STATISTICAL INFERENCE FOR DEEP LEARNING VIA
STOCHASTIC MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning has revolutionized big data analysis in modern data science,
however, how to make statistical inference for deep neural networks remains
largely unclear. To this end, we explore a stochastic variant of the deep neural
network known as the stochastic neural network (StoNet), as developed in
ILiang et al. (2022)). Firstly, we show that the StoNet falls into the framework
of statistical modeling. It not only enables us to address fundamental
issues in deep learning, such as structure interpretability and uncertainty
quantification, but also provides with us a platform for transferring the
theory and methods developed for linear models to the realm of deep learning.
Specifically, we show how the sparse learning theory with the Lasso penalty
can be adapted to deep neural networks (DNNs) from linear models; establish
that the sparse StoNet is consistent in network structure selection; and
provides a recursive method to quantify the prediction uncertainty for the
StoNet. Furthermore, we extend this result to the DNN by its asymptotic
equivalence with the StoNet, showing that consistent sparse deep learning
can be obtained by training a DNN with an appropriate Lasso penalty.
Additionally, we propose to remodel the last hidden layer output and the
target output of a well trained DNN model using a StoNet on the validation
dataset, and then assess the prediction uncertainty of the DNN model via the
StoNet. The proposed method has been compared with conformal inference

on extensive examples, and numerical results suggests its superiority.

1 INTRODUCTION

Over the past two decades, deep
learning has revolutionized modern
data science, achieving remarkable
success in many scientific fields,
such as pattern recognition, pro-
tein structure prediction, and nat-
ural language processing. How-
ever, from the perspective of sta-
tistical modeling, the deep neu-
ral network (DNN) still suffers
from a fundamental issue: over-
parameterization. Consequently,
the training data is often overfit-
ted and the downstream statistical
inference cannot be effectively con-
ducted. In particular, the structure
of the DNN is difficult to interpret,
and its prediction uncertainty is

challenging to quantify (Guo et al.|

Figure 1: Illustration of the structure of the StoNet,
where each square neuron represents a linear/logistic
regression: X represents input variable, Y7 = by +
w1 X + ey and Y3 = ba + waU(Y7) + es represent latent
variables, Y = bz + w3¥(Y3) + e3 represent output
variables, and ¥(-) represents the activation function.

2017). On the other hand, statistics, in its century-long history, has developed principles
and methods to tackle issues like overparametrization and uncertainty quantification for
traditional statistical models, especially linear models. This naturally raises a question: Can

we bridge the gap between linear models and DNNs, enabling the adaptation of theory and
methods from linear models to DNNs to effectively address these issues?

We find that this question can be satisfactorily addressed with a new type of stochastic
neural network (StoNet), which is formulated as a composition of many simple linear/logistic
regressions. The StoNet is asymptotically equivalent to the DNN in function approximation,
but its structure is more interpretable from statistical perspectives and more designable in
serving different structures of data. Figure [1| depicts the structure of a StoNet, where the
complex deep learning task is broken down into many simple, neuron-wise linear/logistic
regressions by adding random errors to the feeding values of each hidden neuron (see Section
for its mathematical formulas). The logistic regression is used only at the output layer
for classification problems. The StoNet was first proposed by the authors in [Liang et al.
(2022) and |Sun & Liang (2022b), but its property as a bridge between linear models and
deep learning is first explored in this paper. In |Liang et al.| (2022), it is shown that the fully
connected StoNet can be used as a general tool of nonlinear sufficient dimension reduction
for large-scale data. In|Sun & Liang| (2022b)), the StoNet works with a restrictive structure,
where each linear regression at the first hidden layer is replaced by a support vector regression
(SVR), and as a result, it avoids the local trap issue in training.

Our Contributions This paper conducts a full exploration of the properties of the StoNet
as a bridge between linear models and deep learning, and it provides solid solutions for
addressing the issues such as overparametrization, structural interpretability, and predicition
uncertainty quantification. More precisely,

e We show that the sparse learning theory and methods developed for linear models,
such as those utilizing Lasso (Tibshiranil [1996) and other amenable penalties (Loh
& Wainwright], 2017)), can be effectively adapted to the StoNet. The resulting sparse
StoNet fits into the framework of statistical modeling: it exhibits consistency in
structure selection even when the sizes of the input and hidden layers are much
larger than the training sample size. Furthermore, its prediction uncertainty can be
quantified through a recursive application of Eve’s law.

e By the asymptotic equivalence between the StoNet and DNN, we justify the con-
sistency of sparse deep learning with the Lasso penalty. While the approach has
long been commonly practiced in the community, see e.g. [Scardapane et al.| (2017])
and [Lemhadri et al.| (2019)), to the best of our knowledge, the consistency theory
supporting this practice has not been previously established.

e Based on certain theoretical properties of the DNN and StoNet, as well as the
feasibility of applying the sparse StoNet for uncertainty quantification, we propose a
post-StoNet procedure to quantify the prediction uncertainty of large-scale DNNs.
Numerical comparisons with the conformal method (Vovk et al., 2005; Shafer &
Vovkl 2008) indicate the superiority of the post-StoNet procedure.

Related Works Stochastic neural networks have a long history in machine learning, with
famous examples including deep belief networks (Hinton & Salakhutdinov} |2006}; [Hinton)
2007)) and deep Boltzmann machines (Salakhutdinov & Hinton, |2009). In recent years, re-
searchers have proposed various techniques to introduce noise into DNNs in order to enhance
their performance. For instance, [Srivastava et al. (2014) introduced the dropout method,
which randomly drops hidden and visible neurons during training to prevent overfitting. Nee;
lakantan et al.| (2017)) suggested adding gradient noise to improve training. Other approaches
involve using noisy activation functions to improve generalization and adversarial robustness
(Giilgehre et al., |2016; Noh et al.l [2017; [You et al.| |2018), as well as learning uncertainty
parameters of stochastic activation functions alongside neural network training (Yu et al.,
2021)). However, it is not clear if these models provide valid probabilistic approximation for
conventional DNNs. Moreover, how to provide valid uncertainty quantification based on
these models is not well studied.

From the perspective of bridging linear models and DNNs, there is a related branch of work
focusing on neural tangent kernel (Jacot et al. 2018)). Specifically, [Liu et al.| (2020) and
Liu et al| (2021) explore the transition to linearity of the DNN model and, equivalently,
constancy of the neural tangent kernel, based on the scaling properties of its Hessian matrix

as a function of the network width. However, their exploration primarily focuses on the loss
landscapes, which is quite distinct from our general goal of statistical inference.

2 STONET AND ITS APPROXIMATION TO DNN

Consider a DNN model with A hidden layers. For the sake of simplicity, we assume that the
same activation function #(-) is used for all hidden neurons. By separating the feeding and
activation operators of each hidden neuron, we can rewrite the DNN in the form:

Yi=bi+wiX, Y;=b+w¥(Yi1), i=23,...,h
Y = byt + w19 (Y5) + e,

(1)

where ej11 ~ N(O,O’%H_l.[d}&l) is Gaussian random error; Y;, b; € R% for i = 1,2,..., h;

Y, bpy1 € R+ U(Y;) = (Y (Yie1,1),¥(Yiz12), .. 7¢(E—1,d7¢_1))~T fori=2,3,...,h+1,
¥(-) is the activation function, and Y;_; ; is the jth element of Y;_1; w; € Réixdi-1 for
i=1,2,...,h+ 1, and dy = p denotes the dimension of X. For simplicity, we consider only
regression problems in (1)). By replacing the third equation of with a logit model, the

DNN can be extended to classification problems.

The StoNet, as illustrated by Figurelll is a probabilistic deep learning model and constructed
by adding auxiliary noise to ¥;’s in (1)). Mathematically, the StoNet is given by

Yi=b+wX+e, Y,=b+w¥Y(Yi_1)+e, i=23,...,h,
Y =bpi1 +wp1¥(Yn) + enga,

(2)

as a composition of many simple regressions, where Y7,Ys,...,Y; are latent variables.
For simplicity, we assume that e; ~ N(0,071,,) for i = 1,2,...,h,h + 1. However, other
distributions can also be assumed for e;’s. For instance, [Sun & Liang (2022a)) assumed a
modified double exponential distribution for e; such that support vector regression applies.
For classification problems, UfL 1 Dlays the role of temperature for the binomial or multinomial
distribution formed at the output layer, and it works with {02, ..., O'}%} together to control
the variation of the latent variables {Y7,...,Yy}. For regression problems, this is similar.

The property of the StoNet as an approximator to the DNN, has been studied in [Liang et al.
(2022). A brief review for their theory is provided as follows, which form the basis for this
work. Let @ = (wy,b1,...,Whri1,bry1) denote the collection of all weights of the StoNet
, let ® denote the space of 8, and let Yy, = (Y1, Y3,...,Y}) denote the collection of all
latent variables. Let 7(Y, Y;uis| X, 0) denote the likelihood function of the StoNet (2)), and
let mpnn (Y| X, €) denote the likelihood function of the DNN model .

Lemma 1. (Liang et al., |2022) Suppose that Assumptions hold, and m(Y , Yis| X, 0)
is continuous in 0. Then
. 1 — ; (4) i I : ; j2
1) sup|— log 7 Y(’)7Ymis X g)— = log TpNN YW | X® g ‘ =0,
0 st Yoent X0.0)- L g mon(O1x0.0) B0,

(ii) |0, —07 20, asn— oo,

where 0* = arg maxgeo E(log mpnn (Y| X, 0)) denotes the true parameters of the DNN model
as specified in , and 0, = arg maXae@{%ZL logw(Y(i),lﬁffi)s|X(i),0)} denotes the
mazximum likelithood estimator of the StoNet model with the pseudo-complete data.

Lemma [I] implies that the StoNet and DNN are asymptotically equivalent as the training
sample size n becomes large, and it forms the basis for the bridging property of the StoNet.
The asymptotic equivalence can be elaborated from two perspectives. First, suppose the
DNN model is true. Lemmaimplies that when n becomes large, the weights of the DNN
can be learned by training a StoNet of the same structure with o2’s satisfying Assumption
(v). Algorithmically, the StoNet provides an alternative way to train the DNN using latent
variable augmentation when the training sample size is large. On the other hand, suppose
the StoNet is true. Then Lemma |1| implies that for any StoNet satisfying Assumptions
E[A3, the weights 6 can be learned by training a DNN of the same structure when the

training sample size is large. As shown later, this asymptotic equivalence leads to interesting
results toward post-training inference for large-scale DNNs.

Lemma [T] also implies that, like the DNN, the StoNet possesses the universal approximation
property for representing probability distributions. Refer to |Lu & Lu| (2020) for the estab-
lishment of this property for the DNN. Theoretically, all the DNN approximation properties
can be carried over to the StoNet.

3 SPARSE STONET LEARNING

This section describes two algorithms for sparse StoNet learning. One is based on the
imputation-regularized optimization (IRO) algorithm (Liang et al. [2018), and the other
is based on an adaptive stochastic gradient MCMC(ASGMCMC) algorithm (Liang et al.,
2022). Details of the algorithms are given in section [B|in appendix. The IRO algorithm is a
stochastic EM type algorithm, which provides us with a framework to transfer the theory
and methods from linear models to deep learning, while the ASGMCMC algorithm allows us
to train the StoNet more efficiently with the use of the mini-batching.

3.1 THE IRO ALGORITHM AND CONSISTENCY OF SPARSE STONETS

Notations: In this subsection, we will rewrite the network depth h as h,, rewrite the
network widths (p,d,...,dnpt+1) as (Pn,d1m,-- - dpt1,n), rewrite the layer-wise variance
o’ = (0f,...,00,,) as o5 = (01,,---,07,1,), Where the subscript n indicates their
dependency on the training sample size. For simplicity of theoretical development, we will
assume that for a given dataset D,, = (Y, X), the true model is a StoNet model with o2

being known and satisfying Assumption (V)
By treating the latent variables Yi,is as missing data, the IRO algorithm can be applied
for training the StoNet. The IRO algorithm starts with an initial estimate of 6, denoted

by 0A£LO), and then iterates between the imputation and regularized optimization steps as
shown in Algorithm [I] The key to the IRO algorithm is to find a sparse estimator for the
working true parameter 09, as defined in equation 1' that is uniformly consistent over all
iterations. As suggested by |[Liang et al.| (2018), such a uniformly consistent sparse estimator
can typically be obtained by minimizing an appropriately penalized loss function as defined
in . For the StoNet, solving corresponds to solving a series of linear regressions
by noting that the joint distribution 7(Ymis, Y| X, 8,,02) can be decomposed in a Markov
structure:

7 (Yauis, Y| X, 00, 07) = 7(Y| Y, 00, 07)7 (Y| Y1, 00, 07) - 7 (Y1| X, 00, 070), (4)
and, furthermore, the components of Y; € R% are mutually independent conditional on Y;_;
fori=1,2,...,h + 1.

Suppose that the Lasso penalty (Tibshirani, [1996)) is imposed on 8. Theorem (1| shows that

the resulting IRO estimator 6" is consistent when both n and ¢ are sufficiently large, and
the underlying true sparse StoNet can be consistently identified.

Theorem 1. Suppose that the Lasso penalty is imposed on 0, and Assumptions[AAF hold.

(i) There exist some constants ¢c1 > 0, ca > 0 and c3 > 0 such that ||9A£f) - 05}5)”% =<
T, = 0(1) holds uniformly for all iterations, where

2 h+1 2

al,n s 1ngn Jl,n s
Tn = C1—5—d1 Py + e E T dindi_1,
K’min n 1=2 al—

log dl—l,n
1,n n

for the StoNet with a linear regression output layer,

2 2/3
n 5 3 . (logdyn)%
dypnd by ady
mY—1,n 4 MmYh,n 2(1—e)/3
1,n Uh,n n (1=e)/

IOg dl—lﬂ'L

91
4
min n o,_

of log p L

\n n

s di np;, +c2 E
=2

for the StoNet with the logistic regression output layer.

(ii) Furthermore, if Assumption holds, then Héﬁf’ —0*|| & 0 for sufficiently large n
and sufficiently large t and almost every training dataset D,,.

(iti) Additionally, if Assumption also holds and we select the connections by setting
‘)\/,(f) ={i: |é(f | > ¢\/Tn} for some constant ¢, where éz(fgl denotes the i-th component

i,m
of éﬁf), then the selected model '317(;) s a consistent estimator of the true model. That
is, P('Ay,(f) =~*)—>1asn— oo and t — co.

In summary, we have given a constructive proof for the consistency of sparse StoNets based
on the sparse learning theory developed for linear models. Our proof implies that under
Assumptions [ATAG] such a consistent estimator can also be obtained by directly maximizing
the penalized log-likelihood function of the complete data, i.e., setting

N 1« D ()| (i 1
o; = LS 10gn(v® ¥ 91XD 0,0%) + 1Py (0 } 5
; argmgX{nz;ogﬂ(YX0,0,0%) + ZP(0) . (5)

where P, (0) satisfies Assumption[A4] Furthermore, it follows from Lemmal[I]that a consistent
estimator of @ can also be obtained by directly maximizing the penalized log-likelihood
function of the DNN model, i.e., setting

o _ RN ()] % () 1
ObNN,n = arg max { -~ Z logm(Y'"| X', 0) + EP)\(B)}, (6)
i=1

for the same penalty function Py(0) as used in . In summary, we have the corollary:

Corollary 1. If Assumptions [A6| hold and the Lasso penalty Py(0) is employed, then
the estimator @ is consistent in both parameter estimation and structure selection, i.e.,

Héj;NN’n — 0% % 0 and P(Apnn.a =) — 1 as n — 0o, where ApnN . is selected with the
same threshold as given in part (iii) of Theorem [l

We note that training sparse DNNs with the Lasso penalty has long been commonly
practiced in the community, see e.g. |Scardapane et al.| (2017) and [Lemhadri et al. (2019).
However, to the best of our knowledge, the consistency theory supporting this has not
been previously established. Speifically, Corollary [I] establishes consistency for both DNN
parameter estimation and structure selection. Although our results were stated for model [I]
and |2|for simplicity, it can be extended to other neural network structure such as convolutional
neural network, where pre-activation hidden neurons are obtained by linear operations of
the output of previous layers.

Remark 1. Since the true value of J%_Hm 1s generally unknown for the model (@), setting

0'}2L+1’n to a smaller value corresponds to overfitting the model in imputation. This mimics a

small-n-large-p linear/logistic regression problem, for which the fitting error of the full model
can be very close to 0 while the true model can still be correctly identified with an appropriate
amenable penalty (Loh & Wainwright, |2017). In our numerical experiments, see Sections 5-7,
we often set 0,2L+17n and thus O’fJL s (forl=1,2,..., hy,) very small values and then perform
variable selection for associated regressions with the Lasso penalty.

3.2 ADAPTIVE STOCHASTIC GRADIENT MCMC FOR EFFICIENT STONET LEARNING

The IRO algorithm is developed under the full data setting and thus less scalable with
respect to big data. To address this issue, we can train the sparse StoNet using an adaptive
stochastic gradient MCMC algorithm (Liang et all, [2022), which is designed to find the

maximum a posteriori (MAP) estimator 8 = arg maxe{r(Y|X,0,02)P5(0)} by solving
the equation:

/Vg[logw(Y, Yais| X, 0, 0'2) + log P,\(B)]F(YmiS|Y,X,9,0'2)deiS =0,

where Py (0) denotes a penalty function satisfying Assumption This algorithm is scalable
for big data by making use of mini-batch samples at each iteration. Since the algorithm is

a slight modification of the algorithm in |Liang et al.| (2022), we leave it to the Appendix
to ensure the paper is self-contained. As shown in Lemma this algorithm also yield a
consistent estimate of 8. Consequently, under Assumption [A6] the structure of the sparse
StoNet can also be consistently identified.

4 PREDICTION UNCERTAINTY QUANTIFICATION FOR SPARSE STONET

The hierarchical structure of the StoNet enables us to quantify the uncertainty of the latent
variable at each layer using Eve’s law in a recursive way. Assume that the StoNet is trained
by the IRO algorithm. Let z denote a test point at which the prediction uncertainty is to be

quantified, let ZZ.(t) denote the latent variable at layer i, corresponding to the input vector

z, imputed based on the estimate of 6 at iteration ¢ of the algorithm. Let pgt) and Egt)

denote, respectively, the mean and covariance matrix of ZZ-(t). By Eve’s law, for any layer

i€{2,3,...,h+1}, we have B = E(Var(Z"|Z2"))) + Var(E(Z2"|Z2"))). As detailed in
Section [E} the final formula (A12)) can be derived. This leads to the following procedure for
prediction interval construction.

Let u(z,0) denote the prediction of a StoNet with weights 6 at point z. Note that the
StoNet has the same prediction function as the DNN , i.e., the random noise added to
the latent variables is set to 0 in forward prediction. Suppose that a set of StoNet estimates,
S={6W, 6 . .. 0™} has been collected after convergence of the IRO algorithm. Given

f]z(-t)’s, by the Wald method, the 95% prediction interval of p;(z,8*), the j-th component of
u(z,0%), can be constructed in the following procedure:

(i) For each StoNet estimate () € S, calculate the variance of the training error by

5;3917]» = %Zz(i)l(uj(m(k), 6™ — yj(‘k))27 where (x(®), y(*)) denotes the k-th training

sample, and y;

; is the j-th component of y®),

(ii) For each StoNet estimate 8) € S, construct the prediction interval

(1s(2,00) = 196\, + G0 s (2,00) + 196\ /S, + 60), (@)

where ig}rl} ; denotes the (7, j)-th diagonal element of ilgfll.

(iii) Output the final 95% prediction interval of p;(z,0*) by averaging m intervals
obtained in step (ii).

The above procedure can be easily extended to the StoNet with a logistic regression output
layer via the Wald/endpoint transformation. By Lemma the above procedure can also
be applied to the StoNet trained by the adaptive stochastic gradient MCMC algorithm.

5 AN ILLUSTRATIVE EXAMPLE

This example serves as a validation of our theoretical results. Consider two models:

Y= 2¢(2x1 — .232) =+ 21/)(1‘3 — 233‘4) — ¢(2$5) + 0xg + - -+ 4+ 0xog + €, (8)
y = (20(231 — 22)) + 20(2¢ (23 — 224) — P(225)) + 076 + -+ - + Oz + €, (9)

where 9(-) = tanh(-), e ~ N(0,1), ¢ = (z1,22,...,22), ; ~ N(0,1) for i = 1,2,...,20,
and z;’s are correlated with a mutual correlation coefficient of 0.5. Equations and @
represent neural networks with one and two hidden layers, respectively. For both models, the
variables x1, xo, ..., x5 are true and the others are false. The strong mutual correlation makes
the true variables hard to identify. From each model, we simulated 1000 samples, 500 samples
for training and 500 samples for test. We use this example to examine the performance of
the StoNet in nonlinear variable selection and prediction uncertainty quantification, and
to examine the effect of o2 = (0%,...,07) on the performance of the StoNet as well. To
make the tests more convincing, we particularly generated the data from true DNN models.

We modeled the data from model by a StoNet with structure 20-500-1, and that from
model @ by a StoNet with structure 20-500-100-1. We trained the StoNets by Algorithm
[2) with different parameter settings as given in the appendix. The major differences of the
settings are at the values of 0;’s and, for convenience, we call the settings by half-02, single-o2
and double-02, respectively. Under each setting, Algorithm [2| was run for 2000 epochs with
the Lasso penalty Py(0) = A||0]|1. Various values of A\ have been tried as described below.

To examine the effect of A\, we mimic the regularization path for LASSO and measure the

importance of each variable by the average output gradient %Zzzl agﬂ(;c) |0 calculated

over training samples, where fi(x) denotes the forward prediction function of the StoNet and
x(*) denotes the kth-observation of the training set. Using the partial derivative to evaluate
the dependence of a function on a particular variable has been proposed by [RosascoLorenzo
(2013)), and employed in [Zheng et al| (2020) for sparse graphical modeling. Figure [2
a) shows the regularization path of the StoNet for the model @D The path for the model
(8) is shown in Figure a). Further, we examined the paths of each variable and found
that for both models (8)) and @D, the true variables z1,xs,...,z5 can be correctly identified
by the StoNet with appropriate values of \.

(a) 2-hidden-layer StoNet (b) 2-hidden-layer DNN

Average Gradient of Qutput for Each Variable on Training Set.
5
i

Py
—log()

Figure 2: Variable selection paths by the StoNet (under the single-o? setting) and DNN for

the model @), where y-axis is the average output gradient % Sohy agig(;) | o) calculated over
the training data, and z-axis is — log(\). The 5 lines with £ >0 | 65—55”93(@ away from 0
corresponds to the 5 true variables

Corollary [I] shows that consistent sparse deep learning can also be achieved by training the
DNN with a Lasso penalty. To illustrate this result, we considered two DNNs with the
same structures as the StoNets used above, imposed the Lasso penalty on their weights, and
trained them using SGD with momentum. We trained each DNN for 2000 epochs with a
constant learning rate of 0.001, a momentum parameter of 0.9 and a mini-batch size of 50.
Figure [2[b) show the variable selection path of the DNN for the model @D The path for the
model (8) can be found in Figure As expected, the true variables can also be identified
by the sparse DNN trained with the Lasso penalty.

Table 1: Coverage rates of 95% prediction intervals produced by the StoNet for 500 test
samples simulated from the models and @D, where the number in the parentheses
represents the standard deviation of the coverage rate.

Model half-¢2 single-o2 double-¢2
Model 94.766% (2.157%) 94.496% (2.162%) 94.310% (2.197%)
Model @[) 94.642% (2.189%) 94.396% (2.256%) 94.300% (2.290%)

Next, we examined the performance of the StoNet in prediction uncertainty quantification.
We generated 100 training datasets, each consisting of 500 samples, from each of the models
(18) and @D For each training dataset, a StoNet was trained as described above, and a
prediction interval was constructed for each sample point of the test dataset with the StoNet
estimate obtained at the last iteration of the run. Table [I| summarizes the coverage rates of
the predictive intervals by averaging the coverage status of 500 x 100 prediction intervals,
where ‘500’ refers to the total number of test points and ‘100’ refers to the total number of
training datasets. As expected, the StoNet produces better coverage rates with smaller values

of o2, since the true models are DNN models. Figure shows the prediction intervals
produced by the StoNet at some test points.

6 STATISTICAL INFERENCE FOR DEEP LEARNING

This section discusses two applications of StoNet in statistical inference for deep learning
models. One is for identifying important features for the response or ranking their importance.
The other is for quantifying prediction uncertainty through a post-StoNet modeling procedure.

6.1 IDENTIFICATION OF IMPORTANT INPUT FEATURES

As a further illustration for this type of applications, we consider a big dataset, CoverType,
available at UCI repository. It consists of n = 581,012 samples and p = 54 features, collected
for classification of forest cover types from cartographic variables. We used 80% of the data
for training and the other 20% for testing. We fit the data by a DNN of two hidden layers,
with 1000 and 500 hidden units, respectively. Refer to Section [G] for detailed settings of
training parameters. Figure [3| indicates important input features can be identified for the
DNN along the path of parameter regularization as in applications of Lasso for linear models.

CoverType Acuracy vs LASSO parameter CoverType Feature Gradient vs LASSO parameter

Test Accuracy
Feature Gradient

—1a —12 —8 —6 —1a -12

“To —1o
log(A) log(A)

Figure 3: Test accuracy (left) and feature gradient (right) versus regularization parameters
for the CoverType data.

6.2 PoOST-STONET MODELING FOR UNCERTAINTY QUANTIFICATION

In real applications, use of large-scale deep neural networks, such as residual networks
(He et al., 2016)) and transformer (Dosovitskiy et al.| |2020), has been a common practice.
However, these large-scale models can be miscalibrated (Guo et all 2017). To address this
issue, we propose a post-StoNet modeling procedure, without significantly changing the
current practice of large-scale models. The proposed procedure is as follows:

(i) Transform the explanatory variables by calculating the output of the last-hidden-layer
of a well-trained DNN.

(ii) Learn a simple sparse StoNet(e.g. with one hidden layer only) using the transformed
data and their response on the validation data.

The uncertainty quantification follows the procedure given in Section 4, except that the
z variable is given by the transformed data. We provide an intuitive justification for this
procedure: as shown in [Liang et al. (2022)), the last-hidden-layer’s output of the StoNet
serves as a nonlinear sufficient dimension reduction (SDR) of the input data. Building upon
the asymptotic equivalence between the StoNet and DNN (Lemma , the transformed
data from a well-trained DNN approximates a sufficient dimension reduction of the input
data. The DNN model typically gives simple linear relationship between transformed data
and response, but the linear relationship may not hold anymore on the validation set due
to the possible over-fitting issue. Therefore, we remodel it using a simple sparse StoNet,
which enables the prediction uncertainty to be correctly quantified. In what follows, we use
numerical experiments to show that the proposed procedure improves model calibration and
provide shorter confidence intervals compared to the conformal method.

Classification Problems We conduct experiments on CIFAR10 data. Following the
setting of post-calibration methods in |Guo et al.| (2017)), we split the training data into a
training set of 45000 images and a hold out validation set of 5000 images. We modeled the
data using DenseNet40(Huang et al., |2017)), ResNet110(He et al., [2016) and WideResNet-28-
10(Zagoruyko & Komodakis, [2016). Refer to Section |G| for detailed settings of the training

parameters. For comparison, we also applied temperature scaling and matrix scaling (Guo
et al.l [2017)) to the same trained models. We repeated the experiment 10 times and report
the mean and standard deviation of accuracy (ACC), negative log-likelihood loss (NLL)
and expected calibration error (ECE) in Table [2l The result shows that the post-StoNet
modeling method significantly improves model calibration, especially in terms of ECE.

Table 2: Calibration results for CIFAR10 data, where standard deviations of the respective

measures are given in parentheses.

Network Size Method ACC NLL ECE
No Post Calibration 92.88%(0.19%) 0.3076(0.0094) 0.0434(0.0019)
Matrix Scaling ~ 92.73%(0.20%) 0.2226(0.0052) 0.0132(0.0026)
DenseNetd0 176K o). Sealing 92.88%(0.19%) 0.2194(0.0055) 0.0117(0.0016)
Post-StoNet 92.79%(0.17%) 0.2175(0.0034) 0.0047(0.0010)
No Post Calibration 93.23%(0.37%) 0.3113(0.0220) 0.0444(0.0030)
‘ . Matrix Scaling 92.96%(0.32%) 0.2127(0.0097) 0.0145(0.0023)
ResNet110— L7M 0 Scaling 93.23%(0.37%) 0.2077(0.0092) 0.0122(0.0016)
Post-StoNet 93.22%(0.31%) 0.2045(0.0086) 0.0070(0.0014)
No Post Calibration 95.76%(0.13%) 0.1710(0.0077) 0.0258(0.0014)
WideResNet- oo Matrix Sealing ~ 95.71%(0.14%) 0.1475(0.0042) 0.0104(0.0014)
2810 Temp. Scaling 95.76%(0.13%) 0.1489(0.0055) 0.0120(0.0017)

Post-StoNet

95.63%(0.08%)

0.1448(0.0031)

0.0089(0.0007)

Regression Problems We used 4 datasets from UCI repository ranging in size from
thousands to hundreds of thousands. For each dataset, we first train a DNN model on
training set then applied the post-StoNet procedure to generate 90% prediction intervals(see
appendix |G__4| for details). For comparison, we applied the split conformal method (Vovk
et al.l 2005)) to the same trained DNNs. The results in Table [3| demonstrate a significant
improvement in terms of the lengths of the prediction confidence intervals This improvement is
largely attributed to the well-trained DNNs, which transform the potentially highly nonlinear
mapping (from inputs to response) into a relatively simple mapping (from last-hidden-layer
outputs to response). The sparsity of the post-StoNet mitigates potential overfitting issues
suffered by the DNNs, thus enhancing prediction performance. However, adapting with
overfitting has been beyond the ability of the conformal method.

Table 3: Average coverage rate and confidence interval length of test sets of 20 random split
of data. The standard deviations are given in the parentheses.

Dataset N P Model Coverage Rate Interval length
. Post-StoNet 0.9042(0.0126) _ 2.0553(0.0719)
Wine 1,599 11 gt Conformal — 0.8958(0.0302) 2.4534(0.1409)
Power o.ce , PostStoNet 09109(0.0070) 13.4726(0.2420)
Plant) Split Conformal ~ 0.8999(0.0082) 14.5719(0.2676)
) Post-StoNet 0.8941(0.0028) _ 13.1319(0.0494)
Protein 45,730 9 g)it Conformal ~ 0.9004(0.0022) 14.4296(0.0836)
Post-StoNet 0.0064(0.0013) 29.4272(0.0923)

Year 515,345 90 g 1it Conformal 0.9001(0.0010) 32.1068(0.3726)

7 CONCLUSION

We have demonstrated that the StoNet effectively bridges the gap between linear models
and deep learning, allowing us to adapt theories and methods developed for linear models
to deep learning models. Specifically, we have adapted sparse learning theory from linear
models to DNNs, enabling the identification of important input features in DNN training
with the Lasso penalty. We have also employed the StoNet to quantify uncertainty in DNN
predictions. Our numerical results suggest that the StoNet significantly improves prediction
uncertainty quantification for deep learning models compared to the conformal method and
other post processing calibration methods.

REFERENCES

Christophe Andrieu, Eric Moulines, and Pierre Priouret. Stability of stochastic approximation
under verifiable conditions. SIAM Journal on Control and Optimization, 44(1):283-312,
2005.

Albert Benveniste, Michael Métivier, and Pierre Priouret. Adaptive Algorithms and Stochastic
Approzimations. Berlin: Springer, 1990.

Tiangi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo.
In International conference on machine learning, pp. 1683-1691, 2014.

Wei Deng, Xiao Zhang, Faming Liang, and Guang Lin. An adaptive empirical bayesian
method for sparse deep learning. Advances in neural information processing systems, 2019:

9563-5573, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Xuefeng Gao, Mert Giirbiizbalaban, and Lingjiong Zhu. Global convergence of stochastic
gradient hamiltonian monte carlo for nonconvex stochastic optimization: Nonasymptotic
performance bounds and momentum-based acceleration. Operations Research, 2021.

C. Giilgehre, M. Moczulski, M. Denil, and Y. Bengio. Noisy activation functions. In ICML,
2016.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern
neural networks. In Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17, pp. 1321-1330. JMLR.org, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778, 2016.

G.E. Hinton. Learning multiple layers of representation. Trends in Cognitive Sciences, 11
(10):428-434, 2007.

Geoffrey E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313:504 — 507, 2006.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vistion and pattern recognition, pp. 4700-4708, 2017.

Jian Huang, Shuange Ma, and Cun-Hui Zhang. The iterated lasso for high-dimensional
logistic regression. The University of lowa, Department of Statistics and Actuarial Sciences,
2008.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence
and generalization in neural networks (invited paper). Advances in Neural Information
Processing Systems, pp. 8571-8580, 2018.

D.P. Kingma and J.L. Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Ismael Lemhadri, Feng Ruan, Louis Abraham, and Robert Tibshirani. Lassonet: A neural
network with feature sparsity. arXiv:, pp. 1907.12207, 2019. doi: 10.48550/ARXIV.1907.
12207.

Faming Liang, Bochao Jia, Jingnan Xue, Qizhai Li, and Ye Luo. An imputation—regularized
optimization algorithm for high dimensional missing data problems and beyond. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 80:899-926, 2018.

10

Siqi Liang, Yan Sun, and Faming Liang. Nonlinear sufficient dimension reduction with a
stochastic neural network. NeurIPS, 2022.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. On the linearity of large non-linear models:
when and why the tangent kernel is constant. ArXiv, abs/2010.01092, 2020.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. ArXiv, abs/2003.00307v2, 2021.

Hanzhong Liu and Bin Yu. Asymptotic properties of Lasso+mLS and Lasso+Ridge in sparse
high-dimensional linear regression. FElectronic Journal of Statistics, 7:3124 — 3169, 2013.

PL Loh and MJ Wainwright. Support recovery without incoherence: A case for nonconvex
regularization. The Annals of Statistics, 45(6):2455-2482, 2017.

Yulong Lu and Jianfeng Lu. A universal approximation theorem of deep neural networks for
expressing probability distributions. NeurIPS, 2020.

Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse representations for high-
dimensional data. Annals of Statistics, 37:246-270, 2009.

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach,
and James Martens. Adding gradient noise improves learning for very deep networks.
ArXiv, abs/1511.06807, 2017.

Christopher Nemeth and Paul Fearnhead. Stochastic gradient markov chain monte carlo.
Journal of the American Statistical Association, 116:433 — 450, 2019.

S.F. Nielsen. The stochastic em algorithm: Estimation and asymptotic results. Bernoulli, 6:
457-489, 2000.

Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han. Regularizing deep neural
networks by noise: Its interpretation and optimization. ArXiv, abs/1710.05179, 2017.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via
stochastic gradient langevin dynamics: a nonasymptotic analysis. In Conference on
Learning Theory, pp. 1674-1703. PMLR, 2017.

Rosascolorenzo, VillaSilvia, MosciSofia, SantoroMatteo, and VerriAlessandro. Nonparametric
sparsity and regularization. Journal of Machine Learning Research, 14:1665-1714, 2013.

R. Salakhutdinov and G. Hinton. Deep boltzmann machines. In Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 448-455, 2009.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse
regularization for deep neural networks. Neurocomputing, 241:81-89, 2017.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Ma-
chine Learning Research, 9:371-421, 2008. URL https://api.semanticscholar.org/
CorpusID:795794.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929-1958, 2014.

Yan Sun and Faming Liang. A kernel-expanded stochastic neural network. Journal of the
Royal Statistical Society, Series B, pp. subject to a minor revision, 2022a.

Yan Sun and Faming Liang. A kernel-expanded stochastic neural network. Journal of the
Royal Statistical Society Series B, 84(2):547-578, 2022b.

Yan Sun, Wenjun Xiong, and Faming Liang. Sparse deep learning: A new framework immune
to local traps and miscalibration. NeurIPS, 2021.

11

https://api.semanticscholar.org/CorpusID:795794
https://api.semanticscholar.org/CorpusID:795794

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267-288, 1996.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic Learning in a
Random World. Springer, 2005.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In ICML, pp. 681-688, 2011.

TehYee Whye, H ThieryAlexandre, and J VollmerSebastian. Consistency and fluctuations
for stochastic gradient langevin dynamics. Journal of Machine Learning Research, 2016.

Zhonghui You, Jinmian Ye, Kunming Li, and Ping Wang. Adversarial noise layer: Regularize
neural network by adding noise. In 2019 IEEFE International Conference on Image
Processing (ICIP), pp. 909-913, 2018.

Tianyuan Yu, Yongxin Yang, Da Li, Timothy M. Hospedales, and T. Xiang. Simple and
effective stochastic neural networks. In AAAI 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Peng Zhao and Bin Yu. On model selection consistency of lasso. The Journal of Machine
Learning Research, 7:2541-2563, 2006.

Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. Learning
sparse nonparametric dags. In Proceedings of the 23rd International Conference on
Artificial Intelligence and Statistics (AISTATS), 2020.

12

Appendix

A ASSUMPTIONS FOR LEMMA [I]

The property of the StoNet as an approximator to the DNN, i.e., asymptotically they have
the same loss function as the training sample size n — oo, has been studied in [Liang et al.
(2022). A brief review for their theory is provided as follows, which form the basis for this
work.

Let 8 = (w1,by,...,wpyt1,brt1) denote the collection of all weights of the StoNet ,
let ® denote the space of 6, let Yiis = (Y1,Y2,...,Ys) denote the collection of all la-
tent variables, let (Y, Yimis| X, @) denote the likelihood function of the StoNet, and let
monn (Y| X, 0) denote the likelihood function of the DNN model (). Regarding the network
structure, activation function and the variance of the latent variables, they made the following
assumption:

Assumption Al. (i) © is compact, i.e., ©® is contained in a dg-ball centered at 0 with
radius r; (i) E(log (Y, Yis| X, 0))? < oo for any 6 € ©; (iii) the activation function
¥ (+) is ¢'-Lipschitz continuous for some constant ¢; (iv) the network’s depth h and widths
d;’s are both allowed to increase with n; (v) o1 < 09 < -+ < opa1, opy1 = O(1), and

dh+1(H?:k+1 d?)dka,% =< % for any k € {1,2,...,h}.

Assumption (iii) allows the StoNet to work with a wide range of Lipschitz continuous
activation functions such as tanh, sigmoid and ReL U. Assumption (v) constrains the size

of noise added to each hidden neuron, where the factor dpn4+1 (HZL: Kt 1 d?)d), can be understood
as the amplification factor of the noise e; at the output layer. In general, the noise added to
the first few hidden layers should be small to prevent large random errors propagated to the

output layer. Under Assumption they proved part (i) of Lemma

Further, regarding the equivalence between training the StoNet and the DNN, they
made the following assumption regarding the energy surface of the DNN. Let Q*(8) =
E(log /pnn (Y| X, 0)), where the expectation is taken with respect to the joint distribution
m(X,Y). By Assumption [AT}(i)&(ii) and the law of large numbers,

1 N .
~> logmonn (Y 1X1,0) - Q*(6) % 0 (A1)
i=1
holds uniformly over ©. They assumed Q*(0) satisfies the following regularity conditions:

Assumption A2. (7)Q*(0) is continuous in 0 and uniquely mazimized at 0*; (ii) for any
€ > 0, supgco\p()Q*(0) exists, where B(e) = {0 : ||0 — 0| < €}, and § = Q*(0*) —
SupOG@\B(e)Q*(e) 0.

Assumption restricts the shape of @*(6) around the global maximizer, which cannot be
discontinuous or too flat. Given nonidentifiability of the neural network model, Assumption
[A2) has implicitly assumed that each € is unique up to the loss-invariant transformations,
e.g., reordering the hidden neurons of the same hidden layer and simultaneously changing

the signs of some weights and biases. Under Assumptions and they proved part (ii)
of Lemma [l

B THE IRO ALGORITHM FOR TRAINING STONET

Algorithm (1| gives the IRO algorithm(Liang et al.| |2018) for training StoNet.

C PROOFS OF THEOREM [1I

In order to establish the consistency of the sparse StoNet, we need the following assumptions.
Following Meinshausen & Yu|(2009), we define the m-sparse minimal and maximal eigenvalues

13

Algorithm 1 TRO Algorithm for StoNet; [Liang et al.| (2018])

Input: Dataset (X,Y), total iteration number T', and Monte Carlo step number ¢ps¢.

Initialization: Randomly initialize the network parameters 8(©) = (0A§O)7 RN HA,(IOL)

fort=1to T do ‘ ‘ , _ _
e Imputation step: For each sample (X, Y ®), draw Yrr(fi’st) from (Y| Y9, X O

(955*1), 02) with a Metropolis or Langevin dynamics kernel by iterating for ;o steps.

e Regularized optimization step: Based on the pseudo-complete data (Y, y X),

mis?

update éﬁf‘” by minimizing a penalized loss function, i.e., setting

At . 1 i) 360 | 3G 2
62):argmein{fﬁZIOgﬁ(Y(),Ymis X(),G,O'n)+P,\n(9)}, (A2)
i=1

where the penalty function Py, (0) is chosen such that OAS) forms a consistent estimator
of

o) = arg mgxIEe(t,l) log (Y, Ymis| X, 6, ai)
:argmgx/iogw(Ymis,Y|X,9,ai)w(YmiS\Y,X,9£f—1>,ai)7r(Y|X,e*,ai)deiSdY,
(A3)

where Oi(f) is called the working true parameter at iteration ¢.
end for -
Output: 9,(7,).

for a matrix ¥ as follows:

. — i BTZIB

Pmin(m|X) = BilBlosm BTB
T

(IS B YB3

= max ————,

illBllo<m BB
which represent, respectively, the minimal and maximal eigenvalues of any m x m-dimensional
principal submatrix. Let 3, € RP»*P» denote the covariance matrix of the input variables.
Let ql(tlz , denotes the size of the working true regression formed for neuron £ of layer [at

iteration ¢, as implied by the working true parameter Bf).

Assumption A3. (i) The input variable X is bounded, and there exist a constants 0 <
Kmin < 00 such that iminf, o Gmin(min{n, p, }1X,) > kmin; (i) there exists a sparse

exponent s € [0, 1] such that ql(tlzn <dj_y, for1 <k <d;, 1<1<hy,+1 and any iteration t,

, .. 2 hndi npl |
and set (07 ,,,05 5,05 11 .,) such that the following conditions hold: Z%—n - Ll O8Pn
o} hydy ndf log di— o .
and —t - L BALn for any 1 € {2,3, ..., hn + 1}; (iii) the activation function

l,n

W(.) is bounded.

Assumption [A3}(i) is regular, which has often been used in the literature of high-dimensional
variable selection, see e.g., [Huang et al.| (2008). Assumption (ii) works with Assumption
(v) to constrain the range of 0y ,,’s. We note that such a uniform sparse exponent s always
exists, which can be equal to 1 in the worst scenario. Assumption (iii) is more or less a
technical condition. Since O’Zn’S are usually set to very small values, it is easy to restrict
the random errors e;’s to a compact space with high probability. Therefore, an unbounded
activation function such as ReL U can still be used in the StoNet, but the following theoretical
results need to be slightly modified to hold with high probability.

Regarding the setting of regularization parameters, we have the following assumption which
directly follows from the theory developed by Meinshausen & Yul (2009) for linear regression
and [Huang et al.| (2008) for logistic regression.

14

Assumption A4. The Lasso penalty is used for the StoNet. At each iteration t, (i) set the
) 1/2

I for each linear regression layer I; and

regularization parameter X;, < op,(nlogd;_1.4)

1) set the regularization parameter MO = (p2+e logdj_1.,)"/? for some e € (0,1) for each
l,n s
logistic regression layer.

In order to prove Theorem [} we first introduce the following lemma

Lemma Al. For any L € {1,2,...,h}, let Z(Lt) denote the sample covariance matrix of
the covariates of the linear regressions formed for each neuron of layer L 4+ 1 at iteration
t. If Assumption and Assumption [A3 hold, then there exist constants ¢ > 0 and
0 < Kmax,, < 00 such that for any iteration t,

¢min(min{nadL,n}|2g)) 2 CO’%’n, ¢max(min{na dL,n}|2(Lt)) S K/max,[u

Proof. For simplicity of notations, we suppress the iteration index t. Let Y, = by, +
wrU(Yr_y)for L=2,... h, and~ let Y7 = by +w; X . By the definition of the StoNet model
, Y, can be written as Y, =Y, +er, for L € {1,2,...,h}.

Since 02 has been set to a very small value, we have ¥(Y7) ~ U(YL) + V};L\I!(YL) oerp,
where o denotes elementwise product. Then

S~ Var(E(W(Yy) + Vy, U(YL) o ep|YL)) + E(Var(¥(YL) + Vy, U(YL) 0 eL|Y1))

3 : N (A4)
= Var(¥(Yy)) + diag {7 E[Vy, ¥(YL) o Vg U(Y1)]},

where diag{v} with v € R? denotes a d x d diagonal matrix with diagonal elements being v.

By Assumption (iii), the activation function is bounded. For example, tanh or sigmoid is
used in the model. By Assumption there exists some constant Cy such that ||br || <
C1,|lwrllee < Ci. By Assumption | X |l is bounded. Therefore, there exists some
constant Co such that for any L € {1,2,...,h}, [|[YL|lco < C1 + C1C5 holds by rescaling
X by a factor of Hle d;. Since both ¥(Y7) and VY,L\II(YL) are bounded, there exists a
constant Kmax,r, such that
¢Inax(dL,n‘EL) S Rmax, L-

To establish the lower bound, we note that HYLHOO < C1 4 C1Cy. Therefore, for an activation
function which has nonzero gradients on any closed interval, e.g., tanh and sigmoid, there
exists a constant C3 > 0 such that min;,—; 4, V?L\IJ(YL),L' > (3, where V?L\IJ(YL)i denotes

the i-th element of V;,L\IJ(?L). Then we can take fmin , = 02 C3 such that

(rbmin (dL,n

23L) Z Rmin, L,

which completes the proof.

Proof of Part (i) of Theorem

Proof. By Lemma E}t) satisfies the requirements of Theorem 1 of Meinshausen & Yu
(2009) and Theorem 1 of [Huang et al.| (2008). Then, by Theorem 1 of [Meinshausen & Yu
(2009) (for linear regression) and Theorem 1 of Huang et al. (2008) (for logistic regression),
we have r,, as given in the lemma by summarizing the ls-errors of coefficient estimation for

all Zlh;l dy regression/logistic regressions. Further, by the setting of (o7 ,,,. .. vUiQL+1,n) as
specified in Assumption we have r,, — 0 as n — oo. This completes the proof of part (i)
of Theorem [1 O

Further, let’s consider the mapping M(@) as defined in (A3), ie., M(0) =
arg maxg: Eg log (Y, Yinis| X, 0',02). As argued in Liang et al| (2018) and [Nielsen| (2000)),
it is reasonable to assume that the mapping is a contraction, as a recursive application of the
mapping, i.e., setting gty — g+l — M(G,(Lt)), leads to a monotone increase of the target

expectations Eyw log m(Y", Yinis| X, 0,(Lt+1), o) fort=1,2,....

15

Assumption A5. The mapping M(0) is differentiable. Let X\, (0) be the largest singular
value of OM(0)/00. There exists a number * < 1 such that \,(0) < X* for all 8 € ©,, for

sufficiently large n and almost every D,, observation sequence.
Proof of Part (ii) of Theorem

Proof. Then part (ii) of Theorem (1| directly follows from Theorem 4 of Liang et al.| (2018)
that the estimator 8 is consistent when both n and ¢ are sufficiently large. O

To establish the structure selection consistency in Part (iii) of Theorem [l we need the
following #-min condition:

Assumption A6. (0-min condition) minge~- |05 = \/Tn, where v* = {k : 0} # 0} is the
set of indexes of non-zero elements of 0™ and 0}, denotes the k-th component of 6*.

Assumption [A6]is essentially an identifiability condition, which ensures the non-zero elements
of 8* can be distinguished from 0. This is a typical assumption for high-dimensional variable
selection, see e.g., Zhao & Yu| (2006). Under Assumption the proof of Part (iii) of
Theorem [} is given as follows:

Proof of Part (iii) of Theorem

Proof. Let OAS) denote the estimate of 8,, at iteration ¢, and let 09 denote its “true” value
at iteration ¢, and let 8* denote its true value in the StoNet. By the proof of Theorem 4 of
Liang et al.| (2018)) and Theorem 1 of [Meinshausen & Yul (2009), for the StoNet with the
linear regression output layer, we have

~ 1 A :
B0 — 67| < - Ell6Y) — 61| < % as t — oo, (A5)

by summarizing all dy + dg + - - - + dp41 linear regressions, where A* is a constant as defined
in Assumption For the StoNet with the logistic regression output layer, we have the
same result by Theorem 1 of Huang et al.| (2008). Further, by Markov inequality, there exists
a constant ¢ such that

P (HOAS) -0 > c\/ﬁ) — 0, asn— ooandt— oo.
Then, by Assumption [A6]
o For any i € v*, ||9A7(f) — 0*| < ¢\/r;, implies |9AZ(?L| > ¢\/Tn.
o For any i ¢ ~*, ||é,(f) — 0| < ¢\/r;, implies |éz(t7)l| SV
Therefore,

P(H =~%) > P((||0Y — 0*|| < ¢\/rn) = 1, asn — oo and t — oo, (A6)
which concludes the proof. O

D ADAPTIVE STOCHASTIC GRADIENT MCMC FOR EFFICIENT STONET
LEARNING

D.1 ADAPTIVE STOCHASTIC GRADIENT HAMILTON MONTE CARLO

The IRO algorithm is developed under the full data setting and thus less scalable with
respect to big data. To address this issue, we suggest to train the sparse StoNet using an
adaptive stochastic gradient MCMC(ASGMCMC) algorithm by Liang et al. (2022), which is
scalable with respect to big data by making use of mini-batch samples at each iteration. To
make the paper self-contained, we gives a review of ASGMCMC algorithm below.

16

Let 7(Y|X,0,0%) = [7(Y, Yimis| X, 0,0%)dYmis denote the likelihood function of the ob-
served data for the StoNet. By Fisher’s identity, we have

Vologn(Y|X,0,0%) = /vg log (Y, Yinis| X, 0, 627 (Yanis| Y, X, 0, 0%)d Y-
Therefore, the sparse StoNet can also be trained by solving the equation
/Vg[logw(Y,Ymis|X,0,0'2) + log Px(0)]7(Yimis|Y, X, 0, 06°)dYmic = 0, (A7)

where Py (0) denotes a penalty function satisfying Assumption By Theorem 1 of [Liang
et al.| (2018]), solving for (A7) will lead to the same solution as solving the optimization
problem specified in .

By Deng et al.| (2019), the equation (A7) can be solved using an adaptive SGMCMC
algorithm, which works by iterating between the following two steps:

(a) (Sampling) Generate Yn(f:l) from a transition kernel induced by a stochastic gradient
MCMC algorithm, e.g., stochastic gradient Hamilton Monte Carlo (SGHMC) (Chen
et al., 2014)).

(b) (Parameter updating) Set @F+1) = (k) 1 'yk+1g(Y(k+1), Ug+1), where 511 denotes

mis
the step size used in the stochastic approximation procedure.

The pseudo-code of the adaptive SGHMC algorithm is given by Algorithm [2 where
we let 8; = (w;,b;) denote the parameters associated with the i-th layer for i =

1,2,...,h + 1, let (%(S’k)7Yh(j_’f)) = (X©®),Y () denote a training sample s, and let
(Yl(s’k), .. .,Yh(s’k)) denote the latent variables imputed for the training sam-

mis

ple s at iteration k. Occasionally, we use the notation YO(S’k) = YO(S) = X®) and
s,k s s
Yh(+1) = Yh(+)1 =Y.

This algorithm is called “adaptive” as the transition kernel used in step (i) changes with
iterations through the working estimate %), Algorithm [2]is expected to outperform the
basic algorithm by Deng et al.| (2019), where the stochastic gradient Langevin dynamics
(SGLD) algorithm (Welling & Teh| |2011)) is used in the sampling step, due to the accelerated
convergence of SGHMC over SGLD (Nemeth & Fearnhead, 2019)). The convergence of
Algorithm [2]is shown in the following lemma, see Section [D.2] for the proof.

Lemma A2. Suppose Assumption[A7 hold. In Algorithm[3, if we set ex = C¢/(ce +k*) and
e = Cy/(cqg + k%) for some constants a € (0,1), Cc >0, C;, >0, ¢ >0 and ¢y > 0, then
there exists an iteration ko and a constant Ao > 0 such that for any k > ko,

E([6%) - 6;]%) < Aok, (A10)
where 5;‘; denotes a solution to equation .

A similar result to Lemma has been established in [Liang et al.| (2022)), except that the
penalty term Py (6) is not included in estimation of 8. As mentioned previously, the adaptive
SGHMC algorithm can be more efficient than the IRO algorithm when the training sample
size is large. We note that both algorithms can suffer from local traps. To address this issue,
a similar procedure as the prior annealing strategy proposed in (Sun et al., [2021]) can be
used, i.e. start with an over-parametrized model and gradually increase the regularization
parameter from 0 to the desired value along with iterations.

D.2 CONVERGENCE OF ALGORITHM

Notations: We let D denote a dataset of n observations, and let D; denote the i-th observation
of D. For StoNet, D; has included both the input and output variables of the observation.
For simplicity of notation, we re-denote the latent variable corresponding to D; by Z;, and
denote by fp,(z;,0) = —logn(z;|D;,0) the negative log-density function of Z;. Let z =
(21,22, ..., 2n) be a realization of Z = (Z1, Zs,...,Zy), and let Fp(2,0) =Y, fp,(z,0).

To complete the proof, we need the following assumptions:

17

Algorithm 2 An adaptive SGHMC algorithm for training StoNet
Input: Dataset (X,Y), total iteration number K, Monte Carlo step number tg ¢, the

learning rate sequence {ex; :t =1,2,...,T;9=1,2,..., h+1}, and the step size sequence
{Wi:it=1,2...T;i=1,2... h+1}.
Initialization: Randomly 1n1t1ahze the network parameters () = (0(0) . BA,(LOJL)

for k =1to K do
STEP 0: Subsampling: Draw a mini-batch of data and denote it by Sj.
STEP 1: Backward Sampling: For each observation s € Si, sample Y;’s in the
order from layer h to layer 1. More explicitly, we sample Y(S *) from the distribution

(s,k (k—1 (k—1 s,k s,k s,k) k—1) sk s,k)p(k—1 s,k
r(I 00 Y YD) eon (VP00 Ym0 v)

by runnlng SGHMC for tg e steps:
Initialize vfs’o) = 0, and initialize Yi(s’k’o) by forward pass of DNN.
for [=1 to tyyc do
for i =h to 1 do
Simulate latent variables

vzgs,k,l) —(1— e ﬂh) (s,k,1=1) +61“VY<s i log (Y(bkz 1) |0(k 1) Y;(_s,lk,l—l))

+ €k ivy(s,k,zq) log 7 (Y;(fik,l 1) | 02+1 7 Z(s ke l— 1)) + /26, 1776(5 k l)

Y(s,k:,l) Y(s k,l—1) +e (s k,-1)

(AS)
where e**! ~ N(0,1,4,), € is the learning rate, and 7 is the friction coefficient.
The algorithm is reduced to SGLD when € ;n; = 1.

end for
end for
Set V("M = y e hbmve) for i =12 . h.
STEP 2: Parameter Update: Update the estimates of o1

(0A§k71), éékfl), ce é,g:l)) by stochastic gradient descent
6" = 6+ 4~y < 3" Ve, logn(Y,*M10 Y v 5) — nve, Pr(6;)) . (A9)
SESk
fori=1,2,...,h+ 1, where 7 ; is the step size used for updating 6;.

end for
Output: H%K).

18

Assumption A7. (i) The function Fp(-,-) takes nonnegative real values, and there
exist constants A,B > 0, such that |Fp(0,0*)] < A, ||VzFp(0,60%)] < B,
Ve Fp(0,0%)| < B and ||H(O 0%)|| < B.

(i) (Smoothness) Fp(-,-) is M-smooth and H(-,-) is M-Lipschitz: there exists some
constant M > 0 such that for any Z,Z' € R* and any 0,0’ € O,

IV2Fp(Z,6) = VzFp(Z',6)| < M| Z - Z'|| + M|6 — 6,
IVeFp(Z,0) —VeFp(Z',0")|| < M| Z — Z'|| + M]|6 — 6'],
1H(Z,6) - H(Z',0")|| < M||Z - Z'|| + M]||6 — ||

(iii) (Dissipativity) For any 0 € O, the function Fp(-,0%) is (m,b)-dissipative: there
exist some constants m > ;5 L und b > 0 such that <Z VzFp(Z,0%)) > m|Z|* —b.

(iv) (Gradient noise) There exists a constant ¢ € [0,1) such that for any Z and 0,
EIV2ED(Z,6) - V2Fp(Z,0)|* < %(M?| Z|* + M?(6 — 6> + B?).

(v) The step size {’yk}keN is a positive decreasing sequence such that v, — 0 and

> he 1 vk = 00. In addition, let h(0) = E(H(Z,0)), then there exists § > 0 such that
Jor an 0 < ©, (0 0°,1(6)) > 510 0", and Tty .. 29 e T >0
k+1

(vi) (Solution of Poisson equation) For any @ € ©, z € 3, and a function V(z) = 1+||z|,
there exists a function pg on 3 that solves the Poisson equation pg(z) — Toue(z) =
H(O, z) h(0), where Tg denotes a probability transition kernel with Toue(z) =

f3 we(2")To(z, 2")dz", such that

H(O, zkt1) = h(Ok) + po, (zkv1) — To, o, (2k+1), k=1,2,.... (A11)
Moreover, for all 0,0 € © and z € 3, we have |pg(z) — por (2)]| < <1/|0 — €'||V(2)
and |\pe(2)|| < w2V (z) for some constants ¢ > 0 and ¢ > 0.

The smoothness and dissipativity conditions are regular for studying the convergence of
stochastic gradient MCMC algorithms, and they have been used in many papers such as
Raginsky et al.| (2017) and |Gao et al.| (2021). As implied by the definition of Fp(z,8), the
values of M, m and b increase linearly with the sample size n. Therefore, we can impose a
nonzero lower bound on m to facilitate related proofs.

Assumption (iv) introduces an extra constant ¢ to facilitate our study. For the full data
case, we have ¢ = 0, i.e., the gradient VzFp(Z,0) can be evaluated accurately.

As shown by Benveniste et al.| (1990) (p.244), Assumption [AT}H(v) can be batisﬁed by setting

v = a/(b+ k%) for some constants @ > 0, b > 0, and « 6 (0,1 A2da). By (A9), J increases
linearly with the sample size n. Therefore, if we set @ = 2(1/n) then 26a > 1 can be satisfied,
where Q(-) denotes the order of the lower bound of a function. In this paper, we simply
choose a € (0,1) by assuming that @ has been set appropriately with 2da > 1 held.

Assumption (vi) is also regular for studying the convergence of stochastic gradient MCMC
algorithms, see e.g.,[Whye et al.| (2016) and Deng et al.| (2019)). Alternatively, one can assume
that the MCMC algorithms satisfy the drift condition, and then Assumption (i) can be
verified, see e.g., Andrieu et al.| (2005]).

Outline of the proof of Lemma [A2] Lemma [A2] can be proved in a similar way to
Theorem 1 of |Deng et al.|(2019). However, since Algorithm I 2| employs SGHMC for updating
Z¥) which is mathematically different from the SGLD algorithm employed in [Deng et al.
(2019), Lemma 1 of Deng et al. (2019) (uniform Ly bounds of 8%) and Z*)) cannot be
applied any more. A similar result to Lemma 1 of |Deng et al.| (2019)) has been established
in [Liang et al.| (2022]) under appropriate conditions of {ek} and {7y} as prebcribed in this
lemma, where it is shown that E|@*)||? < Cy, E[|[V®)|?2 < Cy and E|Z®)||? < Cz for
some constants Cy, Cy and Cz.

Note that in the proof of Lemma[A2] the boundedness of © is not assumed. In[Liang et al.
(2022), an explicit expression of Ag has been given. For simplicity, we have the expression
omitted in this paper.

19

E PREDICTION UNCERTAINTY QUANTIFICATION FOR SPARSE STONET

Let’s first consider the case that we have a regression StoNet trained by the IRO algorithm.
In this case, the prediction uncertainty can be quantified by a recursive application of Eve’s
law. Extension of the results to other cases will be discussed later.

Let z denote a test point at which the prediction uncertainty is to be quantified. For
simplicity of notations, we suppress the bias term by including it as a special column of the
corresponding weight matrix. To indicate the iteratlve nature of the training algorithm, we

include the superscript ‘¢’ in the derivation. Let Z) denote the imputed latent variable at
layer i, corresponding to the input vector z. For convenience, we let Zé) = 2 for all t. Let

ugt) and th) denote, respectively, the mean and covariance matrix of Zi(t). Let wg,) denote

the j-th row of the weight matrix wz(t), which represents the weights from the neurons of

layer ¢ — 1 to neuron j of layer i. By Eve’s law, for any layer ¢ € {2,3,...,h+ 1},
=) =E(Var(2,"|2{%)) + Var(8(2["|Z}2,)

= Bding{ w(2(",)) Var(@)0(Z()) 1§ = 1,....d: } + Var(E(w)v(2(,)
= diag{ tr (Var(@)Var(v(2())) + (E@(2)))"

x V(@) EW(Z) 1 = 1, di | + B Var(w(Z0) B(w0)"

where Var(ﬁ)z(:)) is calculated by the Lasso4+OLS or Lasso+mLS procedure suggested by Liu

& Yu (2013). That is, we estimate wg) by applying the ordinary least square (OLS) or a

modified least square (mLS) procedure to the regression model selected by Lasso. We refer

to Theorem 3 of |Liu & Yu| (2013) for asymptotic normality of the non-sparse components of

lbft) For the OLS case, the non-sparse submatrix of Var('d)l@) is given by
J J

Var((t)) &2 [(w(Y(t))) w(Y(t))L

where ¢(Y£)1) denotes the design matrix of the linear regression Y() = 1/J(Y(t))(w (t)) +e€;
selected by Lasso for neuron j of layer ¢ at iteration ¢, €; ; ~ N(O,gl I,), and gm denotes
the OLS estimator of ¢?. Here Yg?l € R"*4i-1 denotes the imputed latent variables for all
neurons of layer ¢ — 1, Ygt]) € R™ denotes the imputed latent variables for neuron j of layer
1, Y?Et_)l € R™*%.5 denotes the variables selected by Lasso, ’lflg) denotes the corresponding
regression coefficients, and §; ; denotes the number of selected variables.

Let ugt)l = (NE?1,17 - ugt)l s) denote the mean of Zl-(i)l, and let Dw'(ﬂg?l) =

diag{v’ (ugt)l Dy e w'(,uz(t)l d,_,)}> where 9" denotes the first derivative of the activation
function ¥. By the first order Taylor expansion, we have

E((Z)) = v(u?)),
Var($(Z9))) = Dy (D)=D Dy (1),

Further, if we estimate E(w;) by w; and estimate ;L() by Z (t)l, then we have the approxi-
mation:

S0~ diag{tr (Var(@!”) Dy (250, Dy (20))
+ ((Z20) Var(@! (20 1 =1, di | (A12)
[Dy (25 Dy (22 (w])
For the first hidden layer, it is reduced to
f]gt) ~ diag{tr(\/ar(wﬁ))\/ar(z)) + 2T Var(w (t)) z:j=1,...,d; } + 'wgt)Var()(A(t)) .
(A13)

20

Since Var(z) = 0 holds for the fixed test point z, ﬁgt) can be further reduced to

vj

25‘” R~ diag{zTVar(uAJ(?))z cj=1,2,... ,dl}.

Let u(z, é) denote the prediction of a StoNet with weights 0 at point z. Note that the
StoNet has the same prediction function as the DNN , i.e., the random noise added to
the latent variables is set to 0 in forward prediction. Suppose that a set of StoNet estimates,

S = {é(l), é(2)7 PN é(m)}, has been collected after convergence of the IRO algorithm. Given

igt)’s, by the Wald method, the 95% prediction interval of 11,(z,0*), the j-th component of
u(z,0%), can be constructed as described in Section [4] of the main text.

The proposed confidence interval construction procedure can be easily extended to the StoNet
with a logistic regression output layer via the Wald/endpoint transformation. Following
from Lemma[A2] the proposed procedure can also be applied to the StoNet trained by the
adaptive stochastic gradient MCMC algorithm.

' SUPPLEMENTARY NUMERICAL RESULTS

F.1 SUPPLEMENTARY RESULTS FOR SECTION [

Figure shows the variable selection path for the model , and Figure shows the
prediction intervals produced by the StoNet on some test points.

(a) 1-hidden-layer StoNet (b) 1-hidden-layer DNN

N}
N

Average Gradient of Output for Each Variable on Training Set
o -
|
| &
d
Average Gradient of Output for Each Variable on Training Set
o .

0 2 a 8 0 2 a 6 8
—log(A) —log(A)

Figure Al: Variable selection paths by the StoNet (under the single-o? setting) and DNN

for the model , where y-axis is the average output gradient % [8‘;;@ | z&) calculated

over the training data, and z-axis is —log(\).

G HYPER-PARAMETER SETTING

For the StoNet, since the learning rates € ;’s and the latent variable variances o2’s can be
largely canceled at each step of latent variable imputation, their absolute values do not mean
much to the convergence of Algorithm [2] For this reason, we often set their values to be very
small in our numerical experiments, which merely controls the size of random noise added to
the corresponding latent variables.

G.1 AN ILLUSTRATIVE EXAMPLE

One-hidden-layer StoNet: We tried three parameter settings:

(a) 03 =0.5e —4, 07 = 0.5e — 5, €1 = 0.5e — 8, n; = % tavc =1, % = 5e — 4,
rglj = 5e — 8, |Sk| = 50;

21

(a) (b)

Confidence Interval Confidence Interval

* True Value
*» Predicted Value

* True Value
* Predicted Value

¢ I 2 3 & 5 6 7 & § O L B o1 B % o0 OB oD 0 1 2 3 & 5 6 7 & & L O LB OB LU oBoD
index index

Figure A2: Prediction Intervals produced by (a) one-hidden-layer StoNet and (b) two-hidden-
layer StoNet at 20 test points, where the StoNets were trained under the single-o2 setting.

(b) 02 = le—4, 0} =1le—5, €1 = le—8, 1 = i,tHMc =1, &l = 5e — 4,

Sk
r§k2| =5e — 8, |Sk| = 50;

o7
Eal
=L

(c) 03 = 2e —4, 0} = 2e—5, €1 = 2e — 8, 77¢=$,tHMc=1, L = 5e — 4,
Yk "

2 = 5e — 8, [S| = 50.

Two-hidden-layer StoNet: We tried three parameter settings:

(a) 03 = 0.5e — 9,02 = 0.5e — 10,07 = 0.5¢ — 11, €x0 = 0.5e — 13,¢ex1 = le — 14,

ni = gtrve =1, {65 = 5e — 6,165 = be — 10, {57 = be — 14, |Si| = 50;

(b) 02 = le — 9,03 = le — 10,07 = le — 11, €x2 = le — 13,651 = le — 14, n; =

aotrve =1, 755 = 5e — 6,165 = be — 10, {5} = be — 14, || = 50;

(c) 03 = 2e — 9,05 = 2¢ — 10,07 = 2e — 11, €42 = le — 13,651 = le — 14, n; =
1 1 ks _ k2 _ el _ -
aootEMe = 1, ‘Sk—:'l = 5e — 6, ﬁ = 5e — 10, ﬁ = be — 14,|S;| = 50.
For both StoNets, the major differences of the settings is at o;’s. For convenience, we call
the settings (a), (b) and (c) by half-0? setting, single-0? setting, and double-o? setting,
respectively.

G.2 CovERTYPE DATA

We used 80% of the data for training and other 20% data for testing. We fit the data by
a DNN of two hidden layers, with 1000 and 500 hidden units, respectively. The DNN was
trained for 2000 epochs using SGD with momentum, a constant learning rate of 0.01, a
momentum coefficient of 0.9, and a batch size of 500. Different regularization parameters
were tried with A ranging from le — 6 to 5e — 3.

G.3 CIFARI10

We conduct experiments on CIFAR10 data sets. Following the setting of post-calibration
methods in |Guo et al.| (2017)), we split the training data into a training set of 45000 images
and a hold out validation set of 5000 images for calibration. The training settings for 3
models are:

e ResNet110: Model is trained on training set with SGD with momentum for 200

epochs with batch size 128, momentum 0.9 and weight decay 0.0001. Learning rate
was set to 0.1 for first 80 epochs and divided by 10 at 80-th and 150-th epoch.

22

o Densenet40: Model is trained on training set with SGD with momentum for 300
epochs with batch size 128, momentum 0.9 and weight decay 0.0001. Learning rate
was set to 0.1 for first 150 epochs and divided by 10 at 150-th and 225-th epoch.

o WideResNet-28-10: Model is trained on training set with SGD with momentum for
200 epochs with momentum 0.9 and weight decay 0.0005. Learning rate was set to
0.1 for first 60 epochs and divided by 10 at 60-th, 120-th epoch and 160-th epoch.

After training, we compute the input of the last fully connected layer of each model on the
validation set, and use them as input to a StoNet model, we refit a StoNet model with 1
hidden layer, 100 hidden units and tanh as activation function. The StoNet model is trained
with algorithm with hyper-parameters given in table

Hyper-Parameter Value
[0%7 U%} [16_27 16_3}
€51 le-7
T
771 €k,1
tumc 1
- | —
[’Yk,lv ’Yk,z] [%%OO) 55%0(?]
EA
P, (0) le — 4 x [[0]1

Table Al: Post-StoNet Hyper-Parameter Setting for CIFAR10 data

Hyper-Parameter Value
[02, 03] [le-4, le-5]
€k.1 le-7
m 6:1
thmc 1
[7k,177k,2] [161\737 16]\70]
|Sk| 50
PA\(0) A0l

Table A2: StoNet Hyper-Parameter Setting for UCI data sets, where N is size of the
calibration data set.

G.4 REGRESSION EXAMPLES

The Wine E|, Power PlantEL Proteirﬁ and Yearﬁ data sets are from UCI machine learning
repository. For all experiments, we split the data into 40% as training set, 40% as calibration
set(used to fit a StoNet model for our methods and used to compute absolute value of residue
as non-conformity score for Split Conformal) and 20% as test set. The random split was
repeated 20 times and we report the mean and standard deviation of confidence interval
length and coverage rate. For training, we use a DNN model with 2 hidden layers, 1000
and 100 hidden units respectively and tanh activation function. The model is trained using
Adam(Kingma & Bay [2015)) with batch size 50, constant learning rate 0.001. The model is
trained for 5000 epochs for Wine and Power Plant data sets, 1000 Epochs for Protein data
set, and 200 epochs for Year data set. After the model is trained, we refit a StoNet on the
calibration data set, with output of the last hidden layer of DNN as input. We use a StoNet
with one hidden layer, 20 hidden units with tanh activation function. Algorithm [2is used
to train the model with hyper-parameters given in table The penalty parameter \ is

"https://archive.ics.uci.edu/dataset /186 /wine-+quality
https://archive.ics.uci.edu/dataset /294 /combined+cycled-power+plant

3https://archive.ics.uci.edu/dataset /265 /physicochemical+properties+of-protein-+tertiary-+structure

“http://archive.ics.uci.edu/dataset,/203/yearpredictionmsd

23

selected from {6e — 2,2e — 2,1e — 2,5e — 3,2e — 3, 1e — 3,5e — 4} by 5 fold cross validation,
where we pick the A such that the average coverage rate on the validation sets are closest
to the target level 90%. Specifically, we pick A = 2e — 2 for Wine data set, A = 5e — 3 for
Power Plant data set, A = 2e — 3 for Protein data set, A = 1le — 3 for Year data set.

24

	Introduction
	StoNet and Its Approximation to DNN
	Sparse StoNet Learning
	The IRO Algorithm and Consistency of Sparse StoNets
	Adaptive Stochastic Gradient MCMC for Efficient StoNet Learning

	Prediction Uncertainty Quantification for Sparse StoNet
	An Illustrative Example
	Statistical Inference for Deep Learning
	Identification of Important Input Features
	Post-StoNet Modeling for Uncertainty Quantification

	Conclusion
	Assumptions for Lemma 1
	The IRO Algorithm for training StoNet
	Proofs of Theorem 1
	Adaptive Stochastic Gradient MCMC for Efficient StoNet Learning
	Adaptive stochastic gradient Hamilton Monte Carlo
	Convergence of Algorithm 2

	Prediction Uncertainty Quantification for Sparse StoNet
	Supplementary Numerical Results
	Supplementary Results for Section 5

	Hyper-parameter Setting
	An Illustrative Example
	CoverType Data
	CIFAR10
	Regression Examples

