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ABSTRACT

We introduce a method to stabilize Generative Adversarial Networks (GANs) by
defining the generator objective with respect to an unrolled optimization of the
discriminator. This allows training to be adjusted between using the optimal dis-
criminator in the generator’s objective, which is ideal but infeasible in practice,
and using the current value of the discriminator, which is often unstable and leads
to poor solutions. We show how this technique solves the common problem of
mode collapse, stabilizes training of GANs with complex recurrent generators,
and increases diversity and coverage of the data distribution by the generator.

1 INTRODUCTION

The use of deep neural networks as generative models for complex data has made great advances
in recent years. This success has been achieved through a surprising diversity of training losses
and model architectures, including denoising autoencoders (Vincent et al., 2010), variational au-
toencoders (Kingma & Welling, 2013; Rezende et al., 2014; Gregor et al., 2015; Kulkarni et al.,
2015; Burda et al., 2015; Kingma et al., 2016), generative stochastic networks (Alain et al., 2015),
diffusion probabilistic models (Sohl-Dickstein et al., 2015), autoregressive models (Theis & Bethge,
2015; van den Oord et al., 2016a;b), real non-volume preserving transformations (Dinh et al., 2014;
2016), Helmholtz machines (Dayan et al., 1995; Bornschein et al., 2015), and Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014).

1.1 GENERATIVE ADVERSARIAL NETWORKS

While most deep generative models are trained by maximizing log likelihood or a lower bound on
log likelihood, GANs take a radically different approach that does not require inference or explicit
calculation of the data likelihood. Instead, two models are used to solve a minimax game: a genera-
tor which samples data, and a discriminator which classifies the data as real or generated. In theory
these models are capable of modeling an arbitrarily complex probability distribution. When using
the optimal discriminator for a given class of generators, the original GAN proposed by Goodfellow
et al. minimizes the Jensen-Shannon divergence between the data distribution and the generator,
and extensions generalize this to a wider class of divergences (Nowozin et al., 2016; Sonderby et al.,
2016; Poole et al., 2016).

The ability to train extremely flexible generating functions, without explicitly computing likeli-
hoods or performing inference, and while targeting more mode-seeking divergences as made GANs
extremely successful in image generation (Odena et al., 2016; Salimans et al., 2016; Radford et al.,
2015), and image super resolution (Ledig et al., 2016). The flexibility of the GAN framework has
also enabled a number of successful extensions of the technique, for instance for structured predic-
tion (Reed et al., 2016a;b; Odena et al., 2016), training energy based models (Zhao et al., 2016), and
combining the GAN loss with a mutual information loss (Chen et al., 2016).
∗Work done as a member of the Google Brain Residency program (g.co/brainresidency)
†Work completed as part of a Google Brain internship
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In practice, however, GANs suffer from many issues, particularly during training. One common
failure mode involves the generator collapsing to produce only a single sample or a small family of
very similar samples. Another involves the generator and discriminator oscillating during training,
rather than converging to a fixed point. In addition, if one agent becomes much more powerful than
the other, the learning signal to the other agent becomes useless, and the system does not learn.
To train GANs many tricks must be employed, such as careful selection of architectures (Radford
et al., 2015), minibatch discrimination (Salimans et al., 2016), and noise injection (Salimans et al.,
2016; Sonderby et al., 2016). Even with these tricks the set of hyperparameters for which training is
successful is generally very small in practice.

Once converged, the generative models produced by the GAN training procedure normally do not
cover the whole distribution (Dumoulin et al., 2016; Che et al., 2016), even when targeting a mode-
covering divergence such as KL. Additionally, because it is intractable to compute the GAN training
loss, and because approximate measures of performance such as Parzen window estimates suffer
from major flaws (Theis et al., 2016), evaluation of GAN performance is challenging. Currently,
human judgement of sample quality is one of the leading metrics for evaluating GANs. In practice
this metric does not take into account mode dropping if the number of modes is greater than the
number of samples one is visualizing. In fact, the mode dropping problem generally helps visual
sample quality as the model can choose to focus on only the most common modes. These common
modes correspond, by definition, to more typical samples. Additionally, the generative model is able
to allocate more expressive power to the modes it does cover than it would if it attempted to cover
all modes.

1.2 DIFFERENTIATING THROUGH OPTIMIZATION

Many optimization schemes, including SGD, RMSProp (Tieleman & Hinton, 2012), and Adam
(Kingma & Ba, 2014), consist of a sequence of differentiable updates to parameters. Gradients can
be backpropagated through unrolled optimization updates in a similar fashion to backpropagation
through a recurrent neural network. The parameters output by the optimizer can thus be included,
in a differentiable way, in another objective (Maclaurin et al., 2015). This idea was first suggested
for minimax problems in (Pearlmutter & Siskind, 2008), while (Zhang & Lesser, 2010) provided
a theoretical analysis and experimental results on differentiating through a single step of gradient
ascent for simple matrix games. Differentiating through unrolled optimization was first scaled to
deep networks in (Maclaurin et al., 2015), where it was used for hyperparameter optimization. More
recently, (Belanger & McCallum, 2015; Han et al., 2016; Andrychowicz et al., 2016) backpropagate
through optimization procedures in contexts unrelated to GANs or minimax games.

In this work we address the challenges of unstable optimization and mode collapse in GANs by
unrolling optimization of the discriminator objective during training.

2 METHOD

2.1 GENERATIVE ADVERSARIAL NETWORKS

The GAN learning problem is to find the optimal parameters θ∗G for a generator function G (z; θG)
in a minimax objective,

θ∗G = argmin
θG

max
θD

f (θG, θD) (1)

= argmin
θG

f (θG, θ
∗
D (θG)) (2)

θ∗D (θG) = argmax
θD

f (θG, θD) , (3)

where f is commonly chosen to be

f (θG, θD) = Ex∼pdata
[log (D (x; θD))] + Ez∼N (0,I) [log (1−D (G (z; θG) ; θD))] . (4)

Here x ∈ X is the data variable, z ∈ Z is the latent variable, pdata is the data distribution, the
discriminator D (·; θD) : X → [0, 1] outputs the estimated probability that a sample x comes from
the data distribution, θD and θG are the discriminator and generator parameters, and the generator
function G (·; θG) : Z → X transforms a sample in the latent space into a sample in the data space.
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For the minimax loss in Eq. 4, the optimal discriminator D∗ (x) is a known smooth function of the
generator probability pG (x) (Goodfellow et al., 2014),

D∗ (x) =
pdata (x)

pdata (x) + pG (x)
. (5)

When the generator loss in Eq. 2 is rewritten directly in terms of pG (x) and Eq. 5 rather than θG
and θ∗D (θG), then it is similarly a smooth function of pG (x). These smoothness guarantees are
typically lost when D (x; θD) and G (z; θG) are drawn from parametric families. They nonetheless
suggest that the true generator objective in Eq. 2 will often be well behaved, and is a desirable target
for direct optimization.

Explicitly solving for the optimal discriminator parameters θ∗D (θG) for every update step of the
generator G is computationally infeasible for discriminators based on neural networks. Therefore
this minimax optimization problem is typically solved by alternating gradient descent on θG and
ascent on θD.

The optimal solution θ∗ = {θ∗G, θ∗D} is a fixed point of these iterative learning dynamics. Addition-
ally, if f (θG, θD) is convex in θG and concave in θD, then alternating gradient descent (ascent) trust
region updates are guaranteed to converge to the fixed point, under certain additional weak assump-
tions (Juditsky et al., 2011). However in practice f (θG, θD) is typically very far from convex in θG
and concave in θD, and updates are not constrained in an appropriate way. As a result GAN training
suffers from mode collapse, undamped oscillations, and other problems detailed in Section 1.1. In
order to address these difficulties, we will introduce a surrogate objective function fK (θG, θD) for
training the generator which more closely resembles the true generator objective f (θG, θ∗D (θG)).

2.2 UNROLLING GANS

A local optimum of the discriminator parameters θ∗D can be expressed as the fixed point of an
iterative optimization procedure,

θ0D = θD (6)

θk+1
D = θkD + ηk

df
(
θG, θ

k
D

)
dθkD

(7)

θ∗D (θG) = lim
k→∞

θkD, (8)

where ηk is the learning rate schedule. For clarity, we have expressed Eq. 7 as a full batch steepest
gradient ascent equation. More sophisticated optimizers can be similarly unrolled. In our experi-
ments we unroll Adam (Kingma & Ba, 2014).

By unrolling for K steps, we create a surrogate objective for the update of the generator,

fK (θG, θD) = f
(
θG, θ

K
D (θG, θD)

)
. (9)

When K = 0 this objective corresponds exactly to the standard GAN objective, while as K → ∞
it corresponds to the true generator objective function f (θG, θ∗D (G)). By adjusting the number of
unrolling steps K, we are thus able to interpolate between standard GAN training dynamics with
their associated pathologies, and more costly gradient descent on the true generator loss.

2.3 PARAMETER UPDATES

The generator and discriminator parameter updates using this surrogate loss are

θG ← θG − η
dfK (θG, θD)

dθG
(10)

θD ← θD + η
df (θG, θD)

dθD
. (11)

For clarity we use full batch steepest gradient descent (ascent) with stepsize η above, while in ex-
periments we instead use minibatch Adam for both updates. The gradient in Eq. 10 requires back-
propagating through the optimization process in Eq. 7. A clear description of differentiation through
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Figure 1: An illustration of the computation graph for an unrolled GAN with 3 unrolling steps.
The generator update in Equation 10 involves backpropagating the generator gradient (blue arrows)
through the unrolled optimization. Each step k in the unrolled optimization uses the gradients of fk
with respect to θkD, as described in Equation 7 and indicated by the green arrows. The discriminator
update in Equation 11 does not depend on the unrolled optimization (red arrow).

gradient descent is given as Algorithm 2 in (Maclaurin et al., 2015), though in practice the use of
an automatic differentiation package means this step does not need to be programmed explicitly. A
pictorial representation of these updates is provided in Figure 1.

It is important to distinguish this from an approach suggested in (Goodfellow et al., 2014), that
several update steps of the discriminator parameters should be run before each single update step for
the generator. In that approach, the update steps for both models are still gradient descent (ascent)
with respect to fixed values of the other model parameters, rather than the surrogate loss we describe
in Eq. 9. Performing K steps of discriminator update between each single step of generator update
corresponds to updating the generator parameters θG using only the first term in Eq. 12 below.

2.4 THE MISSING GRADIENT TERM

To better understand the behavior of the surrogate loss fK (θG, θD), we examine its gradient with
respect to the generator parameters θG,

dfK (θG, θD)

dθG
=
∂f

(
θG, θ

K
D (θG, θD)

)
∂θG

+
∂f

(
θG, θ

K
D (θG, θD)

)
∂θKD (θG, θD)

dθKD (θG, θD)

dθG
. (12)

Standard GAN training corresponds exactly to updating the generator parameters using only the
first term in this gradient, with θKD (θG, θD) being the parameters resulting from the discriminator
update step. An optimal generator for any fixed discriminator is a delta function at the x to which the
discriminator assigns highest data probability. Therefore, in standard GAN training, each generator
update step is a partial collapse towards a delta function.

The second term captures how the discriminator would react to a change in the generator. It reduces
the tendency of the generator to engage in mode collapse. For instance, the second term reflects
that as the generator collapses towards a delta function, the discriminator reacts and assigns lower
probability to that state, increasing the generator loss. It therefore discourages the generator from
collapsing, and may improve stability.

As K →∞, θKD goes to a local optimum of f , where ∂f
∂θKD

= 0, and therefore the second term in
Eq. 12 goes to 0 (Danskin, 1967). The gradient of the unrolled surrogate loss fK (θG, θD) with
respect to θG is thus identical to the gradient of the standard GAN loss f (θG, θD) both whenK = 0
and when K → ∞, where we take K → ∞ to imply that in the standard GAN the discriminator
is also fully optimized between each generator update. Between these two extremes, fK (θG, θD)
captures additional information about the response of the discriminator to changes in the generator.
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2.5 CONSEQUENCES OF THE SURROGATE LOSS

GANs can be thought of as a game between the discriminator (D) and the generator (G). The agents
take turns taking actions and updating their parameters until a Nash equilibrium is reached. The
optimal action for D is to evaluate the probability ratio pdata(x)

pG(x)+pdata(x)
for the generator’s move x

(Eq. 5). The optimal generator action is to move its mass to maximize this ratio.

The initial move forGwill be to move as much mass as its parametric family and update step permits
to the single point that maximizes the ratio of probability densities. The action D will then take is
quite simple. It will track that point, and to the extent allowed by its own parametric family and
update step assign low data probability to it, and uniform probability everywhere else. This cycle
of G moving and D following will repeat forever or converge depending on the rate of change of
the two agents. This is similar to the situation in simple matrix games like rock-paper-scissors and
matching pennies, where alternating gradient descent (ascent) with a fixed learning rate is known
not to converge (Singh et al., 2000; Bowling & Veloso, 2002).

In the unrolled case, however, this undesirable behavior no longer occurs. NowG’s actions take into
account how D will respond. In particular, G will try to make steps that D will have a hard time
responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique to
five datasets of increasing complexity. Evaluation of generative models is a notoriously hard problem
(Theis et al., 2016). As such the de facto standard in GAN literature has become sample quality as
evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Salimans et al.,
2016)). While these evaluation metrics do a reasonable job capturing sample quality, they fail to
capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual inspection.
In our later experiments this is not the case, and we will use a variety of methods to quantify coverage
of samples. Our measures are individually strongly suggestive of unrolling reducing mode-collapse
and improving stability, but none of them alone are conclusive. We believe that taken together
however, they provide extremely compelling evidence for the advantages of unrolling.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

We provide a reference implementation of this technique at github.com/poolio/unrolled gan.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 2 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

In Appendix B we perform further experiments on this toy dataset. We explore how unrolling
compares to historical averaging, and compares to using the unrolled discriminator to update the

5

https://github.com/poolio/unrolled_gan


Published as a conference paper at ICLR 2017

Figure 2: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant probability
mass to a single data mode at once.

Figure 3: Unrolled GAN training increases stability for an RNN generator and convolutional dis-
criminator trained on MNIST. The top row was run with 20 unrolling steps. The bottom row is a
standard GAN, with 0 unrolling steps. Images are samples from the generator after the indicated
number of training steps.

generator, but without backpropagating through the generator. In both cases we find that the unrolled
objective performs better.

3.2 PATHOLOGICAL MODEL WITH MISMATCHED GENERATOR AND DISCRIMINATOR

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNNs). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
images. At each timestep of the generator LSTM, it outputs one column of this image, so that
after 28 timesteps it has output the entire sample. We use a convolutional neural network as the
discriminator. See Appendix C for the full model and training details. Unlike in all previously
successful GAN models, there is no symmetry between the generator and the discriminator in this
task, resulting in a more complex power balance. Results can be seen in Figure 3. Once again,
without unrolling the model quickly collapses, and rotates through a sequence of single modes.
Instead of rotating spatially, it cycles through proto-digit like blobs. When running with unrolling
steps the generator disperses and appears to cover the whole data distribution, as in the 2D example.
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Discriminator Size Unrolling steps 0 1 5 10
1/4 size of D compared to G Modes generated 30.6 ± 20.73 65.4 ± 34.75 236.4 ± 63.30 327.2 ± 74.67

KL(model ||data) 5.99 ± 0.42 5.911 ± 0.14 4.67 ± 0.43 4.66 ± 0.46
1/2 size of D compared to G Modes generated 628.0 ± 140.9 523.6 ± 55.768 732.0 ± 44.98 817.4 ± 37.91

KL(model ||data) 2.58 ±0.751 2.44 ±0.26 1.66 ± 0.090 1.43 ± 0.12

Table 1: Unrolled GANs cover more discrete modes when modeling a dataset with 1,000 data modes,
corresponding to all combinations of three MNIST digits (103 digit combinations). The number of
modes covered is given for different numbers of unrolling steps, and for two different architectures.
The reverse KL divergence between model and data is also given. Standard error is provided for
both measures.

3.3 MODE AND MANIFOLD COLLAPSE USING AUGMENTED MNIST

GANs suffer from two different types of model collapse – collapse to a subset of data modes, and
collapse to a sub-manifold within the data distribution. In these experiments we isolate both effects
using artificially constructed datasets, and demonstrate that unrolling can largely rescue both types
of collapse.

3.3.1 DISCRETE MODE COLLAPSE

To explore the degree to which GANs drop discrete modes in a dataset, we use a technique similar
to one from (Che et al., 2016). We construct a dataset by stacking three randomly chosen MNIST
digits, so as to construct an RGB image with a different MNIST digit in each color channel. This
new dataset has 1,000 distinct modes, corresponding to each combination of the ten MNIST classes
in the three channels.

We train a GAN on this dataset, and generate samples from the trained model (25,600 samples for all
experiments). We then compute the predicted class label of each color channel using a pre-trained
MNIST classifier. To evaluate performance, we use two metrics: the number of modes for which the
generator produced at least one sample, and the KL divergence between the model and the expected
data distribution. Within this discrete label space, a KL divergence can be estimated tractably be-
tween the generated samples and the data distribution over classes, where the data distribution is a
uniform distribution over all 1,000 classes.

As presented in Table 1, as the number of unrolling steps is increased, both mode coverage and re-
verse KL divergence improve. Contrary to (Che et al., 2016), we found that reasonably sized models
(such as the one used in Section 3.4) covered all 1,000 modes even without unrolling. As such we
use smaller convolutional GAN models. Details on the models used are provided in Appendix E.

We observe an additional interesting effect in this experiment. The benefits of unrolling increase
as the discriminator size is reduced. We believe unrolling effectively increases the capacity of the
discriminator. The unrolled discriminator can better react to any specific way in which the generator
is producing non-data-like samples. When the discriminator is weak, the positive impact of unrolling
is thus larger.

3.3.2 MANIFOLD COLLAPSE

In addition to discrete modes, we examine the effect of unrolling when modeling continuous mani-
folds. To get at this quantity, we constructed a dataset consisting of colored MNIST digits. Unlike
in the previous experiment, a single MNIST digit was chosen, and then assigned a single monochro-
matic color. With a perfect generator, one should be able to recover the distribution of colors used to
generate the digits. We use colored MNIST digits so that the generator also has to model the digits,
which makes the task sufficiently complex that the generator is unable to perfectly solve it. The
color of each digit is sampled from a 3D normal distribution. Details of this dataset are provided
in Appendix F. We will examine the distribution of colors in the samples generated by the trained
GAN. As will also be true in the CIFAR10 example in Section 3.4, the lack of diversity in gener-
ated colors is almost invisible using only visual inspection of the samples. Samples can be found in
Appendix F.
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Unrolling steps 0 1 5 10
JS divergence with 1/4 layer size 0.073 ± 0.0058 0.142 ± 0.028 0.049 ± 0.0021 0.075 ± 0.012
JS divergence with 1/2 layer size 0.095 ± 0.011 0.119 ± 0.010 0.055 ± 0.0049 0.074± 0.016
JS divergence with 1/1 layer size 0.034 ± 0.0034 0.050 ± 0.0026 0.027 ± 0.0028 0.025 ± 0.00076

Table 2: Unrolled GANs better model a continuous distribution. GANs are trained to model ran-
domly colored MNIST digits, where the color is drawn from a Gaussian distribution. The JS diver-
gence between the data and model distributions over digit colors is then reported, along with standard
error in the JS divergence. More unrolling steps, and larger models, lead to better JS divergence.

0 step 1 step 5 step 10 step

Figure 4: Visual perception of sample quality and diversity is very similar for models trained with
different numbers of unrolling steps. Actual sample diversity is higher with more unrolling steps.
Each pane shows samples generated after training a model on CIFAR10 with 0, 1, 5, and 10 steps of
unrolling.

In order to recover the color the GAN assigned to the digit, we used k-means with 2 clusters, to
pick out the foreground color from the background. We then performed this transformation for both
the training data and the generated images. Next we fit a Gaussian kernel density estimator to both
distributions over digit colors. Finally, we computed the JS divergence between the model and data
distributions over colors. Results can be found in Table 2 for several model sizes. Details of the
models are provided in Appendix F.

In general, the best performing models are unrolled for 5-10 steps, and larger models perform better
than smaller models. Counter-intuitively, taking 1 unrolling step seems to hurt this measure of
diversity. We suspect that this is due to it introducing oscillatory dynamics into training. Taking
more unrolling steps however leads to improved performance with unrolling.

3.4 IMAGE MODELING OF CIFAR10

Here we test our technique on a more traditional convolutional GAN architecture and task, similar
to those used in (Radford et al., 2015; Salimans et al., 2016). In the previous experiments we tested
models where the standard GAN training algorithm would not converge. In this section we improve
a standard model by reducing its tendency to engage in mode collapse. We ran 4 configurations of
this model, varying the number of unrolling steps to be 0, 1, 5, or 10. Each configuration was run 5
times with different random seeds. For full training details see Appendix D. Samples from each of
the 4 configurations can be found in Figure 4. There is no obvious difference in visual quality across
these model configurations. Visual inspection however provides only a poor measure of sample
diversity.

By training with an unrolled discriminator, we expect to generate more diverse samples which more
closely resemble the underlying data distribution. We introduce two techniques to examine sample
diversity: inference via optimization, and pairwise distance distributions.
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Unrolling Steps 0 steps 1 step 5 steps 10 steps
Average MSE 0.0231 ± 0.0024 0.0195 ± 0.0021 0.0200 ± 0.0023 0.0181 ± 0.0018

Percent Best Rank 0.63% 22.97% 15.31% 61.09%

Table 3: GANs trained with unrolling are better able to match images in the training set than
standard GANs, likely due to mode dropping by the standard GAN. Results show the MSE between
training images and the best reconstruction for a model with the given number of unrolling steps.
The fraction of training images best reconstructed by a given model is given in the final column.
The best reconstructions is found by optimizing the latent representation z to produce the closest
matching pixel output G (z; θG). Results are averaged over all 5 runs of each model with different
random seeds.

3.4.1 INFERENCE VIA OPTIMIZATION

Since likelihood cannot be tractably computed, over-fitting of GANs is typically tested by taking
samples and computing the nearest-neighbor images in pixel space from the training data (Goodfel-
low et al., 2014). We will do the reverse, and measure the ability of the generative model to generate
images that look like specific samples from the training data. If we did this by generating random
samples from the model, we would need an exponentially large number of samples. We instead treat
finding the nearest neighbor xnearest to a target image xtarget as an optimization task,

znearest = argmin
z
||G (z; θG)− xtarget||22 (13)

xnearest = G (znearest; θG) . (14)

This concept of backpropagating to generate images has been widely used in visualizing features
from discriminative networks (Simonyan et al., 2013; Yosinski et al., 2015; Nguyen et al., 2016) and
has been applied to explore the visual manifold of GANs in (Zhu et al., 2016).

We apply this technique to each of the models trained. We optimize with 3 random starts using
LBFGS, which is the optimizer typically used in similar settings such as style transfer (Johnson
et al., 2016; Champandard, 2016). Results comparing average mean squared errors between xnearest
and xtarget in pixel space can be found in Table 3. In addition we compute the percent of images for
which a certain configuration achieves the lowest loss when compared to the other configurations.

In the zero step case, there is poor reconstruction and less than 1% of the time does it obtain the
lowest error of the 4 configurations. Taking 1 unrolling step results in a significant improvement in
MSE. Taking 10 unrolling steps results in more modest improvement, but continues to reduce the
reconstruction MSE.

To visually see this, we compare the result of the optimization process for 0, 1, 5, and 10 step
configurations in Figure 5. To select for images where differences in behavior is most apparent,
we sort the data by the absolute value of a fractional difference in MSE between the 0 and 10 step
models,

∣∣∣ l0step−l10step
1
2 (l0step+l10step)

∣∣∣. This highlights examples where either the 0 or 10 step model cannot
accurately fit the data example but the other can. In Appendix G we show the same comparison for
models initialized using different random seeds. Many of the zero step images are fuzzy and ill-
defined suggesting that these images cannot be generated by the standard GAN generative model,
and come from a dropped mode. As more unrolling steps are added, the outlines become more clear
and well defined – the model covers more of the distribution and thus can recreate these samples.

3.4.2 PAIRWISE DISTANCES

A second complementary approach is to compare statistics of data samples to the corresponding
statistics for samples generated by the various models. One particularly simple and relevant statistic
is the distribution over pairwise distances between random pairs of samples. In the case of mode
collapse, greater probability mass will be concentrated in smaller volumes, and the distribution
over inter-sample distances should be skewed towards smaller distances. We sample random pairs
of images from each model, as well as from the training data, and compute histograms of the `2
distances between those sample pairs. As illustrated in Figure 6, the standard GAN, with zero
unrolling steps, has its probability mass skewed towards smaller `2 intersample distances, compared
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Figure 5: Training set images are more accurately reconstructed using GANs trained with unrolling
than by a standard (0 step) GAN, likely due to mode dropping by the standard GAN. Raw data is
on the left, and the optimized images to reach this target follow for 0, 1, 5, and 10 unrolling steps.
The reconstruction MSE is listed below each sample. A random 1280 images where selected from
the training set, and corresponding best reconstructions for each model were found via optimiza-
tion. Shown here are the eight images with the largest absolute fractional difference between GANs
trained with 0 and 10 unrolling steps.

to real data. As the number of unrolling steps is increased, the histograms over intersample distances
increasingly come to resemble that for the data distribution. This is further evidence in support of
unrolling decreasing the mode collapse behavior of GANs.

4 DISCUSSION

In this work we developed a method to stabilize GAN training and reduce mode collapse by defining
the generator objective with respect to unrolled optimization of the discriminator. We then demon-
strated the application of this method to several tasks, where it either rescued unstable training, or
reduced the tendency of the model to drop regions of the data distribution.

The main drawback to this method is computational cost of each training step, which increases
linearly with the number of unrolling steps. There is a tradeoff between better approximating the true
generator loss and the computation required to make this estimate. Depending on the architecture,
one unrolling step can be enough. In other more unstable models, such as the RNN case, more are
needed to stabilize training. We have some initial positive results suggesting it may be sufficient
to further perturb the training gradient in the same direction that a single unrolling step perturbs it.
While this is more computationally efficient, further investigation is required.

The method presented here bridges some of the gap between theoretical and practical results for
training of GANs. We believe developing better update rules for the generator and discriminator is
an important line of work for GAN training. In this work we have only considered a small fraction
of the design space. For instance, the approach could be extended to unroll G when updating D
as well – letting the discriminator react to how the generator would move. It is also possible to
unroll sequences of G and D updates. This would make updates that are recursive: G could react to
maximize performance as if G and D had already updated.
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Appendix
A 2D GAUSSIAN TRAINING DETAILS

Network architecture and experimental details for the experiment in Section 3.1 are as follows:

The dataset is sampled from a mixture of 8 Gaussians of standard deviation 0.02. The means are
equally spaced around a circle of radius 2.

The generator network consists of a fully connected network with 2 hidden layers of size 128 with
relu activations followed by a linear projection to 2 dimensions. All weights are initialized to be
orthogonal with scaling of 0.8.

The discriminator network first scales its input down by a factor of 4 (to roughly scale to (-1,1)),
followed by 1 layer fully connected network with relu activations to a linear layer to of size 1 to act
as the logit.

The generator minimizes LG = log(D(x)) + log(1 − D(G(z))) and the discriminator minimizes
LD = −log(D(x)) − log(1 − D(G(z))) where x is sampled from the data distribution and z ∼
N (0, I256). Both networks are optimized using Adam (Kingma & Ba, 2014) with a learning rate of
1e-4 and β1=0.5.

The network is trained by alternating updates of the generator and the discriminator. One step
consists of either G or D updating.

B MORE MIXTURE OF GAUSSIAN EXPERIMENTS

B.1 EFFECTS OF TIME DELAY / HISTORICAL AVERAGING

Another comparison we looked at was with regard to historical averaging based approaches. Re-
cently similarly inspired approaches have been used in (Salimans et al., 2016) to stabilize training.
For our study, we looked at taking an ensemble of discriminators over time.

First, we looked at taking an ensemble of the last N steps, as shown in Figure App.1.
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Figure App.1: Historical averaging does not visibly increase stability on the mixture of Gaussians
task. Each row corresponds to an ensemble of discriminators which consists of the indicated number
of immediately preceding discriminators. The columns correspond to different numbers of training
steps.

To further explore this idea, we ran experiments with an ensemble of 5 discriminators, but with
different periods between replacing discriminators in the ensemble. For example, if I sample at a
rate of 100, it would take 500 steps to replace all 5 discriminators. Results can be seen in Figure
App.2.

We observe that given longer and longer time delays, the model becomes less and less stable. We
hypothesize that this is due to the initial shape of the discriminator loss surface. When training, the
discriminator’s estimates of probability densities are only accurate on regions where it was trained.
When fixing this discriminator, we are removing the feedback between the generator exploitation

15



Published as a conference paper at ICLR 2017

1

10

100

0

1000

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Update Steps

S
te

p
s 

B
e
tw

e
e
n
 E

n
se

m
b
le

s

Figure App.2: Introducing longer time delays between the discriminator ensemble results in insta-
bility and probability distributions that are not in the window being visualized. The x axis is the
number of weight updates and the y axis is how many steps to skip between discriminator updates
when selecting the ensemble of 5 discriminators.

and the discriminators ability to move. As a result, the generator is able to exploit these fixed areas
of poor performance for older discriminators in the ensemble. New discriminators (over)compensate
for this, leading the system to diverge.

B.2 EFFECTS OF THE SECOND GRADIENT

A second factor we analyzed is the effect of backpropagating the learning signal through the un-
rolling in Equation 12. We can turn on or off this backpropagation through the unrolling by in-
troducing stop gradient calls into our computation graph between each unrolling step. With the
stop gradient in place, the update signal corresponds only to the first term in Equation 12. We
looked at 3 configurations: without stop gradients; vanilla unrolled GAN, with stop gradients; and
with stop gradients but taking the average over the k unrolling steps instead of taking the final value.
Results can be see in Figure App.3.

We initially observed no difference between unrolling with and without the second gradient, as both
required 3 unrolling steps to become stable. When the discriminator is unrolled to convergence,
the second gradient term becomes zero. Due to the simplicity of the problem, we suspect that the
discriminator nearly converged for every generator step, and the second gradient term was thus
irrelevant.

To test this, we modified the dynamics to perform five generator steps for each discriminator update.
Results are shown in Figure App.4. With the discriminator now kept out of equilibrium, successful
training can be achieved with half as many unrolling steps when using both terms in the gradient
than when only including the first term.

C RNN MNIST TRAINING DETAILS

The network architecture for the experiment in Section 3.2 is as follows:

The MNIST dataset is scaled to [-1, 1).

The generator first scales the 256D noise vector through a 256 unit fully connected layer with relu
activation. This is then fed into the initial state of a 256D LSTM(Hochreiter & Schmidhuber, 1997)
that runs 28 steps corresponding to the number of columns in MNIST. The resulting sequence of ac-
tivations is projected through a fully connected layer with 28 outputs with a tanh activation function.
All weights are initialized via the ”Xavier” initialization (Glorot & Bengio, 2010). The forget bias
on the LSTM is initialized to 1.

The discriminator network feeds the input into a Convolution(16, stride=2) followed by a Convo-
lution(32, stride=2) followed by Convolution(32, stride=2). All convolutions have stride 2. As in
(Radford et al., 2015) leaky rectifiers are used with a 0.3 leak. Batch normalization is applied after
each layer (Ioffe & Szegedy, 2015). The resulting 4D tensor is then flattened and a linear projection
is performed to a single scalar.
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Figure App.3: If the discriminator remains nearly at its optimum during learning, then performance
is nearly identical with and without the second gradient term in Equation 12. As shown in Figure
App.4, when the discriminator lags behind the generator, backpropagating through unrolling aids
convergence.

The generator network minimises LG = log(D(G(z))) and the discriminator minimizes LD =
log(D(x)) + log(1 −D(G(z))). Both networks are trained with Adam(Kingma & Ba, 2014) with
learning rates of 1e-4 and β1=0.5. The network is trained alternating updating the generator and the
discriminator for 150k steps. One step consists of just 1 network update.

D CIFAR10/MNIST TRAINING DETAILS

The network architectures for the discriminator, generator, and encoder as as follows. All convolu-
tions have a kernel size of 3x3 with batch normalization and leaky ReLU’s with a 0.3 leak.

The generator network is defined as:

number outputs stride
Input: z ∼ N (0, I256)
Fully connected 4 * 4 * 512
Reshape to image 4,4,512
Convolution 256 2
Convolution 128 2
Convolution 64 2
Convolution 1 or 3 1
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Unrolled GAN with 5 G Steps per D
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0

1

3

5

10

0

20

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Update Steps

U
n
ro

lli
n
g
 S

te
p
s

Figure App.4: Backpropagating through the unrolling process aids convergence when the dis-
criminator does not fully converge between generator updates. When taking 5 generator steps per
discriminator step unrolling greatly increases stability, requiring only 5 unrolling steps to converge.
Without the second gradient it requires 10 unrolling steps. Also see Figure App.3.

The discriminator network is defined as:

number outputs stride
Input: x ∼ pdata or G
Transposed Convolution 64 2
Transposed Convolution 128 2
Transposed Convolution 256 2
Flatten
Fully Connected 1

The generator network minimises LG = log(D(G(z))) and the discriminator minimizes LD =
log(D(x))+ log(1−D(G(z))). The networks are trained with Adam with a generator learning rate
of 1e-4, and a discriminator learning rate of 2e-4. The network is trained alternating updating the
generator and the discriminator for 100k steps. One step consists of just 1 network update.
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E 1000 CLASS MNIST

number outputs stride
Input: z ∼ N (0, I256)
Fully connected 4 * 4 * 64
Reshape to image 4,4,64
Convolution 32 2
Convolution 16 2
Convolution 8 2
Convolution 3 1

The discriminator network is parametrized by a size X and is defined as follows. In our tests, we
used X of 1/4 and 1/2.

number outputs stride
Input: x ∼ pdata or G
Transposed Convolution 8*X 2
Transposed Convolution 16*X 2
Transposed Convolution 32*X 2
Flatten
Fully Connected 1

F COLORED MNIST DATASET

F.1 DATASET

To generate this dataset we first took the mnist digit, I , scaled between 0 and 1. For each image
we sample a color, C, normally distributed with mean=0 and std=0.5. To generate a colored digit
between (-1, 1) we do I ∗ C + (I − 1). Finally, we add a small amount of pixel independent noise
sampled from a normal distribution with std=0.2, and the resulting values are cliped between (-1, 1).
When visualized, this generates images and samples that can be seen in figure App.5. Once again
it is very hard to visually see differences in sample diversity when comparing the 128 and the 512
sized models.

Figure App.5: Right: samples from the data distribution. Middle: Samples from 1/4 size model with
0 look ahead steps (worst diversity). Left: Samples from 1/1 size model with 10 look ahead steps
(most diversity).

F.2 MODELS

The models used in this section are parametrized by a variable X to control capacity. A value of
X=1 is same architecture used in the cifar10 experiments. We used 1/4, 1/2 and 1 as these values.

The generator network is defined as:
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number outputs stride
Input: z ∼ N (0, I256)
Fully connected 4 * 4 * 512*X
Reshape to image 4,4,512*X
Convolution 256*X 2
Convolution 128*X 2
Convolution 64*X 2
Convolution 3 1

The discriminator network is defined as:

number outputs stride
Input: x ∼ pdata or G
Transposed Convolution 64*X 2
Transposed Convolution 128*X 2
Transposed Convolution 256*X 2
Flatten
Fully Connected 1

G OPTIMIZATION BASED VISUALIZATIONS

More examples of model based optimization. We performed 5 runs with different seeds of each of
of the unrolling steps configuration. Bellow are comparisons for each run index. Ideally this would
be a many to many comparison, but for space efficiency we grouped the runs by the index in which
they were run.
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0.0212 0.0136 0.0133 0.0078

0.0158 0.0108 0.0103 0.006

0.0612 0.027 0.0317 0.0239

0.0254 0.0083 0.0128 0.0102

0.0321 0.0182 0.0177 0.0128

0.0382 0.0139 0.0133 0.0154

0.0142 0.0059 0.0067 0.0059

0.0332 0.0119 0.0186 0.0139

0.0061 0.0049 0.0034 0.0026

Data

0.0351

0 step

0.0341

1 step

0.0216

5 step

0.0149

10 step

0.0183 0.0087 0.0073 0.0078

0.0449 0.0251 0.0238 0.0194

0.0185 0.009 0.0094 0.008

0.0672 0.0366 0.0428 0.0295

0.0146 0.0112 0.0146 0.0064

0.0465 0.0302 0.0272 0.0206

0.05 0.0274 0.0238 0.0223

0.012 0.007 0.0085 0.0054

0.0252 0.0167 0.0172 0.0113

0.0268 0.0157 0.0154 0.0121

0.0405 0.0189 0.0235 0.0185

0.048 0.0325 0.0295 0.0222

Figure App.6: Samples from 1/5 with different random seeds.

21



Published as a conference paper at ICLR 2017

Data

0.0183

0 step

0.0151

1 step

0.0068

5 step

0.0051

10 step

0.0216 0.0119 0.0058 0.0066

0.0555 0.0217 0.0182 0.017

0.0317 0.0141 0.0144 0.014

0.0058 0.0035 0.0041 0.0026

0.0488 0.033 0.0316 0.0223

0.0165 0.0085 0.0106 0.0082

0.0221 0.0134 0.0217 0.011

0.0231 0.013 0.0168 0.0117

0.0627 0.0393 0.0536 0.032

0.0151 0.0129 0.0286 0.0079

0.0168 0.0101 0.0104 0.0087

0.0276 0.0217 0.0193 0.0146

Data

0.0338

0 step

0.024

1 step

0.0232

5 step

0.0178

10 step

0.0273 0.0168 0.0259 0.0145

0.0355 0.0232 0.0262 0.0189

0.0151 0.0127 0.0137 0.008

0.0213 0.0159 0.0221 0.0114

0.0368 0.0305 0.0255 0.0199

0.005 0.0046 0.0039 0.0027

0.0292 0.0239 0.0211 0.016

0.0263 0.0201 0.0217 0.0144

0.0334 0.0213 0.0207 0.0183

0.0355 0.0339 0.0215 0.0196

0.0438 0.0211 0.0291 0.0242

0.0226 0.015 0.0156 0.0125

Figure App.7: Samples from 2/5 with different random seeds.
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Data

0.03

0 step

0.0075

1 step

0.0066

5 step

0.0053

10 step

0.0213 0.0081 0.0096 0.006

0.0453 0.0157 0.0127 0.0143

0.0161 0.0114 0.0075 0.0063

0.0168 0.0125 0.0137 0.0066

0.0304 0.0186 0.0229 0.013

0.0421 0.0284 0.0272 0.0185

0.0234 0.0147 0.0173 0.0103

0.0242 0.0156 0.0144 0.011

0.0223 0.0152 0.0174 0.0103

0.0341 0.0274 0.02 0.016

0.0079 0.0049 0.0052 0.0037

0.0207 0.0133 0.011 0.0099

Data

0.0403

0 step

0.0246

1 step

0.0352

5 step

0.0197

10 step

0.0227 0.0164 0.0109 0.0111

0.0202 0.0148 0.0146 0.01

0.0269 0.02 0.0221 0.0133

0.0172 0.0144 0.0144 0.0086

0.0223 0.0157 0.0196 0.0111

0.0509 0.0357 0.0351 0.0258

0.021 0.016 0.015 0.0107

0.0219 0.0105 0.013 0.0112

0.0206 0.0177 0.0175 0.0105

0.024 0.0177 0.0256 0.0123

0.0286 0.019 0.0188 0.0146

0.0169 0.015 0.0135 0.0087

Figure App.8: Samples from 3/5 with different random seeds.
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Data

0.0259

0 step

0.016

1 step

0.0288

5 step

0.0096

10 step

0.0374 0.0388 0.0301 0.0161

0.0429 0.021 0.0228 0.0191

0.0233 0.0278 0.0222 0.011

0.0528 0.0303 0.0274 0.0249

0.0329 0.0202 0.0274 0.0155

0.0286 0.0204 0.0164 0.0135

0.022 0.0146 0.0155 0.0105

0.0366 0.0248 0.0205 0.0178

0.0336 0.0228 0.0257 0.0164

0.0191 0.0115 0.011 0.0096

0.0557 0.0322 0.0304 0.0282

0.0464 0.0261 0.0269 0.0239

Data

0.0216

0 step

0.0155

1 step

0.0218

5 step

0.0112

10 step

0.0403 0.024 0.0244 0.0212

0.055 0.0363 0.0361 0.0289

0.0341 0.0236 0.0333 0.018

0.0414 0.0215 0.0274 0.0219

0.0167 0.0104 0.0122 0.0089

0.0241 0.0105 0.015 0.0129

0.0063 0.0028 0.0046 0.0034

0.0402 0.0278 0.0314 0.0217

0.0157 0.0133 0.0142 0.0084

0.0301 0.0281 0.0294 0.0163

0.0507 0.0362 0.0494 0.0277

0.0375 0.0323 0.0247 0.0206

Figure App.9: Samples from 4/5 with different random seeds.
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Data

0.0452

0 step

0.0064

1 step

0.0064

5 step

0.0081

10 step

0.0333 0.0078 0.0076 0.0065

0.043 0.0124 0.0235 0.0134

0.03 0.0064 0.008 0.0104

0.0128 0.0058 0.0065 0.0058

0.0392 0.0195 0.0218 0.0177

0.0402 0.0308 0.0286 0.0184

0.0168 0.0096 0.0119 0.0077

0.0402 0.0299 0.0233 0.0188

0.026 0.0144 0.0165 0.0122

0.0097 0.0061 0.005 0.0046

0.0105 0.0051 0.0042 0.005

0.0331 0.0236 0.0256 0.0158

Data

0.0557

0 step

0.0373

1 step

0.0344

5 step

0.0271

10 step

0.0565 0.031 0.0364 0.0276

0.0315 0.0115 0.0137 0.0154

0.0285 0.0123 0.0183 0.014

0.0552 0.0314 0.0307 0.0271

0.0327 0.015 0.0172 0.0161

0.0735 0.0577 0.0386 0.0365

0.0204 0.0121 0.0111 0.0102

0.0291 0.0163 0.0195 0.0145

0.0261 0.0135 0.015 0.013

0.0286 0.0189 0.02 0.0143

0.027 0.019 0.019 0.0135

0.0156 0.0091 0.012 0.0078

Figure App.10: Samples from 5/5 with different random seeds.
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