architectures compactly. The key to this compact description is a new recurrent unit—the
TBRU—which allows connections between nodes in an unrolled compute graph to be specified
dynamically in a generic fashion. We utilize transition systems to provide succinct, discrete repre-
sentations via linearizations of both the input and the output for structured prediction. We provide a
straightforward way of re-using representations across NLP tasks that operate on different structures.

We demonstrate the effectiveness of DRAGNN on two NLP tasks that benefit from explicit struc-
ture: dependency parsing and extractive sentence summarization (Filippova & Altun, 2013). First,
we show how to use TBRUs to incrementally add structure to the input and output of a “vanilla”
seq2seq dependency parsing model, dramatically boosting accuracy over seq2seq with no additional
computational cost. Second, we demonstrate how the same TBRUs can be used to provide structured
intermediate syntactic representations for extractive sentence summarization. This yields better ac-
curacy than is possible with the generic multi-task seq2seq (Dong et al., 2015; Luong et al., 2016)
approach. Finally, we show how multiple TBRUs for the same dependency parsing task can be
stacked together to produce a single state-of-the-art dependency parsing model.
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Figure 2: Using TBRUs to share fine-grained, structured representations. Top left: A high level view
of multi-task learning with DRAGNN in the style of multi-task seq2seq (Luong et al., 2016). Bottom
left: Extending the “stack-propagation” Zhang & Weiss (2016) idea to included dependency parse
trees as intermediate representations. Right: Unrolled TBRUs for each setup for a input fragment
“Uniformed man laughed”, utilizing the transition systems described in Section 4.

2 TRANSITION SYSTEMS

We use transition systems to map inputs x into a sequence of output symbols, d1 . . . dn. For the pur-
poses of implementing DRAGNN, transition systems make explicit two desirable properties. First,
we stipulate that the output symbols represent modifications of a persistent, discrete state, which
makes book-keeping to construct the dynamic recurrent connections easier to express. Second, tran-
sition systems make it easy to enforce arbitrary constraints on the output, e.g. the output should
produce a valid tree.

Formally, we use the same setup as Andor et al. (2016), and define a transition system T = {S,A, t}
as:

• A set of states S(x).
• A special start state s† ∈ S(x).
• A set of allowed decisions A(s, x) for all s ∈ S.

• A transition function t(s, d, x) returning a new state s′ for any decision d ∈ A(s, x).

For brevity, we will drop the dependence of x in the functions given above. Throughout this work
we will use transition systems in which all complete structures for the same input x have the same
number of decisions n(x) (or n for brevity), although this is not necessary.

A complete structure is then a sequence of decision/state pairs (s1, d1) . . . (sn, dn) such that s1 = s†,
di ∈ A(si) for i = 1 . . . n, and si+1 = t(si, di). We will now define recurrent network architectures
that operate over these linearizations of input and output structure.

3 TRANSITION BASED RECURRENT NETWORKS

We now formally define how to combine transition systems with recurrent networks into what we
call a transition based recurrent unit (TBRU). A TBRU consists of the following:

• A transition system T ,
• An input function m(s) that maps states to fixed-size vector representations, for example,

an embedding lookup operation for features from the discrete state:

m(s) : S 7→ RK
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Figure 3: Left: TBRU schematic. Right: Dependency parsing example. For the given gold depen-
dency parse tree and a arc-standard transition state with two sub-trees on the stack is shown. From
this state, two possible actions are also shown (Shift and Right arc). To reproduce the tree, the Shift
action should be taken.

• A recurrrence function r(s) that maps states to a set of previous time steps:

r(s) : S 7→ P{1, . . . , i− 1},
where P is the power set. Note that in general |r(s)| is not necessarily fixed and can vary
with s. We use r to specify state-dependent recurrent links in the unrolled computation
graph.

• A RNN cell that computes a new hidden representation from the fixed and recurrent inputs:

hs ← RNN(m(s), {hi | i ∈ r(s)}).

Example 1. Sequential tagging RNN. Let the input x = {x1, . . . ,xn} be a sequence of word
embeddings, and the output be a sequence of tags d1, . . . , dn. Then we can model a simple LSTM
tagger as follows:

• T sequentially tags each input token, where si = {1, . . . , di−1}, andA is the set of possible
tags. We call this the tagger transition system.

• m(si) = xi, the word embedding for the next token to be tagged.
• r(si) = {i− 1} to connect the network to the previous state.
• RNN is a single instance of the LSTM cell.

Example 2. Parsey McParseface. The open-source syntactic parsing model of Andor et al. (2016)
can be defined in our framework as follows:

• T is the arc-standard transition system (Figure 3), so the state contains all words and
partially built trees on the stack as well as unseen words on the buffer.

• m(si) is the concatenation of 52 feature embeddings extracted from tokens based on their
positions in the stack and the buffer.

• r(si) = {} is empty, as this is a feed-forward network.
• RNN is a feed-forward multi-layer perceptron (MLP).

Inference with TBRUs. Given the above, inference in the TBRU proceeds as follows:

1. Initialize s1 = s†.
2. For i = 1, . . . , n:

(a) Update the hidden state: hi ← RNN(m(si), {hj | j ∈ r(si)}).
(b) Update the transition state: di ← argmaxd∈A(si) w

>
d hi, si+1 ← t(si, di).

A schematic overview of a single TBRU is presented in Figure 3. By adjusting RNN, r, and T ,
TBRUs can represent a wide variety of neural architectures.

3.1 CONNECTING MULTIPLE TBRUS TO LEARN SHARED REPRESENTATIONS

While TBRUs are a useful abstraction for describing recurrent models, the primary motivation for
this framework is to allow new architectures by combining representations across tasks and compo-
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sitional structures. We do this by connecting multiple TBRUs with different transition systems via
the recurrence function r(s). We formally augment the above definition as follows:

1. We execute a list of T TBRU components, one at a time, so that each TBRU advances a
global step counter. Note that for simplicity, we assume an earlier TBRU finishes all of its
steps before the next one starts execution.

2. Each transition state from the τ ’th component sτ has access to the terminal states from
every prior transition system, and the recurrence function r(sτ ) for any given component
can pull hidden activations from every prior one as well.

Example 3. “Input” transducer TBRUs via no-op decisions. We find it useful to define TBRUs
even when the transition system decisions don’t correspond to any output. These TBRUs, which we
call no-op TBRUs, transduce the input according to some linearization. The simplest is the shift-
only transition system, in which the state is just an input pointer si = {i}, and there is only one
transition which advances it: t(si, ·) = {i + 1}. Executing this transition system will produce a
hidden representation hi for every input token.

Example 4. Encoder/decoder networks with TBRUs. We can reproduce the encoder/decoder
framework for sequence tagging by using two TBRUs: one using the shift-only transition system to
encode the input, and the other using the tagger transition system. For input x = {x1, . . . ,xn}, we
connect them as follows:

• For shift-only TBRU: m(si) = xi, r(si) = {i− 1}.
• For tagger TBRU: m(sn+i) = ydn+i−1 , r(si) = {n, n+ i− 1}.

We observe that the tagger TBRU starts at step n after the shift-only TBRU finishes, that yj is a
fixed embedding vector for the output tag j, and that the tagger TBRU has access to both the final
encoding vector hn as well as its own previous time step hn+i−1.

Example 4. Bi-directional LSTM tagger. With three TBRUs, we can implement a simple bi-
directional tagger. The first two run the shift-only transition system, but in opposite directions. The
final TBRU runs the tagger transition system and concatenates the two representations:

• Left to right: T = shift-only, m(si) = xi, r(si) = {i− 1}.
• Right to left: T = shift-only, m(sn+i) = xn−i, r(sn+i) = {n+ i− 1}.
• Tagger: T = tagger, m(s2n+i) = {}, r(s2n+i) = {i, 2n− i}.

We observe that the network cell in the tagger TBRU takes recurrences only from the bi-directional
representations, and so is not recurrent in the traditional sense. See Figure 1 for an unrolled example.

Example 5. Multi-task bi-directional tagging. Here we observe that it’s possible to add addi-
tional annotation tasks to the bi-directional TBRU stack from Example 4 simply by adding more
instances of the tagger TBRUs that produce outputs from different tag sets, e.g. parts-of-speech vs.
morphological tags. Most important, however, is that any additional TBRUs have access to all three
earlier TBRUs. This means that we can support the “stack-propagation” (Zhang & Weiss, 2016)
style of multi-task learning simply by changing r for the last TBRU:

• Traditional multi-task: r(s3n+i) = {i, 2n− i}
• Stack-prop: r(s3n+i) = { i︸︷︷︸

Left-to-right

, 2n− i︸ ︷︷ ︸
Right-to-left

, 2n+ i︸ ︷︷ ︸
Tagger TBRU

}

Remark: the raison d’être of DRAGNN. This example highlights the primary advantage of our
formulation: a TBRU can serve as both an encoder for downstream tasks and as a decoder for its
own task simultaneously. This idea will prove particularly powerful when we consider syntactic
parsing, which involves compositional structure over the input. For example, consider a no-op
TBRU that traverses an input sequence x1, . . . ,xn in the order determined by a binary parse tree:
this transducer can implement a recursive tree-structured network in the style of Tai et al. (2015),
which computes representations for sub-phrases in the tree. In contrast, with DRAGNN, we can
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Figure 4: Detailed schematic for the compositional dependency parser used in our experiments.
The first TBRU consumes each input word right-to-left; the second uses the arc-standard transition
system. Note that each “Shift” action causes the TBRU1→TBRU2 link to advance. The dynamic
recurrent inputs to the given state are highlighted; the stack representations are obtained from the
last “Reduce” action to modify each sub-tree.

use the arc-standard parser directly to produce the parse tree as well as encode sub-phrases into
representations.

Example 6. Compositional representations from arc-standard dependency parsing. We use
the arc-standard transition system (Nivre, 2006) to model dependency trees. The system maintains
two data structures as part of the state s: an input pointer and a stack (Figure 3). Trees are built
bottom up via three possible attachment decisions. Assume that the stack consists of S = {A,B},
with the next token being C. We use S0 and S1 to refer to the top two tokens on the stack. Then the
decisions are defined as:

• Shift: Push the next token on to the stack: S = {A,B,C}, and advance the input pointer.
• Left arc + label: Add an arc A←label B, and remove A from the stack: S = {B}.
• Right arc + label: Add an arc A→label B, and remove B from the stack: S = {A}.

For a given parser state si, we compute two types of recurrences:

• rINPUT(si) = {INPUT(si)}, where INPUT returns the index of the next input token.
• rSTACK(si) = {SUBTREE(si, S0), SUBTREE(s, S1)}, where SUBTREE(S,I) is a function

returning the index of the last decision that modified the i’th token:

SUBTREE(s, i) = argmax
j
{dj s.t. dj shifts or adds a new child to token i}

We show an example of the links constructed by these recurrences in Figure 4, and we investigate
variants of this model in Section 4. This model is recursively compositional according to the decision
taken by the network: when the TBRU at step si decides to add an arc A → B for state, the
activations hi will be used to represent that new subtree in future decisions.1

Example 7. Extractive summarization pipeline with parse representations. To model extrac-
tive summarization, we follow Andor et al. (2016) and use a tagger transition system with two tags:
“Keep” and “Drop.” However, whereas Andor et al. (2016) use discrete features of the parse tree,
we can utilize the SUBTREE recurrence function to pull compositional, phrase-based representa-
tions of tokens as constructed by the dependency parser. This model is outlined in Figure 2. A full
specification is given in the Appendix.

3.2 HOW TO TRAIN A DRAGNN

Given a list of TBRUs, we propose the following learning procedure. We assume training data
consists of examples x along with gold decision sequences for one of the TBRUs in the DRAGNN.

1This composition function is similar to that in the constituent parsing SPINN model (Bowman et al., 2016),
but with several key differences. Since we use TBRUs, we compose new representations for “Shift” actions as
well as reductions, we take inputs from other recurrent models, and we can utilize subtree representations in
downstream tasks.
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Parsing TBRU recurrence, r(si) ⊆ {1, . . . , n+ i} Parsing Accuracy (%)

Input links Recurrent edges News Questions Runtime

{n} {n+ i− 1} 27.3 70.1 O(n)
{n} {SUBTREE(si, S0), SUBTREE(si, S1)} 36.0 75.6 O(n)

Attention {n+ i− 1} 76.1 84.8 O(n2)
Attention {SUBTREE(si, S0), SUBTREE(si, S1)} 89.0 91.9 O(n2)

INPUT(si) {n+ i− 1} 87.1 89.7 O(n)
INPUT(si) {SUBTREE(si, S0), SUBTREE(si, S1)} 90.9 92.1 O(n)

Table 1: Dynamic links enable much more accurate, efficient linear-time parsing models on the
Treebank Union dev set. We vary the recurrences r to explore utilizing explicit structure in the
parsing TBRU. Utilizing the explicit INPUT(si) pointer is more effective and more efficient than a
quadratic attention mechanism. Incorporating the explicit stack structure via recurrent links further
improves performance.

Note that, at a minimum, we need such data for the final TBRU. Assuming given decisions d1 . . . dN
from prior components 1 . . . T−1, we define a log-likelihood objective to train the T ’th TBRU along
its gold decision sequence d?N+1, . . . , d

?
N+n, conditioned on prior decisions:

L(x, d?N+1:N+n; θ) =
∑
i

logP (d?N+i | d1:N , d?N+1:N+i−1; θ) (1)

where θ are the combined parameters across all TBRUs. We observe that this objective is locally
normalized (Andor et al., 2016), since we optimize the probabilities of the individual decisions in
the gold sequence.

The remaining question is where do the decisions d1 . . . dN come from. There are two options here:
they can either come as part of the gold annotation (e.g. if we have joint tagging and parsing data), or
they will be predicted by unrolling the previous components (e.g. when training stacked extractive
summarization model, the parse trees will be predicted by the previously trained parser TBRU).

When training a given TBRU, we unroll an entire input sequence and then use backpropagation
through structure (Goller & Kuchler, 1996) to optimize (1). To train the whole system on a set of C
datasets, we use a similar strategy to (Dong et al., 2015; Luong et al., 2016); we sample a target task
c, 1 ≤ c ≤ C, from a pre-defined ratio, and take a stochastic optimization step on the objective of
that task’s TBRU. In practice, task sampling is usually preceded by a deterministic number of pre-
training steps, allowing, for example, to schedule a certain number of tagger training steps before
running any parser training steps.

4 EXPERIMENTS

In this section, we evaluate three aspects of our approach on two NLP tasks: English dependency
parsing and extractive sentence summarization. For English dependency parsing, we primarily use
the the Union Treebank setup from Andor et al. (2016). By evaluating on both news and questions
domains, we can separately evaluate how the model handles naturally longer and shorter form text.
On the Union Treebank setup there are 93 possible actions considering all arc-label combinations.
For extractive sentence summarization, we use the dataset of Filippova & Altun (2013), where a large
news collection is used to heuristically generate compression instances. The final corpus contains
about 2.3M compression instances, but since we evaluated multiple tasks using this data, we sub-
sampled the training set to be comparably sized to the parsing data (≈60K training sentences). The
test set contains 160K examples. We implement our method in TensorFlow, using mini-batches
of size 4 and following the averaged momentum training and hyperparameter tuning procedure of
Weiss et al. (2015).

4.1 USING EXPLICIT STRUCTURE IMPROVES ENCODER/DECODER

We explore the impact of different types of recurrences on dependency parsing in Table 1. In
this setup, we used relatively small models: single-layer LSTMs with 256 hidden units, taking
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Model Structure Multi-task? A (%) F1 (%) LAS (%)

SummarizeRight-to-left N 28.93 79.75 –

Right-to-left Left-to-right Summarize N 29.51 80.03 –

SummarizeRight-to-left Parse Luong et al. (2016) 30.07 80.31 89.42

Right-to-left Parse Summarize Zhang & Weiss (2016) 30.56 80.74 89.13

Table 2: Single- vs. multi-task learning with DRAGNN on extractive summarization. “A” is full-
sentence accuracy of the extraction model, “F1” is per-token F1 score, and “LAS” is labeled parsing
accuracy on the Treebank Union News dev set. Both multi-task models that utilize the parsing data
outperform the single-task approach, but the model that uses parses as an intermediate representation
in the vein of Zhang & Weiss (2016) (Figure 2) makes better use of the data. Note that the locally
normalized model from Andor et al. (2016) obtains 30.50% accuracy and 78.72% F1 on the test set
when trained on 100× more data.

32-dimensional word or output symbol embeddings as input to each cell. In each case, the pars-
ing TBRU takes input from a right-to-left shift-only TBRU. Under these settings, the pure en-
coder/decoder seq2seq model simply does not have the capacity to parse newswire text with any
degree of accuracy, but the TBRU-based approach is nearly state-of-the-art at the same exact com-
putational cost. As a point of comparison and an alternative to using input pointers, we also im-
plemented an attention mechanism within DRAGNN. We used the dot-product formulation from
Parikh et al. (2016), where r(si) in the parser takes in all of the shift-only TBRU’s hidden states and
RNN aggregates over them.

4.2 UTILIZING PARSE REPRESENTATIONS IMPROVES SUMMARIZATION

We evaluate our approach on the summarization task in Table 2. We compare two single-task LSTM
tagging baselines against two multi-task approaches: an adaptation of Luong et al. (2016) and the
stack-propagation idea of Zhang & Weiss (2016). In both multi-task setups, we use a right-to-
left shift-only TBRU to encode the input, and connect it to both our compositional arc-standard
dependency parser and the “Keep/Drop” summarization tagging model.

In both setups we do not follow seq2seq, but utilize the INPUT function to connect output deci-
sions directly to input token representations. However, in the stack-prop case, we use the SUBTREE
function to connect the tagging TBRU to the parser TBRU’s phrase representations directly (Figure
2). We find that allowing the compressor to directly use the parser’s phrase representations signif-
icantly improves the outcome of the multi-task learning setup. In both setups, we pretrained the
parsing model for 400K steps and tuned the subsequent ratio of parser/tagger update steps using a
development set.

4.3 DEEP STACKED BI-DIRECTIONAL PARSING

Here we propose a continuous version of the bi-directional parsing model of Attardi & Dell’Orletta
(2009): first, the sentence is parsed in the left-to-right order as usual; then a right-to-left transition
system analyzes the sentence in reverse order using addition features extracted from the left-to-right
parser. In our version, we connect the right-to-left parsing TBRU directly to the phrase represen-
tations of the left-to-right parsing TBRU, again using the SUBTREE function. Our parser has the
significant advantage that the two directions of parsing can affect each other during training. Dur-
ing each training step the right-to-left parser uses representations obtained using the predictions of
the left-to-right parser. Thus, the right-to-left parser can backpropagate error signals through the
left-to-right parser and reduce cascading errors caused by the pipeline.
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Dev Test
Model UAS LAS UAS LAS

POS Right-to-left Parse 93.08 90.89 92.8 90.8

POS Left-to-rightRight-to-left Parse Rev. Parse 94.01 91.93 93.72 91.83

(Above, but with pretrained word2vec)? 94.07 92.06 94.09 92.12
Bi-LSTM, graph-based (Kiperwasser & Goldberg, 2016) – – 93.10 91.00

Stack LSTM (Dyer et al., 2015)? – – 93.10 90.90
20 Stack LSTMs (Kuncoro et al., 2016)? – – 94.51 92.57

Globally normalized, transition-based Andor et al. (2016)? – – 94.61 92.79

Table 3: Deep stacked parsing compared to state-of-the-art on PTB. ? indicates that additional re-
sources beyond the Penn Treebank are used. Our model is roughly comparable to an ensemble of
multiple Stack-LSTM models, and the most accurate without any additional resources.

Our final model uses 5 TBRU units. Inspired by Zhang & Weiss (2016), a left-to-right POS tagging
TBRU provides the first layer of representations. Next, we run two shift-only TBRUs, one in each
direction, to provide representations to the parsers. Finally, we connect the left-to-right parser to the
right-to-left parser using links defined via the SUBTREE function. The result (Table 3) is a state-of-
the-art dependency parser, yielding the highest published accuracy for a model trained solely on the
Penn Treebank with no additional resources.

5 CONCLUSIONS

We presented a compact, modular framework for describing recurrent neural architectures. We eval-
uated our dynamically structured model and found it to be significantly more efficient and accurate
than attention mechanisms for dependency parsing and extractive sentence summarization in both
single- and multi-task setups. While we focused primarily on syntactic parsing, the framework pro-
vides a general means of sharing representations between tasks. There remains low-hanging fruit
still to be explored: in particular, our approach can be globally normalized with multiple hypotheses
in the intermediate structure. We also plan to push the limits of multi-task learning by combin-
ing many different NLP tasks, such as translation, summarization, tagging problems, and reasoning
tasks, into a single model.
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