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Abstract

Deep learning has revolutionized big data analysis in modern data science,
however, how to make statistical inference for deep neural networks remains
largely unclear. To this end, we explore a stochastic variant of the deep neural
network known as the stochastic neural network (StoNet), as developed in
Liang et al. (2022). Firstly, we show that the StoNet falls into the framework
of statistical modeling. It not only enables us to address fundamental
issues in deep learning, such as structure interpretability and uncertainty
quantification, but also provides with us a platform for transferring the
theory and methods developed for linear models to the realm of deep learning.
Specifically, we show how the sparse learning theory with the Lasso penalty
can be adapted to deep neural networks (DNNs) from linear models; establish
that the sparse StoNet is consistent in network structure selection; and
provides a recursive method to quantify the prediction uncertainty for the
StoNet. Furthermore, we extend this result to the DNN by its asymptotic
equivalence with the StoNet, showing that consistent sparse deep learning
can be obtained by training a DNN with an appropriate Lasso penalty.
Additionally, we propose to remodel the last hidden layer output and the
target output of a well trained DNN model using a StoNet on the validation
dataset, and then assess the prediction uncertainty of the DNN model via the
StoNet. The proposed method has been compared with conformal inference
on extensive examples, and numerical results suggests its superiority.

1 Introduction

X Y1 Ψ(Y1) Y2 Ψ(Y2) Y

Figure 1: Illustration of the structure of the StoNet,
where each square neuron represents a linear/logistic
regression: X represents input variable, Y1 = b1 +
w1X +e1 and Y2 = b2 +w2Ψ(Y1) +e2 represent latent
variables, Y = b3 + w3Ψ(Y2) + e3 represent output
variables, and Ψ(·) represents the activation function.

Over the past two decades, deep
learning has revolutionized modern
data science, achieving remarkable
success in many scientific fields,
such as pattern recognition, pro-
tein structure prediction, and nat-
ural language processing. How-
ever, from the perspective of sta-
tistical modeling, the deep neu-
ral network (DNN) still suffers
from a fundamental issue: over-
parameterization. Consequently,
the training data is often overfit-
ted and the downstream statistical
inference cannot be effectively con-
ducted. In particular, the structure
of the DNN is difficult to interpret,
and its prediction uncertainty is
challenging to quantify (Guo et al.,
2017). On the other hand, statistics, in its century-long history, has developed principles
and methods to tackle issues like overparametrization and uncertainty quantification for
traditional statistical models, especially linear models. This naturally raises a question: Can
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we bridge the gap between linear models and DNNs, enabling the adaptation of theory and
methods from linear models to DNNs to effectively address these issues?
We find that this question can be satisfactorily addressed with a new type of stochastic
neural network (StoNet), which is formulated as a composition of many simple linear/logistic
regressions. The StoNet is asymptotically equivalent to the DNN in function approximation,
but its structure is more interpretable from statistical perspectives and more designable in
serving different structures of data. Figure 1 depicts the structure of a StoNet, where the
complex deep learning task is broken down into many simple, neuron-wise linear/logistic
regressions by adding random errors to the feeding values of each hidden neuron (see Section
2 for its mathematical formulas). The logistic regression is used only at the output layer
for classification problems. The StoNet was first proposed by the authors in Liang et al.
(2022) and Sun & Liang (2022b), but its property as a bridge between linear models and
deep learning is first explored in this paper. In Liang et al. (2022), it is shown that the fully
connected StoNet can be used as a general tool of nonlinear sufficient dimension reduction
for large-scale data. In Sun & Liang (2022b), the StoNet works with a restrictive structure,
where each linear regression at the first hidden layer is replaced by a support vector regression
(SVR), and as a result, it avoids the local trap issue in training.

Our Contributions This paper conducts a full exploration of the properties of the StoNet
as a bridge between linear models and deep learning, and it provides solid solutions for
addressing the issues such as overparametrization, structural interpretability, and predicition
uncertainty quantification. More precisely,

• We show that the sparse learning theory and methods developed for linear models,
such as those utilizing Lasso (Tibshirani, 1996) and other amenable penalties (Loh
& Wainwright, 2017), can be effectively adapted to the StoNet. The resulting sparse
StoNet fits into the framework of statistical modeling: it exhibits consistency in
structure selection even when the sizes of the input and hidden layers are much
larger than the training sample size. Furthermore, its prediction uncertainty can be
quantified through a recursive application of Eve’s law.

• By the asymptotic equivalence between the StoNet and DNN, we justify the con-
sistency of sparse deep learning with the Lasso penalty. While the approach has
long been commonly practiced in the community, see e.g. Scardapane et al. (2017)
and Lemhadri et al. (2019), to the best of our knowledge, the consistency theory
supporting this practice has not been previously established.

• Based on certain theoretical properties of the DNN and StoNet, as well as the
feasibility of applying the sparse StoNet for uncertainty quantification, we propose a
post-StoNet procedure to quantify the prediction uncertainty of large-scale DNNs.
Numerical comparisons with the conformal method (Vovk et al., 2005; Shafer &
Vovk, 2008) indicate the superiority of the post-StoNet procedure.

Related Works Stochastic neural networks have a long history in machine learning, with
famous examples including deep belief networks (Hinton & Salakhutdinov, 2006; Hinton,
2007) and deep Boltzmann machines (Salakhutdinov & Hinton, 2009). In recent years, re-
searchers have proposed various techniques to introduce noise into DNNs in order to enhance
their performance. For instance, Srivastava et al. (2014) introduced the dropout method,
which randomly drops hidden and visible neurons during training to prevent overfitting. Nee-
lakantan et al. (2017) suggested adding gradient noise to improve training. Other approaches
involve using noisy activation functions to improve generalization and adversarial robustness
(Gülçehre et al., 2016; Noh et al., 2017; You et al., 2018), as well as learning uncertainty
parameters of stochastic activation functions alongside neural network training (Yu et al.,
2021). However, it is not clear if these models provide valid probabilistic approximation for
conventional DNNs. Moreover, how to provide valid uncertainty quantification based on
these models is not well studied.
From the perspective of bridging linear models and DNNs, there is a related branch of work
focusing on neural tangent kernel (Jacot et al., 2018). Specifically, Liu et al. (2020) and
Liu et al. (2021) explore the transition to linearity of the DNN model and, equivalently,
constancy of the neural tangent kernel, based on the scaling properties of its Hessian matrix
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as a function of the network width. However, their exploration primarily focuses on the loss
landscapes, which is quite distinct from our general goal of statistical inference.

2 StoNet and Its Approximation to DNN

Consider a DNN model with h hidden layers. For the sake of simplicity, we assume that the
same activation function ψ(·) is used for all hidden neurons. By separating the feeding and
activation operators of each hidden neuron, we can rewrite the DNN in the form:

Ỹ1 = b1 + w1X, Ỹi = bi + wiΨ(Ỹi−1), i = 2, 3, . . . , h,
Y = bh+1 + wh+1Ψ(Ỹh) + eh+1,

(1)

where eh+1 ∼ N(0, σ2
h+1Idh+1) is Gaussian random error; Ỹi, bi ∈ Rdi for i = 1, 2, . . . , h;

Y , bh+1 ∈ Rdh+1 ; Ψ(Ỹi−1) = (ψ(Ỹi−1,1), ψ(Ỹi−1,2), . . . , ψ(Ỹi−1,di−1))T for i = 2, 3, . . . , h+ 1,
ψ(·) is the activation function, and Ỹi−1,j is the jth element of Ỹi−1; wi ∈ Rdi×di−1 for
i = 1, 2, . . . , h+ 1, and d0 = p denotes the dimension of X. For simplicity, we consider only
regression problems in (1). By replacing the third equation of (1) with a logit model, the
DNN can be extended to classification problems.
The StoNet, as illustrated by Figure 1, is a probabilistic deep learning model and constructed
by adding auxiliary noise to Ỹi’s in (1). Mathematically, the StoNet is given by

Y1 = b1 + w1X + e1, Yi = bi + wiΨ(Yi−1) + ei, i = 2, 3, . . . , h,
Y = bh+1 + wh+1Ψ(Yh) + eh+1,

(2)

as a composition of many simple regressions, where Y1,Y2, . . . ,Yh are latent variables.
For simplicity, we assume that ei ∼ N(0, σ2

i Idi) for i = 1, 2, . . . , h, h + 1. However, other
distributions can also be assumed for ei’s. For instance, Sun & Liang (2022a) assumed a
modified double exponential distribution for e1 such that support vector regression applies.
For classification problems, σ2

h+1 plays the role of temperature for the binomial or multinomial
distribution formed at the output layer, and it works with {σ2

1 , . . . , σ
2
h} together to control

the variation of the latent variables {Y1, . . . ,Yh}. For regression problems, this is similar.
The property of the StoNet as an approximator to the DNN, has been studied in Liang et al.
(2022). A brief review for their theory is provided as follows, which form the basis for this
work. Let θ = (w1, b1, . . . ,wh+1, bh+1) denote the collection of all weights of the StoNet
(2), let Θ denote the space of θ, and let Ymis = (Y1,Y2, . . . ,Yh) denote the collection of all
latent variables. Let π(Y ,Ymis|X,θ) denote the likelihood function of the StoNet (2), and
let πDNN(Y |X,θ) denote the likelihood function of the DNN model (1).
Lemma 1. (Liang et al., 2022) Suppose that Assumptions A1-A2 hold, and π(Y ,Ymis|X,θ)
is continuous in θ. Then

(i) sup
θ∈Θ

∣∣∣ 1
n

n∑
i=1

log π(Y (i),Y
(i)
mis|X

(i),θ) − 1
n

n∑
i=1

log πDNN(Y (i)|X(i),θ)
∣∣∣ p→ 0,

(ii) ∥θ̂n − θ∗∥ p→ 0, as n → ∞,

(3)

where θ∗ = arg maxθ∈Θ E(log πDNN(Y |X,θ)) denotes the true parameters of the DNN model
as specified in (1), and θ̂n = arg maxθ∈Θ{ 1

n

∑n
i=1 log π(Y (i),Y

(i)
mis|X(i),θ)} denotes the

maximum likelihood estimator of the StoNet model (2) with the pseudo-complete data.

Lemma 1 implies that the StoNet and DNN are asymptotically equivalent as the training
sample size n becomes large, and it forms the basis for the bridging property of the StoNet.
The asymptotic equivalence can be elaborated from two perspectives. First, suppose the
DNN model (1) is true. Lemma 1 implies that when n becomes large, the weights of the DNN
can be learned by training a StoNet of the same structure with σ2

i ’s satisfying Assumption
A1-(v). Algorithmically, the StoNet provides an alternative way to train the DNN using latent
variable augmentation when the training sample size is large. On the other hand, suppose
the StoNet (2) is true. Then Lemma 1 implies that for any StoNet satisfying Assumptions
A1 & A2, the weights θ can be learned by training a DNN of the same structure when the
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training sample size is large. As shown later, this asymptotic equivalence leads to interesting
results toward post-training inference for large-scale DNNs.
Lemma 1 also implies that, like the DNN, the StoNet possesses the universal approximation
property for representing probability distributions. Refer to Lu & Lu (2020) for the estab-
lishment of this property for the DNN. Theoretically, all the DNN approximation properties
can be carried over to the StoNet.

3 Sparse StoNet Learning
This section describes two algorithms for sparse StoNet learning. One is based on the
imputation-regularized optimization (IRO) algorithm (Liang et al., 2018), and the other
is based on an adaptive stochastic gradient MCMC(ASGMCMC) algorithm (Liang et al.,
2022). Details of the algorithms are given in section B in appendix. The IRO algorithm is a
stochastic EM type algorithm, which provides us with a framework to transfer the theory
and methods from linear models to deep learning, while the ASGMCMC algorithm allows us
to train the StoNet more efficiently with the use of the mini-batching.

3.1 The IRO Algorithm and Consistency of Sparse StoNets

Notations: In this subsection, we will rewrite the network depth h as hn, rewrite the
network widths (p, d1, . . . , dh+1) as (pn, d1,n, . . . , dh+1,n), rewrite the layer-wise variance
σ2 = (σ2

1 , . . . , σ
2
h+1) as σ2

n = (σ2
1,n, . . . , σ

2
h+1,n), where the subscript n indicates their

dependency on the training sample size. For simplicity of theoretical development, we will
assume that for a given dataset Dn = (Y ,X), the true model is a StoNet model with σ2

n
being known and satisfying Assumption A1-(v).
By treating the latent variables Ymis as missing data, the IRO algorithm can be applied
for training the StoNet. The IRO algorithm starts with an initial estimate of θ, denoted
by θ̂

(0)
n , and then iterates between the imputation and regularized optimization steps as

shown in Algorithm 1. The key to the IRO algorithm is to find a sparse estimator for the
working true parameter θ(t)

∗ , as defined in equation (A3), that is uniformly consistent over all
iterations. As suggested by Liang et al. (2018), such a uniformly consistent sparse estimator
can typically be obtained by minimizing an appropriately penalized loss function as defined
in (A2). For the StoNet, solving (A2) corresponds to solving a series of linear regressions
by noting that the joint distribution π(Ymis,Y |X,θn,σ

2
n) can be decomposed in a Markov

structure:
π(Ymis,Y |X,θn,σ

2
n) = π(Y |Yh,θn,σ

2
n)π(Yh|Yh−1,θn,σ

2
n) · · ·π(Y1|X,θn,σ

2
n), (4)

and, furthermore, the components of Yi ∈ Rdi are mutually independent conditional on Yi−1
for i = 1, 2, . . . , h+ 1.
Suppose that the Lasso penalty (Tibshirani, 1996) is imposed on θ. Theorem 1 shows that
the resulting IRO estimator θ̂

(t)
n is consistent when both n and t are sufficiently large, and

the underlying true sparse StoNet can be consistently identified.
Theorem 1. Suppose that the Lasso penalty is imposed on θ, and Assumptions A1-A4 hold.

(i) There exist some constants c1 > 0, c2 > 0 and c3 > 0 such that ∥θ̂(t)
n − θ

(t)
∗ ∥2

2 ≺
rn = o(1) holds uniformly for all iterations, where

rn = c1
σ2

1,n

κ2
min

d1,np
s
n

log pn
n

+ c2

h+1∑
l=2

σ2
l,n

σ4
l−1,n

dl,nd
s
l−1,n

log dl−1,n

n

for the StoNet with a linear regression output layer,

rn = c1
σ2

1,n

κ2
min

d1,np
s
n

log pn
n

+c2

h∑
l=2

σ2
l,n

σ4
l−1,n

dl,nd
s
l−1,n

log dl−1,n

n
+ c3

σ4
h,n

dh+1,nd
s
h,n

(log dh,n)2/3

n2(1−ε)/3

for the StoNet with the logistic regression output layer.
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(ii) Furthermore, if Assumption A5 holds, then ∥θ̂(t)
n − θ∗∥ p→ 0 for sufficiently large n

and sufficiently large t and almost every training dataset Dn.

(iii) Additionally, if Assumption A6 also holds and we select the connections by setting
γ̂

(t)
n := {i : |θ̂(t)

i,n| > c
√
rn} for some constant c, where θ̂(t)

i,n denotes the i-th component
of θ̂(t)

n , then the selected model γ̂(t)
n is a consistent estimator of the true model. That

is, P (γ̂(t)
n = γ∗) → 1 as n → ∞ and t → ∞.

In summary, we have given a constructive proof for the consistency of sparse StoNets based
on the sparse learning theory developed for linear models. Our proof implies that under
Assumptions A1-A6, such a consistent estimator can also be obtained by directly maximizing
the penalized log-likelihood function of the complete data, i.e., setting

θ̂∗
n = arg max

θ

{ 1
n

n∑
i=1

log π(Y (i),Y
(i)

mis|X
(i),θ,σ2) + 1

n
Pλ(θ)

}
, (5)

where Pλ(θ) satisfies Assumption A4. Furthermore, it follows from Lemma 1 that a consistent
estimator of θ can also be obtained by directly maximizing the penalized log-likelihood
function of the DNN model, i.e., setting

θ̂∗
DNN,n = arg max

θ

{ 1
n

n∑
i=1

log π(Y (i)|X(i),θ) + 1
n
Pλ(θ)

}
, (6)

for the same penalty function Pλ(θ) as used in (5). In summary, we have the corollary:
Corollary 1. If Assumptions A1-A6 hold and the Lasso penalty Pλ(θ) is employed, then
the estimator (6) is consistent in both parameter estimation and structure selection, i.e.,
∥θ̂∗

DNN,n − θ∗∥ p→ 0 and P (γ̂DNN,n = γ∗) → 1 as n → ∞, where γ̂DNN,n is selected with the
same threshold as given in part (iii) of Theorem 1.

We note that training sparse DNNs with the Lasso penalty has long been commonly
practiced in the community, see e.g. Scardapane et al. (2017) and Lemhadri et al. (2019).
However, to the best of our knowledge, the consistency theory supporting this has not
been previously established. Speifically, Corollary 1 establishes consistency for both DNN
parameter estimation and structure selection. Although our results were stated for model 1
and 2 for simplicity, it can be extended to other neural network structure such as convolutional
neural network, where pre-activation hidden neurons are obtained by linear operations of
the output of previous layers.
Remark 1. Since the true value of σ2

h+1,n is generally unknown for the model (2), setting
σ2
h+1,n to a smaller value corresponds to overfitting the model in imputation. This mimics a

small-n-large-p linear/logistic regression problem, for which the fitting error of the full model
can be very close to 0 while the true model can still be correctly identified with an appropriate
amenable penalty (Loh & Wainwright, 2017). In our numerical experiments, see Sections 5-7,
we often set σ2

h+1,n and thus σ2
l,n’s (for l = 1, 2, . . . , hn) very small values and then perform

variable selection for associated regressions with the Lasso penalty.

3.2 Adaptive Stochastic Gradient MCMC for Efficient StoNet Learning

The IRO algorithm is developed under the full data setting and thus less scalable with
respect to big data. To address this issue, we can train the sparse StoNet using an adaptive
stochastic gradient MCMC algorithm (Liang et al., 2022), which is designed to find the
maximum a posteriori (MAP) estimator θ̂∗

n = arg maxθ{π(Y |X,θ,σ2)Pλ(θ)} by solving
the equation:∫

∇θ[log π(Y ,Ymis|X,θ,σ2) + logPλ(θ)]π(Ymis|Y ,X,θ,σ2)dYmis = 0,

where Pλ(θ) denotes a penalty function satisfying Assumption A4. This algorithm is scalable
for big data by making use of mini-batch samples at each iteration. Since the algorithm is

5



a slight modification of the algorithm in Liang et al. (2022), we leave it to the Appendix
to ensure the paper is self-contained. As shown in Lemma A2, this algorithm also yield a
consistent estimate of θ. Consequently, under Assumption A6, the structure of the sparse
StoNet can also be consistently identified.

4 Prediction Uncertainty Quantification for Sparse StoNet
The hierarchical structure of the StoNet enables us to quantify the uncertainty of the latent
variable at each layer using Eve’s law in a recursive way. Assume that the StoNet is trained
by the IRO algorithm. Let z denote a test point at which the prediction uncertainty is to be
quantified, let Z

(t)
i denote the latent variable at layer i, corresponding to the input vector

z, imputed based on the estimate of θ at iteration t of the algorithm. Let µ
(t)
i and Σ

(t)
i

denote, respectively, the mean and covariance matrix of Z(t)
i . By Eve’s law, for any layer

i ∈ {2, 3, . . . , h+ 1}, we have Σ
(t)
i = E(Var(Z(t)

i |Z(t)
i−1)) + Var(E(Z(t)

i |Z(t)
i−1)). As detailed in

Section E, the final formula (A12) can be derived. This leads to the following procedure for
prediction interval construction.

Let µ(z, θ̂) denote the prediction of a StoNet with weights θ̂ at point z. Note that the
StoNet (2) has the same prediction function as the DNN (1), i.e., the random noise added to
the latent variables is set to 0 in forward prediction. Suppose that a set of StoNet estimates,
S = {θ̂(1), θ̂(2), . . . , θ̂(m)}, has been collected after convergence of the IRO algorithm. Given
Σ̂(t)
i ’s, by the Wald method, the 95% prediction interval of µj(z,θ∗), the j-th component of

µ(z,θ∗), can be constructed in the following procedure:

(i) For each StoNet estimate θ̂(t) ∈ S, calculate the variance of the training error by
ς̂

2(t)
h+1,j = 1

n

∑n
k=1(µj(x(k), θ̂(t)) − y

(k)
j )2, where (x(k),y(k)) denotes the k-th training

sample, and y
(k)
j is the j-th component of y(k).

(ii) For each StoNet estimate θ̂(t) ∈ S, construct the prediction interval(
µj(z, θ̂(t)) − 1.96

√
Σ̂(t)
h+1,j + ς̂

2(t)
h+1,j , µj(z, θ̂

(t)) + 1.96
√

Σ̂(t)
h+1,j + ς̂

2(t)
h+1,j

)
, (7)

where Σ̂(t)
h+1,j denotes the (j, j)-th diagonal element of Σ̂(t)

h+1.

(iii) Output the final 95% prediction interval of µj(z,θ∗) by averaging m intervals
obtained in step (ii).

The above procedure can be easily extended to the StoNet with a logistic regression output
layer via the Wald/endpoint transformation. By Lemma A2, the above procedure can also
be applied to the StoNet trained by the adaptive stochastic gradient MCMC algorithm.

5 An Illustrative Example
This example serves as a validation of our theoretical results. Consider two models:

y = 2ψ(2x1 − x2) + 2ψ(x3 − 2x4) − ψ(2x5) + 0x6 + · · · + 0x20 + ϵ, (8)
y = ψ(2ψ(2x1 − x2)) + 2ψ(2ψ(x3 − 2x4) − ψ(2x5)) + 0x6 + · · · + 0x20 + ϵ, (9)

where ψ(·) = tanh(·), ϵ ∼ N(0, 1), x = (x1, x2, . . . , x20), xi ∼ N(0, 1) for i = 1, 2, . . . , 20,
and xi’s are correlated with a mutual correlation coefficient of 0.5. Equations (8) and (9)
represent neural networks with one and two hidden layers, respectively. For both models, the
variables x1, x2, . . . , x5 are true and the others are false. The strong mutual correlation makes
the true variables hard to identify. From each model, we simulated 1000 samples, 500 samples
for training and 500 samples for test. We use this example to examine the performance of
the StoNet in nonlinear variable selection and prediction uncertainty quantification, and
to examine the effect of σ2 = (σ2

1 , . . . , σ
2
h+1) on the performance of the StoNet as well. To

make the tests more convincing, we particularly generated the data from true DNN models.
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We modeled the data from model (8) by a StoNet with structure 20-500-1, and that from
model (9) by a StoNet with structure 20-500-100-1. We trained the StoNets by Algorithm
2 with different parameter settings as given in the appendix. The major differences of the
settings are at the values of σi’s and, for convenience, we call the settings by half-σ2, single-σ2

and double-σ2, respectively. Under each setting, Algorithm 2 was run for 2000 epochs with
the Lasso penalty Pλ(θ) = λ∥θ∥1. Various values of λ have been tried as described below.
To examine the effect of λ, we mimic the regularization path for LASSO and measure the
importance of each variable by the average output gradient 1

n

∑n
k=1

∂µ̂(x)
∂xi

|x(k) calculated
over training samples, where µ̂(x) denotes the forward prediction function of the StoNet and
x(k) denotes the kth-observation of the training set. Using the partial derivative to evaluate
the dependence of a function on a particular variable has been proposed by RosascoLorenzo
et al. (2013), and employed in Zheng et al. (2020) for sparse graphical modeling. Figure 2
(a) shows the regularization path of the StoNet for the model (9). The path for the model
(8) is shown in Figure A1(a). Further, we examined the paths of each variable and found
that for both models (8) and (9), the true variables x1, x2, . . . , x5 can be correctly identified
by the StoNet with appropriate values of λ.

(a) 2-hidden-layer StoNet (b) 2-hidden-layer DNN
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Figure 2: Variable selection paths by the StoNet (under the single-σ2 setting) and DNN for
the model (9), where y-axis is the average output gradient 1

n

∑n
k=1

∂µ̂(x)
∂xi

|x(k) calculated over
the training data, and x-axis is − log(λ). The 5 lines with 1

n

∑n
k=1

∂µ̂(x)
∂xi

|x(k) away from 0
corresponds to the 5 true variables

Corollary 1 shows that consistent sparse deep learning can also be achieved by training the
DNN with a Lasso penalty. To illustrate this result, we considered two DNNs with the
same structures as the StoNets used above, imposed the Lasso penalty on their weights, and
trained them using SGD with momentum. We trained each DNN for 2000 epochs with a
constant learning rate of 0.001, a momentum parameter of 0.9 and a mini-batch size of 50.
Figure 2(b) show the variable selection path of the DNN for the model (9). The path for the
model (8) can be found in Figure A1. As expected, the true variables can also be identified
by the sparse DNN trained with the Lasso penalty.

Table 1: Coverage rates of 95% prediction intervals produced by the StoNet for 500 test
samples simulated from the models (8) and (9), where the number in the parentheses
represents the standard deviation of the coverage rate.

Model half-σ2 single-σ2 double-σ2

Model (8) 94.766% (2.157%) 94.496% (2.162%) 94.310% (2.197%)
Model (9) 94.642% (2.189%) 94.396% (2.256%) 94.300% (2.290%)

Next, we examined the performance of the StoNet in prediction uncertainty quantification.
We generated 100 training datasets, each consisting of 500 samples, from each of the models
(8) and (9). For each training dataset, a StoNet was trained as described above, and a
prediction interval was constructed for each sample point of the test dataset with the StoNet
estimate obtained at the last iteration of the run. Table 1 summarizes the coverage rates of
the predictive intervals by averaging the coverage status of 500 × 100 prediction intervals,
where ‘500’ refers to the total number of test points and ‘100’ refers to the total number of
training datasets. As expected, the StoNet produces better coverage rates with smaller values
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of σ2, since the true models are DNN models. Figure A2 shows the prediction intervals
produced by the StoNet at some test points.

6 Statistical Inference for Deep Learning
This section discusses two applications of StoNet in statistical inference for deep learning
models. One is for identifying important features for the response or ranking their importance.
The other is for quantifying prediction uncertainty through a post-StoNet modeling procedure.

6.1 Identification of Important Input Features
As a further illustration for this type of applications, we consider a big dataset, CoverType,
available at UCI repository. It consists of n = 581, 012 samples and p = 54 features, collected
for classification of forest cover types from cartographic variables. We used 80% of the data
for training and the other 20% for testing. We fit the data by a DNN of two hidden layers,
with 1000 and 500 hidden units, respectively. Refer to Section G for detailed settings of
training parameters. Figure 3 indicates important input features can be identified for the
DNN along the path of parameter regularization as in applications of Lasso for linear models.
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Figure 3: Test accuracy (left) and feature gradient (right) versus regularization parameters
for the CoverType data.

6.2 Post-StoNet Modeling for Uncertainty Quantification
In real applications, use of large-scale deep neural networks, such as residual networks
(He et al., 2016) and transformer (Dosovitskiy et al., 2020), has been a common practice.
However, these large-scale models can be miscalibrated (Guo et al., 2017). To address this
issue, we propose a post-StoNet modeling procedure, without significantly changing the
current practice of large-scale models. The proposed procedure is as follows:

(i) Transform the explanatory variables by calculating the output of the last-hidden-layer
of a well-trained DNN.

(ii) Learn a simple sparse StoNet(e.g. with one hidden layer only) using the transformed
data and their response on the validation data.

The uncertainty quantification follows the procedure given in Section 4, except that the
z variable is given by the transformed data. We provide an intuitive justification for this
procedure: as shown in Liang et al. (2022), the last-hidden-layer’s output of the StoNet
serves as a nonlinear sufficient dimension reduction (SDR) of the input data. Building upon
the asymptotic equivalence between the StoNet and DNN (Lemma 1), the transformed
data from a well-trained DNN approximates a sufficient dimension reduction of the input
data. The DNN model typically gives simple linear relationship between transformed data
and response, but the linear relationship may not hold anymore on the validation set due
to the possible over-fitting issue. Therefore, we remodel it using a simple sparse StoNet,
which enables the prediction uncertainty to be correctly quantified. In what follows, we use
numerical experiments to show that the proposed procedure improves model calibration and
provide shorter confidence intervals compared to the conformal method.
Classification Problems We conduct experiments on CIFAR10 data. Following the
setting of post-calibration methods in Guo et al. (2017), we split the training data into a
training set of 45000 images and a hold out validation set of 5000 images. We modeled the
data using DenseNet40(Huang et al., 2017), ResNet110(He et al., 2016) and WideResNet-28-
10(Zagoruyko & Komodakis, 2016). Refer to Section G for detailed settings of the training
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parameters. For comparison, we also applied temperature scaling and matrix scaling (Guo
et al., 2017) to the same trained models. We repeated the experiment 10 times and report
the mean and standard deviation of accuracy (ACC), negative log-likelihood loss (NLL)
and expected calibration error (ECE) in Table 2. The result shows that the post-StoNet
modeling method significantly improves model calibration, especially in terms of ECE.

Table 2: Calibration results for CIFAR10 data, where standard deviations of the respective
measures are given in parentheses.

Network Size Method ACC NLL ECE

DenseNet40 176K
No Post Calibration 92.88%(0.19%) 0.3076(0.0094) 0.0434(0.0019)

Matrix Scaling 92.73%(0.20%) 0.2226(0.0052) 0.0132(0.0026)
Temp. Scaling 92.88%(0.19%) 0.2194(0.0055) 0.0117(0.0016)
Post-StoNet 92.79%(0.17%) 0.2175(0.0034) 0.0047(0.0010)

ResNet110 1.7M
No Post Calibration 93.23%(0.37%) 0.3113(0.0220) 0.0444(0.0030)

Matrix Scaling 92.96%(0.32%) 0.2127(0.0097) 0.0145(0.0023)
Temp. Scaling 93.23%(0.37%) 0.2077(0.0092) 0.0122(0.0016)
Post-StoNet 93.22%(0.31%) 0.2045(0.0086) 0.0070(0.0014)

WideResNet-
28-10 36M

No Post Calibration 95.76%(0.13%) 0.1710(0.0077) 0.0258(0.0014)
Matrix Scaling 95.71%(0.14%) 0.1475(0.0042) 0.0104(0.0014)
Temp. Scaling 95.76%(0.13%) 0.1489(0.0055) 0.0120(0.0017)
Post-StoNet 95.63%(0.08%) 0.1448(0.0031) 0.0089(0.0007)

Regression Problems We used 4 datasets from UCI repository ranging in size from
thousands to hundreds of thousands. For each dataset, we first train a DNN model on
training set then applied the post-StoNet procedure to generate 90% prediction intervals(see
appendix G.4 for details). For comparison, we applied the split conformal method (Vovk
et al., 2005) to the same trained DNNs. The results in Table 3 demonstrate a significant
improvement in terms of the lengths of the prediction confidence intervals This improvement is
largely attributed to the well-trained DNNs, which transform the potentially highly nonlinear
mapping (from inputs to response) into a relatively simple mapping (from last-hidden-layer
outputs to response). The sparsity of the post-StoNet mitigates potential overfitting issues
suffered by the DNNs, thus enhancing prediction performance. However, adapting with
overfitting has been beyond the ability of the conformal method.

Table 3: Average coverage rate and confidence interval length of test sets of 20 random split
of data. The standard deviations are given in the parentheses.

Dataset N P Model Coverage Rate Interval length

Wine 1,599 11 Post-StoNet 0.9042(0.0126) 2.0553(0.0719)
Split Conformal 0.8958(0.0302) 2.4534(0.1409)

Power
Plant 9,568 4 Post-StoNet 0.9109(0.0070) 13.4726(0.2420)

Split Conformal 0.8999(0.0082) 14.5719(0.2676)
Protein 45,730 9 Post-StoNet 0.8941(0.0028) 13.1319(0.0494)

Split Conformal 0.9004(0.0022) 14.4296(0.0886)
Year 515,345 90 Post-StoNet 0.9064(0.0013) 29.4272(0.0923)

Split Conformal 0.9001(0.0010) 32.1068(0.3726)

7 Conclusion

We have demonstrated that the StoNet effectively bridges the gap between linear models
and deep learning, allowing us to adapt theories and methods developed for linear models
to deep learning models. Specifically, we have adapted sparse learning theory from linear
models to DNNs, enabling the identification of important input features in DNN training
with the Lasso penalty. We have also employed the StoNet to quantify uncertainty in DNN
predictions. Our numerical results suggest that the StoNet significantly improves prediction
uncertainty quantification for deep learning models compared to the conformal method and
other post processing calibration methods.
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Appendix

A Assumptions for Lemma 1

The property of the StoNet as an approximator to the DNN, i.e., asymptotically they have
the same loss function as the training sample size n → ∞, has been studied in Liang et al.
(2022). A brief review for their theory is provided as follows, which form the basis for this
work.
Let θ = (w1, b1, . . . ,wh+1, bh+1) denote the collection of all weights of the StoNet (2),
let Θ denote the space of θ, let Ymis = (Y1,Y2, . . . ,Yh) denote the collection of all la-
tent variables, let π(Y ,Ymis|X,θ) denote the likelihood function of the StoNet, and let
πDNN(Y |X,θ) denote the likelihood function of the DNN model (1). Regarding the network
structure, activation function and the variance of the latent variables, they made the following
assumption:
Assumption A1. (i) Θ is compact, i.e., Θ is contained in a dθ-ball centered at 0 with
radius r; (ii) E(log π(Y ,Ymis|X,θ))2 < ∞ for any θ ∈ Θ; (iii) the activation function
ψ(·) is c′-Lipschitz continuous for some constant c′; (iv) the network’s depth h and widths
dl’s are both allowed to increase with n; (v) σ1 ≤ σ2 ≤ · · · ≤ σh+1, σh+1 = O(1), and
dh+1(

∏h
i=k+1 d

2
i )dkσ2

k ≺ 1
h for any k ∈ {1, 2, . . . , h}.

Assumption A1-(iii) allows the StoNet to work with a wide range of Lipschitz continuous
activation functions such as tanh, sigmoid and ReLU. Assumption A1-(v) constrains the size
of noise added to each hidden neuron, where the factor dh+1(

∏h
i=k+1 d

2
i )dk can be understood

as the amplification factor of the noise ek at the output layer. In general, the noise added to
the first few hidden layers should be small to prevent large random errors propagated to the
output layer. Under Assumption A1, they proved part (i) of Lemma 1.
Further, regarding the equivalence between training the StoNet and the DNN, they
made the following assumption regarding the energy surface of the DNN. Let Q∗(θ) =
E(log πDNN(Y |X,θ)), where the expectation is taken with respect to the joint distribution
π(X,Y ). By Assumption A1-(i)&(ii) and the law of large numbers,

1
n

n∑
i=1

log πDNN(Y (i)|X(i),θ) −Q∗(θ) p→ 0 (A1)

holds uniformly over Θ. They assumed Q∗(θ) satisfies the following regularity conditions:
Assumption A2. (i)Q∗(θ) is continuous in θ and uniquely maximized at θ∗; (ii) for any
ϵ > 0, supθ∈Θ\B(ϵ)Q

∗(θ) exists, where B(ϵ) = {θ : ∥θ − θ∗∥ < ϵ}, and δ = Q∗(θ∗) −
supθ∈Θ\B(ϵ)Q

∗(θ) > 0.

Assumption A2 restricts the shape of Q∗(θ) around the global maximizer, which cannot be
discontinuous or too flat. Given nonidentifiability of the neural network model, Assumption
A2 has implicitly assumed that each θ is unique up to the loss-invariant transformations,
e.g., reordering the hidden neurons of the same hidden layer and simultaneously changing
the signs of some weights and biases. Under Assumptions A1 and A2, they proved part (ii)
of Lemma 1.

B The IRO Algorithm for training StoNet

Algorithm 1 gives the IRO algorithm(Liang et al., 2018) for training StoNet.

C Proofs of Theorem 1

In order to establish the consistency of the sparse StoNet, we need the following assumptions.
Following Meinshausen & Yu (2009), we define the m-sparse minimal and maximal eigenvalues
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Algorithm 1 IRO Algorithm for StoNet; Liang et al. (2018)
Input: Dataset (X,Y ), total iteration number T , and Monte Carlo step number tMC .
Initialization: Randomly initialize the network parameters θ̂(0) = (θ̂(0)

1 , . . . , θ̂
(0)
h+1).

for t = 1 to T do
• Imputation step: For each sample (X(i),Y (i)), draw Y

(i,t)
mis from π(Ymis|Y (i),X(i),

θ̂
(t−1)
n ,σ2

n) with a Metropolis or Langevin dynamics kernel by iterating for tMC steps.
• Regularized optimization step: Based on the pseudo-complete data (Y ,Y (t)

mis,X),
update θ̂

(t−1)
n by minimizing a penalized loss function, i.e., setting

θ̂(t)
n = arg min

θ

{
− 1
n

n∑
i=1

log π(Y (i),Y
(i,t)

mis

∣∣X(i),θ,σ2
n) + Pλn (θ)

}
, (A2)

where the penalty function Pλn(θ) is chosen such that θ̂
(t)
n forms a consistent estimator

of
θ(t)

∗ = arg max
θ

E
θ

(t−1)
n

log π(Y ,Ymis|X,θ,σ2
n)

= arg max
θ

∫
log π(Ymis,Y |X,θ,σ2

n)π(Ymis|Y ,X,θ(t−1)
n ,σ2

n)π(Y |X,θ∗,σ2
n)dYmisdY ,

(A3)

where θ
(t)
∗ is called the working true parameter at iteration t.

end for
Output: θ̂(T )

n .

for a matrix Σ as follows:

ϕmin(m|Σ) = min
β:∥β∥0≤m

βT Σβ

βTβ
,

ϕmax(m|Σ) = max
β:∥β∥0≤m

βT Σβ

βTβ
,

which represent, respectively, the minimal and maximal eigenvalues of any m×m-dimensional
principal submatrix. Let Σn ∈ Rpn×pn denote the covariance matrix of the input variables.
Let q(t)

l,k,n denotes the size of the working true regression formed for neuron k of layer l at
iteration t, as implied by the working true parameter θ

(t)
∗ .

Assumption A3. (i) The input variable X is bounded, and there exist a constants 0 <
κmin < ∞ such that lim infn→∞ ϕmin(min{n, pn}|Σn) ≥ κmin; (ii) there exists a sparse
exponent s ∈ [0, 1] such that q(t)

l,k,n ≺ dsl−1,n for 1 ≤ k ≤ dl,n 1 ≤ l ≤ hn+1 and any iteration t,
and set (σ2

1,n, σ
2
2,n, . . . , σ

2
hn+1,n) such that the following conditions hold: κ2

min
σ2

1,n
≻ hnd1,np

s
n log pn

n ,

and σ4
l−1,n

σ2
l,n

≻ hndl,nd
s
l−1,n log dl−1,n

n for any l ∈ {2, 3, . . . , hn + 1}; (iii) the activation function
Ψ(·) is bounded.

Assumption A3-(i) is regular, which has often been used in the literature of high-dimensional
variable selection, see e.g., Huang et al. (2008). Assumption A3-(ii) works with Assumption
A1-(v) to constrain the range of σl,n’s. We note that such a uniform sparse exponent s always
exists, which can be equal to 1 in the worst scenario. Assumption A3-(iii) is more or less a
technical condition. Since σ2

l,n’s are usually set to very small values, it is easy to restrict
the random errors ei’s to a compact space with high probability. Therefore, an unbounded
activation function such as ReLU can still be used in the StoNet, but the following theoretical
results need to be slightly modified to hold with high probability.
Regarding the setting of regularization parameters, we have the following assumption which
directly follows from the theory developed by Meinshausen & Yu (2009) for linear regression
and Huang et al. (2008) for logistic regression.
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Assumption A4. The Lasso penalty is used for the StoNet. At each iteration t, (i) set the
regularization parameter λ(t)

l,n ≍ σl,n(n log dl−1,n)1/2 for each linear regression layer l; and
(ii) set the regularization parameter λ(t)

l,n ≍ (n2+ε log dl−1,n)1/3 for some ε ∈ (0, 1) for each
logistic regression layer.

In order to prove Theorem 1, we first introduce the following lemma
Lemma A1. For any L ∈ {1, 2, . . . , h}, let Σ

(t)
L denote the sample covariance matrix of

the covariates of the linear regressions formed for each neuron of layer L+ 1 at iteration
t. If Assumption A1 and Assumption A3 hold, then there exist constants c > 0 and
0 < κmax,L < ∞ such that for any iteration t,

ϕmin(min{n, dL,n}|Σ(t)
L ) ≥ cσ2

L,n, ϕmax(min{n, dL,n}|Σ(t)
L ) ≤ κmax,L.

Proof. For simplicity of notations, we suppress the iteration index t. Let ỸL = bL +
wLΨ(YL−1) for L = 2, . . . , h, and let Ỹ1 = b1 +w1X. By the definition of the StoNet model
(2), YL can be written as YL = ỸL + eL for L ∈ {1, 2, . . . , h}.

Since σ2
L has been set to a very small value, we have Ψ(YL) ≈ Ψ(ỸL) + ∇ỸL

Ψ(ỸL) ◦ eL,
where ◦ denotes elementwise product. Then
ΣL ≈ Var(E(Ψ(ỸL) + ∇ỸL

Ψ(ỸL) ◦ eL|ỸL)) + E(Var(Ψ(ỸL) + ∇ỸL
Ψ(ỸL) ◦ eL|ỸL))

= Var(Ψ(ỸL)) + diag
{
σ2
LE[∇ỸL

Ψ(ỸL) ◦ ∇ỸL
Ψ(ỸL)]

}
,

(A4)

where diag{v} with v ∈ Rd denotes a d× d diagonal matrix with diagonal elements being v.
By Assumption A3-(iii), the activation function is bounded. For example, tanh or sigmoid is
used in the model. By Assumption A1, there exists some constant C1 such that ∥bL∥∞ <
C1, ∥wL∥∞ < C1. By Assumption A3, ∥X∥∞ is bounded. Therefore, there exists some
constant C2 such that for any L ∈ {1, 2, . . . , h}, ∥ỸL∥∞ ≤ C1 + C1C2 holds by rescaling
X by a factor of

∏h
l=1 dl. Since both Ψ(ỸL) and ∇ỸL

Ψ(ỸL) are bounded, there exists a
constant κmax,L such that

ϕmax(dL,n|ΣL) ≤ κmax,L.

To establish the lower bound, we note that ∥ỸL∥∞ ≤ C1 +C1C2. Therefore, for an activation
function which has nonzero gradients on any closed interval, e.g., tanh and sigmoid, there
exists a constant C3 > 0 such that mini=1,...,dL

∇ỸL
Ψ(ỸL)i > C3, where ∇ỸL

Ψ(ỸL)i denotes
the i-th element of ∇ỸL

Ψ(ỸL). Then we can take κmin,L = σ2
LC

2
3 such that

ϕmin(dL,n|ΣL) ≥ κmin,L,

which completes the proof.

Proof of Part (i) of Theorem 1

Proof. By Lemma A1, Σ(t)
L satisfies the requirements of Theorem 1 of Meinshausen & Yu

(2009) and Theorem 1 of Huang et al. (2008). Then, by Theorem 1 of Meinshausen & Yu
(2009) (for linear regression) and Theorem 1 of Huang et al. (2008) (for logistic regression),
we have rn as given in the lemma by summarizing the l2-errors of coefficient estimation for
all
∑h+1
l=1 dl regression/logistic regressions. Further, by the setting of (σ2

1,n, . . . , σ
2
h+1,n) as

specified in Assumption A3, we have rn → 0 as n → ∞. This completes the proof of part (i)
of Theorem 1.

Further, let’s consider the mapping M(θ) as defined in (A3), i.e., M(θ) =
arg maxθ′ Eθ log π(Y ,Ymis|X,θ′,σ2

n). As argued in Liang et al. (2018) and Nielsen (2000),
it is reasonable to assume that the mapping is a contraction, as a recursive application of the
mapping, i.e., setting θ

(t+1)
n = θ

(t+1)
∗ = M(θ(t)

n ), leads to a monotone increase of the target
expectations E

θ
(t)
n

log π(Y ,Ymis|X,θ
(t+1)
n ,σ2

n) for t = 1, 2, . . ..
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Assumption A5. The mapping M(θ) is differentiable. Let λn(θ) be the largest singular
value of ∂M(θ)/∂θ. There exists a number λ∗ < 1 such that λn(θ) ≤ λ∗ for all θ ∈ Θn for
sufficiently large n and almost every Dn observation sequence.

Proof of Part (ii) of Theorem 1

Proof. Then part (ii) of Theorem 1 directly follows from Theorem 4 of Liang et al. (2018)
that the estimator θ̂

(t)
n is consistent when both n and t are sufficiently large.

To establish the structure selection consistency in Part (iii) of Theorem 1, we need the
following θ-min condition:
Assumption A6. (θ-min condition) mink∈γ∗ |θ∗

k| ≻ √
rn, where γ∗ = {k : θ∗

k ̸= 0} is the
set of indexes of non-zero elements of θ∗ and θ∗

k denotes the k-th component of θ∗.

Assumption A6 is essentially an identifiability condition, which ensures the non-zero elements
of θ∗ can be distinguished from 0. This is a typical assumption for high-dimensional variable
selection, see e.g., Zhao & Yu (2006). Under Assumption A6, the proof of Part (iii) of
Theorem 1 is given as follows:

Proof of Part (iii) of Theorem 1

Proof. Let θ̂
(t)
n denote the estimate of θn at iteration t, and let θ

(t)
∗ denote its “true” value

at iteration t, and let θ∗ denote its true value in the StoNet. By the proof of Theorem 4 of
Liang et al. (2018) and Theorem 1 of Meinshausen & Yu (2009), for the StoNet with the
linear regression output layer, we have

E∥θ̂(t)
n − θ∗∥ ≤ 1

1 − λ∗E∥θ̂(t)
n − θ

(t)
∗ ∥ ≺

√
rn

1 − λ∗ , as t → ∞, (A5)

by summarizing all d1 + d2 + · · · + dh+1 linear regressions, where λ∗ is a constant as defined
in Assumption A5. For the StoNet with the logistic regression output layer, we have the
same result by Theorem 1 of Huang et al. (2008). Further, by Markov inequality, there exists
a constant c such that

P
(

∥θ̂(t)
n − θ∗∥ > c

√
rn

)
→ 0, as n → ∞ and t → ∞.

Then, by Assumption A6,

• For any i ∈ γ∗, ∥θ̂(t)
n − θ∗∥ ≤ c

√
rn implies |θ̂(t)

i,n| > c
√
rn.

• For any i /∈ γ∗, ∥θ̂(t)
n − θ∗∥ ≤ c

√
rn implies |θ̂(t)

i,n| < c
√
rn.

Therefore,

P (γ̂ = γ∗) ≥ P ((∥θ̂(t)
n − θ∗∥ ≤ c

√
rn) → 1, as n → ∞ and t → ∞, (A6)

which concludes the proof.

D Adaptive Stochastic Gradient MCMC for Efficient StoNet
Learning

D.1 Adaptive stochastic gradient Hamilton Monte Carlo

The IRO algorithm is developed under the full data setting and thus less scalable with
respect to big data. To address this issue, we suggest to train the sparse StoNet using an
adaptive stochastic gradient MCMC(ASGMCMC) algorithm by Liang et al. (2022), which is
scalable with respect to big data by making use of mini-batch samples at each iteration. To
make the paper self-contained, we gives a review of ASGMCMC algorithm below.
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Let π(Y |X,θ,σ2) =
∫
π(Y ,Ymis|X,θ,σ2)dYmis denote the likelihood function of the ob-

served data for the StoNet. By Fisher’s identity, we have

∇θ log π(Y |X,θ,σ2) =
∫

∇θ log π(Y ,Ymis|X,θ,σ2)π(Ymis|Y ,X,θ,σ2)dYmis.

Therefore, the sparse StoNet can also be trained by solving the equation∫
∇θ[log π(Y ,Ymis|X,θ,σ2) + logPλ(θ)]π(Ymis|Y ,X,θ,σ2)dYmis = 0, (A7)

where Pλ(θ) denotes a penalty function satisfying Assumption A4. By Theorem 1 of Liang
et al. (2018), solving for (A7) will lead to the same solution as solving the optimization
problem specified in (5).
By Deng et al. (2019), the equation (A7) can be solved using an adaptive SGMCMC
algorithm, which works by iterating between the following two steps:

(a) (Sampling) Generate Y (k+1)
mis from a transition kernel induced by a stochastic gradient

MCMC algorithm, e.g., stochastic gradient Hamilton Monte Carlo (SGHMC) (Chen
et al., 2014).

(b) (Parameter updating) Set θ(k+1) = θ(k) + γk+1g(Y (k+1)
mis , Uk+1), where γk+1 denotes

the step size used in the stochastic approximation procedure.

The pseudo-code of the adaptive SGHMC algorithm is given by Algorithm 2, where
we let θi = (wi, bi) denote the parameters associated with the i-th layer for i =
1, 2, . . . , h + 1, let (Y (s,k)

0 ,Y
(s,k)
h+1 ) = (X(s),Y (s)) denote a training sample s, and let

Y
(s,k)
mis = (Y (s,k)

1 , . . . ,Y
(s,k)
h ) denote the latent variables imputed for the training sam-

ple s at iteration k. Occasionally, we use the notation Y
(s,k)

0 = Y
(s)

0 = X(s) and
Y

(s,k)
h+1 = Y

(s)
h+1 = Y (s).

This algorithm is called “adaptive” as the transition kernel used in step (i) changes with
iterations through the working estimate θ(k). Algorithm 2 is expected to outperform the
basic algorithm by Deng et al. (2019), where the stochastic gradient Langevin dynamics
(SGLD) algorithm (Welling & Teh, 2011) is used in the sampling step, due to the accelerated
convergence of SGHMC over SGLD (Nemeth & Fearnhead, 2019). The convergence of
Algorithm 2 is shown in the following lemma, see Section D.2 for the proof.
Lemma A2. Suppose Assumption A7 hold. In Algorithm 2, if we set ϵk = Cϵ/(ce + kα) and
γk = Cγ/(cg + kα) for some constants α ∈ (0, 1), Cϵ > 0, Cγ > 0, ce ≥ 0 and cg ≥ 0, then
there exists an iteration k0 and a constant λ0 > 0 such that for any k > k0,

E(∥θ̂(k) − θ̂∗
n∥2) ≤ λ0γk, (A10)

where θ̂∗
n denotes a solution to equation (A7).

A similar result to Lemma A2 has been established in Liang et al. (2022), except that the
penalty term Pλ(θ) is not included in estimation of θ. As mentioned previously, the adaptive
SGHMC algorithm can be more efficient than the IRO algorithm when the training sample
size is large. We note that both algorithms can suffer from local traps. To address this issue,
a similar procedure as the prior annealing strategy proposed in (Sun et al., 2021) can be
used, i.e. start with an over-parametrized model and gradually increase the regularization
parameter from 0 to the desired value along with iterations.

D.2 Convergence of Algorithm 2

Notations: We let D denote a dataset of n observations, and let Di denote the i-th observation
of D. For StoNet, Di has included both the input and output variables of the observation.
For simplicity of notation, we re-denote the latent variable corresponding to Di by Zi, and
denote by fDi

(zi,θ) = − log π(zi|Di,θ) the negative log-density function of Zi. Let z =
(z1, z2, . . . , zn) be a realization of Z = (Z1, Z2, . . . , Zn), and let FD(z,θ) =

∑n
i=1 fDi

(zi,θ).
To complete the proof, we need the following assumptions:
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Algorithm 2 An adaptive SGHMC algorithm for training StoNet
Input: Dataset (X,Y ), total iteration number K, Monte Carlo step number tHMC , the
learning rate sequence {ϵk,i : t = 1, 2, . . . , T ; i = 1, 2, . . . , h+ 1}, and the step size sequence
{γk,i : t = 1, 2, . . . , T ; i = 1, 2, . . . , h+ 1}.
Initialization: Randomly initialize the network parameters θ̂(0) = (θ̂(0)

1 , . . . , θ̂
(0)
h+1).

for k = 1 to K do
STEP 0: Subsampling: Draw a mini-batch of data and denote it by Sk.
STEP 1: Backward Sampling: For each observation s ∈ Sk, sample Yi’s in the
order from layer h to layer 1. More explicitly, we sample Y

(s,k)
i from the distribution

π(Y (s,k)
i |θ̂(k−1)

i , θ̂
(k−1)
i+1 ,Y

(s,k)
i+1 ,Y

(s,k)
i−1 ) ∝ π(Y (s,k)

i+1 |θ̂(k−1)
i+1 ,Y

(s,k)
i )π(Y (s,k)

i |θ̂(k−1)
i ,Y

(s,k)
i−1 )

by running SGHMC for tHMC steps:
Initialize v

(s,0)
i = 0, and initialize Y

(s,k,0)
i by forward pass of DNN.

for l = 1 to tHMC do
for i = h to 1 do

Simulate latent variables

v
(s,k,l)
i =(1 − ϵk,iηi)v(s,k,l−1)

i + ϵk,i∇Y
(s,k,l−1)

i

log π
(
Y

(s,k,l−1)
i | θ̂(k−1)

i ,Y
(s,k,l−1)
i−1

)
+ ϵk,i∇Y

(s,k,l−1)
i

log π
(
Y

(s,k,l−1)
i+1 | θ̂(k−1)

i+1 ,Y
(s,k,l−1)
i

)
+
√

2ϵk,iηe(s,k,l),

Y
(s,k,l)
i =Y

(s,k,l−1)
i + ϵk,iv

(s,k,l−1)
i ,

(A8)
where es,k,l ∼ N(0, Idi

), ϵk,i is the learning rate, and η is the friction coefficient.
The algorithm is reduced to SGLD when ϵk,iηi ≡ 1.

end for
end for
Set Y

(s,k)
i = Y

(s,k,tHMC )
i for i = 1, 2, . . . , h.

STEP 2: Parameter Update: Update the estimates of θ̂(k−1) =
(θ̂(k−1)

1 , θ̂
(k−1)
2 , . . . , θ̂

(k−1)
h+1 ) by stochastic gradient descent

θ̂
(k)
i = θ̂

(k−1)
i + γk,i

(
n

|Sk|
∑
s∈Sk

∇θi
log π(Y (s,k)

i |θ̂(k−1)
i , Y

(s,k)
i−1 ) − n∇θi

Pλ(θ̂i)
)
, (A9)

for i = 1, 2, . . . , h+ 1, where γk,i is the step size used for updating θi.
end for
Output: θ̂(K)

n .
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Assumption A7. (i) The function FD(·, ·) takes nonnegative real values, and there
exist constants A,B ≥ 0, such that |FD(0,θ∗)| ≤ A, ∥∇ZFD(0,θ∗)∥ ≤ B,
∥∇θFD(0,θ∗)∥ ≤ B, and ∥H(0,θ∗)∥ ≤ B.

(ii) (Smoothness) FD(·, ·) is M-smooth and H(·, ·) is M-Lipschitz: there exists some
constant M > 0 such that for any Z,Z ′ ∈ Rdz and any θ,θ′ ∈ Θ,

∥∇ZFD(Z,θ) − ∇ZFD(Z ′,θ′)∥ ≤ M∥Z − Z ′∥ +M∥θ − θ′∥,
∥∇θFD(Z,θ) − ∇θFD(Z ′,θ′)∥ ≤ M∥Z − Z ′∥ +M∥θ − θ′∥,
∥H(Z,θ) −H(Z ′,θ′)∥ ≤ M∥Z − Z ′∥ +M∥θ − θ′∥.

(iii) (Dissipativity) For any θ ∈ Θ, the function FD(·,θ∗) is (m, b)-dissipative: there
exist some constants m > 1

2 and b ≥ 0 such that ⟨Z,∇ZFD(Z,θ∗)⟩ ≥ m∥Z∥2 − b.

(iv) (Gradient noise) There exists a constant ς ∈ [0, 1) such that for any Z and θ,
E∥∇Z F̂D(Z,θ) − ∇ZFD(Z,θ)∥2 ≤ 2ς(M2∥Z∥2 +M2∥θ − θ∗∥2 +B2).

(v) The step size {γk}k∈N is a positive decreasing sequence such that γk → 0 and∑∞
k=1 γk = ∞. In addition, let h(θ) = E(H(Z,θ)), then there exists δ > 0 such that

for any θ ∈ Θ, ⟨θ − θ∗, h(θ))⟩ ≥ δ∥θ − θ∗∥2, and lim infk→∞ 2δ γk

γk+1
+ γk+1−γk

γ2
k+1

> 0.

(vi) (Solution of Poisson equation) For any θ ∈ Θ, z ∈ Z, and a function V (z) = 1+∥z∥,
there exists a function µθ on Z that solves the Poisson equation µθ(z) − Tθµθ(z) =
H(θ, z) − h(θ), where Tθ denotes a probability transition kernel with Tθµθ(z) =∫
Z
µθ(z′)Tθ(z, z′)dz′, such that

H(θk, zk+1) = h(θk) + µθk
(zk+1) − Tθk

µθk
(zk+1), k = 1, 2, . . . . (A11)

Moreover, for all θ,θ′ ∈ Θ and z ∈ Z, we have ∥µθ(z) − µθ′(z)∥ ≤ ς1∥θ − θ′∥V (z)
and ∥µθ(z)∥ ≤ ς2V (z) for some constants ς1 > 0 and ς2 > 0.

The smoothness and dissipativity conditions are regular for studying the convergence of
stochastic gradient MCMC algorithms, and they have been used in many papers such as
Raginsky et al. (2017) and Gao et al. (2021). As implied by the definition of FD(z,θ), the
values of M , m and b increase linearly with the sample size n. Therefore, we can impose a
nonzero lower bound on m to facilitate related proofs.
Assumption A7-(iv) introduces an extra constant ς to facilitate our study. For the full data
case, we have ς = 0, i.e., the gradient ∇ZFD(Z,θ) can be evaluated accurately.
As shown by Benveniste et al. (1990) (p.244), Assumption A7-(v) can be satisfied by setting
γk = ã/(b̃+ kα) for some constants ã > 0, b̃ ≥ 0, and α ∈ (0, 1 ∧ 2δã). By (A9), δ increases
linearly with the sample size n. Therefore, if we set ã = Ω(1/n) then 2δã > 1 can be satisfied,
where Ω(·) denotes the order of the lower bound of a function. In this paper, we simply
choose α ∈ (0, 1) by assuming that ã has been set appropriately with 2δã ≥ 1 held.
Assumption A7-(vi) is also regular for studying the convergence of stochastic gradient MCMC
algorithms, see e.g., Whye et al. (2016) and Deng et al. (2019). Alternatively, one can assume
that the MCMC algorithms satisfy the drift condition, and then Assumption A7-(vi) can be
verified, see e.g., Andrieu et al. (2005).

Outline of the proof of Lemma A2 Lemma A2 can be proved in a similar way to
Theorem 1 of Deng et al. (2019). However, since Algorithm 2 employs SGHMC for updating
Z(k), which is mathematically different from the SGLD algorithm employed in Deng et al.
(2019), Lemma 1 of Deng et al. (2019) (uniform L2 bounds of θ(k) and Z(k)) cannot be
applied any more. A similar result to Lemma 1 of Deng et al. (2019) has been established
in Liang et al. (2022) under appropriate conditions of {ϵk} and {γk} as prescribed in this
lemma, where it is shown that E∥θ(k)∥2 ≤ Cθ, E∥V (k)∥2 ≤ CV and E∥Z(k)∥2 ≤ CZ for
some constants Cθ, CV and CZ .
Note that in the proof of Lemma A2, the boundedness of Θ is not assumed. In Liang et al.
(2022), an explicit expression of λ0 has been given. For simplicity, we have the expression
omitted in this paper.
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E Prediction Uncertainty Quantification for Sparse StoNet

Let’s first consider the case that we have a regression StoNet trained by the IRO algorithm.
In this case, the prediction uncertainty can be quantified by a recursive application of Eve’s
law. Extension of the results to other cases will be discussed later.
Let z denote a test point at which the prediction uncertainty is to be quantified. For
simplicity of notations, we suppress the bias term by including it as a special column of the
corresponding weight matrix. To indicate the iterative nature of the training algorithm, we
include the superscript ‘t’ in the derivation. Let Z

(t)
i denote the imputed latent variable at

layer i, corresponding to the input vector z. For convenience, we let Z
(t)
0 = z for all t. Let

µ
(t)
i and Σ

(t)
i denote, respectively, the mean and covariance matrix of Z(t)

i . Let w
(t)
ij

denote
the j-th row of the weight matrix w

(t)
i , which represents the weights from the neurons of

layer i− 1 to neuron j of layer i. By Eve’s law, for any layer i ∈ {2, 3, . . . , h+ 1},
Σ

(t)
i = E(Var(Z(t)

i |Z(t)
i−1)) + Var(E(Z(t)

i |Z(t)
i−1))

= Ediag
{
ψ(Z(t)

i−1))T Var(ŵ(t)
ij

)ψ(Z(t)
i−1)) : j = 1, . . . di

}
+ Var(E(ŵi)ψ(Z(t)

i−1))

= diag
{
tr(Var(ŵ(t)

ij
))Var(ψ(Z(t)

i−1))) + (E(ψ(Z(t)
i−1)))T

× Var(ŵ(t)
ij

)(E(ψ(Z(t)
i−1))) : j = 1, . . . di

}
+ E(ŵi)Var(ψ(Z(t)

i−1))(E(ŵi))T ,

where Var(ŵ(t)
ij

) is calculated by the Lasso+OLS or Lasso+mLS procedure suggested by Liu
& Yu (2013). That is, we estimate w

(t)
ij

by applying the ordinary least square (OLS) or a
modified least square (mLS) procedure to the regression model selected by Lasso. We refer
to Theorem 3 of Liu & Yu (2013) for asymptotic normality of the non-sparse components of
ŵ

(t)
ij

. For the OLS case, the non-sparse submatrix of Var(ŵ(t)
ij

) is given by

˜Var(ŵ(t)
ij

) = ς̂2
i,j [(ψ(Ỹ(t))

i−1)Tψ(Ỹ(t)
i−1)]−1,

where ψ(Ỹ(t)
i−1) denotes the design matrix of the linear regression Y(t)

i,j = ψ(Ỹ(t)
i−1)(w̃(t)

ij
)T +ϵi,j

selected by Lasso for neuron j of layer i at iteration t, ϵi,j ∼ N(0, ς2
i In), and ς̂2

i,j denotes
the OLS estimator of ς2

i . Here Y(t)
i−1 ∈ Rn×di−1 denotes the imputed latent variables for all

neurons of layer i− 1, Y(t)
i,j ∈ Rn denotes the imputed latent variables for neuron j of layer

i, Ỹ(t)
i−1 ∈ Rn×q̃i,j denotes the variables selected by Lasso, w̃(t)

ij
denotes the corresponding

regression coefficients, and q̃i,j denotes the number of selected variables.

Let µ
(t)
i−1 = (µ(t)

i−1,1, . . ., µ(t)
i−1,di−1

)T denote the mean of Z
(t)
i−1, and let Dψ′(µ(t)

i−1) =
diag{ψ′(µ(t)

i−1,1), . . ., ψ′(µ(t)
i−1,di−1

)}, where ψ′ denotes the first derivative of the activation
function ψ. By the first order Taylor expansion, we have

E(ψ(Z(t)
i−1)) ≈ ψ(µ(t)

i−1),

Var(ψ(Z(t)
i−1)) ≈ Dψ′(µ(t)

i−1)Σ(t)
i−1Dψ′(µ(t)

i−1).

Further, if we estimate E(ŵi) by ŵi and estimate µ
(t)
i−1 by Z

(t)
i−1, then we have the approxi-

mation:
Σ̂

(t)
i ≈ diag

{
tr
(
Var(ŵ(t)

ij
)Dψ′(Z(t)

i−1)Σ̂(t)
i−1Dψ′(Z(t)

i−1)
)

+ (ψ(Z(t)
i−1))TVar(ŵ(t)

ij
)ψ(Z(t)

i−1) : j = 1, . . . , di
}

+ ŵ
(t)
i Dψ′(Z(t)

i−1)Σ̂(t)
i−1Dψ′(Z(t)

i−1)(ŵ(t)
i )T .

(A12)

For the first hidden layer, it is reduced to
Σ̂

(t)
1 ≈ diag

{
tr
(
Var(ŵ(t)

1j
)Var(z)

)
+ zTVar(ŵ(t)

1j
)z : j = 1, . . . , d1

}
+ ŵ

(t)
1 Var(z)(ŵ(t)

1 )T .
(A13)
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Since Var(z) = 0 holds for the fixed test point z, Σ̂(t)
1 can be further reduced to

Σ̂
(t)
1 ≈ diag

{
zTVar(ŵ(t)

ij
)z : j = 1, 2, . . . , d1

}
.

Let µ(z, θ̂) denote the prediction of a StoNet with weights θ̂ at point z. Note that the
StoNet (2) has the same prediction function as the DNN (1), i.e., the random noise added to
the latent variables is set to 0 in forward prediction. Suppose that a set of StoNet estimates,
S = {θ̂(1), θ̂(2), . . . , θ̂(m)}, has been collected after convergence of the IRO algorithm. Given
Σ̂(t)
i ’s, by the Wald method, the 95% prediction interval of µj(z,θ∗), the j-th component of

µ(z,θ∗), can be constructed as described in Section 4 of the main text.
The proposed confidence interval construction procedure can be easily extended to the StoNet
with a logistic regression output layer via the Wald/endpoint transformation. Following
from Lemma A2, the proposed procedure can also be applied to the StoNet trained by the
adaptive stochastic gradient MCMC algorithm.

F Supplementary Numerical Results

F.1 Supplementary Results for Section 5

Figure A1 shows the variable selection path for the model (8), and Figure A2 shows the
prediction intervals produced by the StoNet on some test points.

(a) 1-hidden-layer StoNet (b) 1-hidden-layer DNN
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Figure A1: Variable selection paths by the StoNet (under the single-σ2 setting) and DNN
for the model (8), where y-axis is the average output gradient 1

n

∑n
k=1

∂µ̂(x)
∂xi

|x(k) calculated
over the training data, and x-axis is − log(λ).

G Hyper-parameter Setting

For the StoNet, since the learning rates ϵk,i’s and the latent variable variances σ2
i ’s can be

largely canceled at each step of latent variable imputation, their absolute values do not mean
much to the convergence of Algorithm 2. For this reason, we often set their values to be very
small in our numerical experiments, which merely controls the size of random noise added to
the corresponding latent variables.

G.1 An Illustrative Example

One-hidden-layer StoNet: We tried three parameter settings:

(a) σ2
2 = 0.5e − 4, σ2

1 = 0.5e − 5, ϵk,1 = 0.5e − 8, ηi = 1
ϵk,i

, tHMC = 1, γk,1
|Sk| = 5e − 4,

γk,2
|Sk| = 5e− 8, |Sk| = 50;
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Figure A2: Prediction Intervals produced by (a) one-hidden-layer StoNet and (b) two-hidden-
layer StoNet at 20 test points, where the StoNets were trained under the single-σ2 setting.

(b) σ2
2 = 1e − 4, σ2

1 = 1e − 5, ϵk,1 = 1e − 8, ηi = 1
ϵk,i

,tHMC = 1, γk,1
|Sk| = 5e − 4,

γk,2
|Sk| = 5e− 8, |Sk| = 50;

(c) σ2
2 = 2e − 4, σ2

1 = 2e − 5, ϵk,1 = 2e − 8, ηi = 1
ϵk,i

,tHMC = 1, γk,1
|Sk| = 5e − 4,

γk,2
|Sk| = 5e− 8, |Sk| = 50.

Two-hidden-layer StoNet: We tried three parameter settings:

(a) σ2
3 = 0.5e − 9, σ2

2 = 0.5e − 10, σ2
1 = 0.5e − 11, ϵk,2 = 0.5e − 13, ϵk,1 = 1e − 14,

ηi = 1
ϵk,i

,tHMC = 1, γk,3
|Sk| = 5e− 6, γk,2

|Sk| = 5e− 10, γk,1
|Sk| = 5e− 14, |Sk| = 50;

(b) σ2
3 = 1e − 9, σ2

2 = 1e − 10, σ2
1 = 1e − 11, ϵk,2 = 1e − 13, ϵk,1 = 1e − 14, ηi =

1
ϵk,i

,tHMC = 1, γk,3
|Sk| = 5e− 6, γk,2

|Sk| = 5e− 10, γk,1
|Sk| = 5e− 14, |Sk| = 50;

(c) σ2
3 = 2e − 9, σ2

2 = 2e − 10, σ2
1 = 2e − 11, ϵk,2 = 1e − 13, ϵk,1 = 1e − 14, ηi =

1
ϵk,i

,tHMC = 1, γk,3
|Sk| = 5e− 6, γk,2

|Sk| = 5e− 10, γk,1
|Sk| = 5e− 14,|Sk| = 50.

For both StoNets, the major differences of the settings is at σi’s. For convenience, we call
the settings (a), (b) and (c) by half-σ2 setting, single-σ2 setting, and double-σ2 setting,
respectively.

G.2 CoverType Data

We used 80% of the data for training and other 20% data for testing. We fit the data by
a DNN of two hidden layers, with 1000 and 500 hidden units, respectively. The DNN was
trained for 2000 epochs using SGD with momentum, a constant learning rate of 0.01, a
momentum coefficient of 0.9, and a batch size of 500. Different regularization parameters
were tried with λ ranging from 1e− 6 to 5e− 3.

G.3 CIFAR10

We conduct experiments on CIFAR10 data sets. Following the setting of post-calibration
methods in Guo et al. (2017), we split the training data into a training set of 45000 images
and a hold out validation set of 5000 images for calibration. The training settings for 3
models are:

• ResNet110: Model is trained on training set with SGD with momentum for 200
epochs with batch size 128, momentum 0.9 and weight decay 0.0001. Learning rate
was set to 0.1 for first 80 epochs and divided by 10 at 80-th and 150-th epoch.
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• Densenet40: Model is trained on training set with SGD with momentum for 300
epochs with batch size 128, momentum 0.9 and weight decay 0.0001. Learning rate
was set to 0.1 for first 150 epochs and divided by 10 at 150-th and 225-th epoch.

• WideResNet-28-10: Model is trained on training set with SGD with momentum for
200 epochs with momentum 0.9 and weight decay 0.0005. Learning rate was set to
0.1 for first 60 epochs and divided by 10 at 60-th, 120-th epoch and 160-th epoch.

After training, we compute the input of the last fully connected layer of each model on the
validation set, and use them as input to a StoNet model, we refit a StoNet model with 1
hidden layer, 100 hidden units and tanh as activation function. The StoNet model is trained
with algorithm (2) with hyper-parameters given in table A1.

Hyper-Parameter Value
[σ2

1 , σ
2
2 ] [1e-2, 1e-3]

ϵk,1 1e-7
η1

1
ϵk,1

tHMC 1
[γk,1, γk,2] [ 5e−4

5000 ,
5e−6
5000 ]

|Sk| 50
Pλ(θ) 1e− 4 × ∥θ∥1

Table A1: Post-StoNet Hyper-Parameter Setting for CIFAR10 data

Hyper-Parameter Value
[σ2

1 , σ
2
2 ] [1e-4, 1e-5]

ϵk,1 1e-7
η1

1
ϵk,1

tHMC 1
[γk,1, γk,2] [ 1e−3

N , 1e−5
N ]

|Sk| 50
Pλ(θ) λ∥θ∥1

Table A2: StoNet Hyper-Parameter Setting for UCI data sets, where N is size of the
calibration data set.

G.4 Regression Examples

The Wine 1, Power Plant2, Protein3 and Year4 data sets are from UCI machine learning
repository. For all experiments, we split the data into 40% as training set, 40% as calibration
set(used to fit a StoNet model for our methods and used to compute absolute value of residue
as non-conformity score for Split Conformal) and 20% as test set. The random split was
repeated 20 times and we report the mean and standard deviation of confidence interval
length and coverage rate. For training, we use a DNN model with 2 hidden layers, 1000
and 100 hidden units respectively and tanh activation function. The model is trained using
Adam(Kingma & Ba, 2015) with batch size 50, constant learning rate 0.001. The model is
trained for 5000 epochs for Wine and Power Plant data sets, 1000 Epochs for Protein data
set, and 200 epochs for Year data set. After the model is trained, we refit a StoNet on the
calibration data set, with output of the last hidden layer of DNN as input. We use a StoNet
with one hidden layer, 20 hidden units with tanh activation function. Algorithm 2 is used
to train the model with hyper-parameters given in table A2. The penalty parameter λ is

1https://archive.ics.uci.edu/dataset/186/wine+quality
2https://archive.ics.uci.edu/dataset/294/combined+cycle+power+plant
3https://archive.ics.uci.edu/dataset/265/physicochemical+properties+of+protein+tertiary+structure
4http://archive.ics.uci.edu/dataset/203/yearpredictionmsd
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selected from {5e− 2, 2e− 2, 1e− 2, 5e− 3, 2e− 3, 1e− 3, 5e− 4} by 5 fold cross validation,
where we pick the λ such that the average coverage rate on the validation sets are closest
to the target level 90%. Specifically, we pick λ = 2e− 2 for Wine data set, λ = 5e− 3 for
Power Plant data set, λ = 2e− 3 for Protein data set, λ = 1e− 3 for Year data set.
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