
Under review as a conference paper at ICLR 2020

A GRADIENT-BASED SELF-ORGANIZING NEURAL
NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing the architecture of deep neural networks (DNNs) is a cumbersome task
that requires significant human expertise. There have been attempts to automatize
this task, mainly by considering DNN architecture parameters such as the num-
ber of layers, the number of neurons and the activation function of each layer as
hyper-parameters, and using an external method for optimizing them. This frame-
work is computationally too expensive since each hyper-parameter optimization
iteration required a whole model training. Here we propose Farfalle Neural Net-
works, a novel recurrent structure in which neurons connect each other through
their trainable embeddings. Hence, important architecture features such as the
number of neurons in each layer and the wiring among the neurons are automati-
cally learned during the training process. We theoretically prove that the proposed
model can replace a stack of dense layers, which is used as a part of many DNN
architectures. By comparing the performance of dense networks and FNNs we
show FNNs achieve comparable or higher accuracy using significantly fewer pa-
rameters.

1 INTRODUCTION

During the last few years, deep neural networks (DNNs) have played an incomparable role in ad-
dressing challenging problems of different areas, most impressively computer vision (Simonyan &
Zisserman (2014); He et al. (2016)). However, well-designing the architecture of a DNN requires
a lot of expertise and is usually a cumbersome and time-consuming task, since many possible con-
figurations are assessed before the best one is found. Additionally, the performance of different
architectures heavily relies on the nature of the task and the data.

There are several studies (Zagoruyko & Komodakis (2016); Szegedy et al. (2016)) providing insight
on how to tune models with state of the art performance for different tasks. Moreover, many studies
(Zoph & Le (2016); Cai et al. (2018); Rohekar et al. (2018); Zhong et al. (2018)) have been accom-
plished recently to avoid architecture engineering. These methods are based on network architecture
search over the space of possible architectures (Elsken et al. (2019)). However, these approaches
control the structure externally, hence adding a computational overhead when training the model.
On the other hand, some studies (Li et al. (2016); Han et al. (2015)) show that it is possible to re-
duce the number of network parameters and still achieve comparable performance. These smaller
networks have the benefit of requiring less storage space and less computational power during infer-
ence. These findings also show that there is still much room for improvement in designing efficient
neural network architectures.

In this paper, we propose a new neural network model, called Farfalle Neural Network (FNN) in
which the trainable parameters are not the weights on the connections between neurons. Instead,
the network learns embedding vectors for neurons and uses these vectors to determine the weights
of neural connections. More importantly, in the proposed method, instead of hand-crafting the
network architecture, it is learned during the training process. The connections between neurons are
indirectly specified according to neuron embeddings. Therefore, the proposed network configures its
structure itself during the training process given solely the number of nodes and an upper bound on
the network depth. We also establish the effectiveness of our models through various experiments.
In particular, we show that our model is able to replace fully connected networks achieving higher
performance with a 70% reduction in the number of parameters.

1

Under review as a conference paper at ICLR 2020

Figure 1: The intuition behind floating neurons. The connections between floating neurons are
defined based on their relative similarities. Thus, neurons needing an information and providers of
it tend to approach each other.

2 RELATED WORK

Recent proposed methods for automatic design of neural networks are commonly focused on treat-
ing the architecture decisions as hyper-parameters. These methods use either a supervised or an
unsupervised approach to optimize these hyper-parameters. There are several approaches (Zoph &
Le (2016); Baker et al. (2016); Zhong et al. (2018)) that utilize reinforcement learning for effec-
tively searching the design space. These approaches usually have a lot of computational overhead
because of their need to compute the model’s accuracy during the search in the space of architectures
Elsken et al. (2019). To circumvent this issue, Smithson et al. (2016) uses another neural network
to estimate the trained model’s accuracy. However, training the estimator network is itself a compu-
tationally expensive task. Rohekar et al. (2018) propose a lightweight unsupervised approach using
Bayesian network structure learning. Using this approach, they replace fully connected layers at the
end of known networks such as VGGNet with smaller models while still showing a comparable per-
formance in accuracy. Note that while the reported results show the effectiveness of this method, it
still optimizes the structure externally. Hence, it requires an additional environment setup and have
an external overhead in the learning process, though the latter is reported to be reasonably small.

One of the key ideas in our proposed method is to assign embedding vectors to neurons of the net-
work and use the attention mechanism to relate them. Similar ideas appear in the Transformer net-
work (Vaswani et al. (2017)) and CapsNet (Sabour et al. (2017)). In Transformer networks (Vaswani
et al. (2017)) input words and their positional information are embedded in a low-dimensional space.
However, they utilized a specific case of attention called self-attention to relate different parts of the
sequence. In addition, the embeddings used in that architecture are not trained for the purpose of
structure learning. CapsNet (Sabour et al. (2017)) considers an output vector for each capsule and
routes the outputs from one capsule to the next layer’s capsules according to its ability to predict the
output vector of those capsules. However, CapsNets still use weight matrices between neurons and
also are not able to self configure their structure.

3 FARFALLE NEURAL NETWORKS

In traditional neural networks, the number of neurons in each layer and the arrangement of the neu-
rons is fixed. This rigid configuration prevents straightforward optimization of the network structure
during the training process. Therefore, finding a network with proper structure requires testing a lot
of configurations.

In contrast, FNNs utilize a new type of neurons which can float and find the most suitable neurons
to obtain information from them. The connections between these floating neurons are defined based
on their relative similarities. Thus, during the training process, relevant neurons move toward each
other to strengthen their connection. Figure 1 shows how these neurons float to obtain more relevant
information.

3.1 FLOATING NEURONS

A floating neuron gathers information from relevant neurons at its input, transforms it with a train-
able transformation, and emits the result at its output. In order to avoid confusion, we might refer to
a neuron’s input as its head. Similarly, we sometimes refer to its output as the neuron’s tail. Inputs

2

Under review as a conference paper at ICLR 2020

Figure 2: A schematic representation of a floating neuron and its connections. Each neuron has an
input embedding, an output embedding, and a transformation function.

and outputs of these neurons are embedded in a d-dimensional space. These embedding vectors reg-
ulate the weights connecting relevant neurons and are updated during the training process. Figure
2 shows a schematic representation of a floating neuron and its connections. Specifically, a floating
neuron v consists of three parts:

• Input embedding: A trainable d-dimensional vector Iv which indicates the coordinates
of the neuron’s head. The similarity between this vector and output embedding of other
neurons determines the connection weights between this neuron and other neurons using
the attention mechanism.

• Transformation function: A trainable nonlinear function Fv that transforms the gathered
information. The transformation used in this study is of the form Fv(x) = ReLU(av ·x+bv)
where av and bv are neuron-specific trainable parameters.

• Output embedding: A trainable d-dimensional vector Ov which indicates the coordinates
of the neuron’s tail.

In addition to normal floating neurons, there are two custom types of floating neurons: Input neurons,
which receive the input of the whole network and output neurons, which provide the processed data
to the outside. Consequently, input neurons do not have input embedding and output neurons do not
have output embedding.

3.2 CONSTRUCTION OF MULTI-LAYER FLOATING NEURAL NETWORKS

Before introducing FNNs, we discuss how to employ floating neurons in a layered structure. In
order to form such a network, floating neurons are grouped in layers. The neurons at each layer
obtain their values from neurons at the previous layer. The connections between neurons of two
consecutive layers are defined based on the attention mechanism.

Formally, suppose v is a neuron in the layer i + 1 and u1, u2, . . . , uM are neurons of the previous
layer, i.e. layer i. The weights connecting v to related neurons is defined by

w1, w2, . . . , wM = N (ITv Ou1
, ITv Ou2

, . . . , ITv OuM
) (1)

where Iv is the input embedding of neuron v, Oui is the output embedding of neuron ui, and N
is a normalization function. For normalization, one can choose softmax function to force each
neuron’s input to be a convex combination of the outputs of the neurons in the previous layer. We
found l2 normalization to work best in our experiments and thus the following function is used for
normalization

Nl2(x1, x2, . . . , xn) =
x1∑
i x

2
i

,
x2∑
i x

2
i

, . . . ,
xn∑
i x

2
i

. (2)

Utilizing these weights, given y1, y2, . . . , yM as the values of neurons u1, u2, . . . , uM , the output
value of neuron v will be Fv(

∑
m wiyi) where Fv is the transformation function of neuron v. To

efficiently connect neurons v1, v2, . . . , vN of the layer i+ 1 to neurons u1, u2, . . . , uM of the layer
i, let I = [Iv1 |Iv2 | · · · |IvN] be the concatenation of input embedding vectors of the layer i + 1 and
O = [Ou1

|Ou2
| . . . |OuM

] be the concatenation of output embedding vectors of the layer i. Then,
the weights connecting neurons of these two layers are determined by

W = Ñ
(
ITO

)
(3)

where Ñ is a function normalizing each row of its input matrix according to the normalization
function N . Finally, the output of layer i+ 1 will be

Z = F̃(WY) (4)

3

Under review as a conference paper at ICLR 2020

Figure 3: The architecture of Farfalle Neural Networks.

where Y is the vector containing output values of layer i and F̃i = Fvi .

Using this model, the number of parameters required to connect a layer of size M to a layer of
size N is of the order O(d(M + N)). In contrast, in dense models the number of parameters for
connecting two such layers would be of the order O(MN). Hence, by using this model one of
the limitations in designing neural networks, that is the huge number of parameters in the weight
matrices, is resolved.

3.3 CONSTRUCTION OF FARFALLE NEURAL NETWORKS

An FNN is a recurrent network of floating neurons. Hence neurons in this architecture are used in
iterations. In each iteration, floating neurons receive the output of the previous iteration along with
the input. Figure 3 represents the architecture of FNNs. The expanded architecture is available in
Supplementary Figure 7. This recurrent structure allows neurons to process high-level information
along with low-level features. Also, the floating nature of these neurons allows the network to
balance the number of neurons employed in different levels of abstraction. Supplementary Figure
8 illustrates how this recurrent structure allows the network to combine information from different
levels of abstraction. This flexibility allows the architecture to evolve during the training.

Before describing the data flow of FNNs, let’s define an auxiliary function. For two groups of
neurons V and U , equation (3) defines the weights connecting neurons in V to neurons in U . In this
equationO and I are the concatenation of output embeddings of neurons in U and the concatenation
of input embeddings of neurons in V respectively. Given Y as the values of neurons in U , equation
(4) describes the output values of neurons in V . Combining these equations results in

Step(V,U, Y) = F̃(Ñ
(
ITO

)
Y) (5)

where Ñ is a function normalizing each row of its input matrix and F̃ transforms values of each
floating neuron using its own transformation function. The function Step can be seen as the combi-
nation of attention and neuronal transformation.

Constructing an FNN for the input size of R and output size of S needs R input floating neu-
rons for feeding data to the network, N floating neurons for processing data in k iterations, and S
output floating neurons for the final deduction from hidden neurons. Here, N and k are the hyper-
parameters of the network. Let’s call the input neurons I = i1, i2, . . . , iR, the hidden neurons
V = v1, v2, . . . , vN , and the output neuronsO = o1, o2, . . . , oS . The following procedure describes
the flow of the network:

1. Each input neuron assigns an embedding vector to its input variable after applying its trans-
formation function, i.e. given input x = (x1, x2, . . . , xR), input neurons will provide val-
ues Y0 = Fi1(x1), Fi2(x2), . . . , FiR(xR) at locations Oi1 , Oi2 , . . . , OiR .

2. In the first step of the iterative part, hidden neurons process the data provided by input
neurons. Thus, the resulting values of this step is Y1 = Step(V, I, Y0).

3. In iteration 1 < j ≤ k, each hidden neuron process Y0 along with the outputs of all hidden
neurons in the previous iteration (Yj−1) and produce Yj . Indeed, given Y0 and Yj−1 hidden
floating neurons will provide Yj = Step(V, [I|V], [Y0, Yj−1]).

4. Finally, utilizing output neurons the final output will be Step(O,V, Yk).

4

Under review as a conference paper at ICLR 2020

The following theorem shows how an FNN with its recurrent structure can model a multi-layer
floating neural network.

Theorem 1. Every multi-layer floating neural network with l layers, total of N floating neurons,
and embedding dimension d can be modeled by an FNN containing N + 1 floating neurons with
embedding dimension of l · d which iterates for l iterations.

Proof. Suppose a multi-layer floating neural networkN1 with layer sizes of n1, n2, . . . , nl is given.
Let i1, i2, . . . , iR be the input floating neurons, vj1, v

j
2, . . . , v

j
nj

be the floating neurons in layer j,
and o1, o2, . . . , oS be the output floating neurons of the network.

To construct an FNN N2 with the same functionality, define a network with input neurons
i′1, i
′
2, . . . , i

′
R, output neurons o′1, o

′
2, . . . , o

′
S , and hidden neurons v′0, v

′1
1 , v

′1
2 , . . . , v

′l
nl

such that v′ji
correspond to hidden neuron vji of N1. Let all floating neurons in N2 have the same transfor-
mation function as their corresponding neuron in N1 and v′0 be a neuron with Fv′0

= 0 · x and
Iv′0 = Ov′0

= (ε, . . . , ε) where ε is a negligible values. Before defining neural embeddings of N2,
for 0 < j ≤ l define

Ej(x1, x2, . . . , xd) = (

(j−1)·d︷ ︸︸ ︷
0, . . . , 0, x1, x2, . . . , xd,

(l−j)·d︷ ︸︸ ︷
0, . . . , 0).

This implies that

Ei(x)
TEj(y) =

{
xT y i = j

0 i 6= j
. (6)

Now, define all remaining embedding vectors of N2 by

Oi′r
=E1 (Oir) Io′s =E1 (Ios)

Ov′ji
=E(j mode l)+1

(
Ovj

i

)
Iv′ji

=Ej

(
Ivj

i

)
.

These definitions along Eq. (6) result that in the first iteration, the only neurons which have a
non-zero connection with input neurons are v′11 , v

′1
2 , . . . , v

′1
n1

. In addition, the weights of these
connections are the same as the connections in the first layer of N1. Similarly, by mathemat-
ical induction over j we can state that floating neurons v′j1 , v

′j
2 , . . . , v

′j
nj

can only connect to
v′j−11 , v′j−12 , . . . , v′j−1nj−1

, the connection weights are the same as those in layer j of N1, and iter-
ation j is the first time v′j1 , v

′j
2 , . . . , v

′j
nj

can get nonzero values. This implies that the connections of
hidden floating neurons of N2 in l iterations, form a chain similar to the architecture of N1. Finally,
Io′s is just connected to v′l1 , v

′l
2 , . . . , v

′l
nl

with the same weights as in N1. This completes the proof.
It is worth mentioning that neuron v′0 is defined to eliminate the division by zero occurred in Eq. (2)
when a neuron does not have a non-zero dot product to any input neuron.

Note that by choosing a right value for d, traditional neural networks can be replaced with multi-layer
floating neural networks introduced in this paper. Additionally, Theorem 1 implies that the farfalle
neural networks are more general than multi-layer floating neural networks. Thus, as a corollary we
note that it is possible to replace traditional multi-layer neural networks with the recurrent structure
of FNNs.

Furthermore, there is a repeated observation that replacing weights of a neural network with their
low-rank approximations gives a comparable (or even improved) performance (Sainath et al. (2013);
Denil et al. (2013); Denton et al. (2014)). Such approximation allows us to replace dense networks
with FFNs with small values of d and thus reasonable number of parameters.

Utilizing this model, more flexibility in specifying the layer sizes is provided accordingly. Further-
more, since we do not need to have weight parameters explicitly, we can consider the whole network
as a fully connected structure in which each (hidden) neuron can be potentially connected to all other
neurons and even itself.

5

Under review as a conference paper at ICLR 2020

3.4 SCALABILITY & PRODUCTION

During training, the weight matrix W needs to be computed to apply the normalization function.
Since the number of elements in this matrix is quadratic in the number of neurons, it is possible
that this matrix becomes quite big. However, after the training, it is possible to workaround the
normalization step by updating the matrix I . Specifically, using the same notation as the last section,
it is enough to replace Iv with Iv∑

i(I
T
v Oui

)2
. This simplification significantly reduces the required

memory space during inference since the dimension of the embedding space is usually much smaller
than the number of neurons.

Furthermore, although the need to compute the weight matrix during the training imposes a practical
limit on the maximum number of neurons in FNN, the upper bound is still very large. Additionally, it
is possible to stack FNNs similar to normal layers to employ more floating neurons. Such structure
does not allow the use of information from all deeper layers but is still much more flexible than
commonly used dense layers.

4 RESULTS & DISCUSSION

In the following subsections, we present comparison results of our model with other DNN archi-
tectures on CIFAR (Krizhevsky et al. (2009)), a widely-used image classification dataset. First, we
compare FNNs with a dense model and show that our model can outperform them. Then we discuss
some characteristics of FNNs, such as their ability to learn locality. In the final section, we discuss
how our model can be integrated with existing convolutional neural networks.

4.1 COMPARISON WITH DENSE MODELS

Although dense models are not among the state of the art models for neither datasets, the goal of
this section is to establish the effectiveness of our model in comparison with dense models. We do
not claim that our model, in any way, can directly outperform highly specialized models such as
convolutional neural networks. Instead, we demonstrate how our model may be used in conjunction
with CNNs in subsequent sections.

In order to obtain a proper baseline for CIFAR, we used HyperOpt Bergstra et al. (2013) to search
among fully connected layers with up to 4 hidden layers. Number of neurons in each layer was
chosen from {500, 1000, 1500, 2000}. The top performing model was a fully connected network
with 2 hidden layers of 2000 and 500 neurons, in order from input to output.

We trained a multi-layer floating network with the same structure and embedding size 256. We also
trained a FNN the same number of neurons and embedding size. The number of iterations was set to
2. Furthermore, we trained a smaller fully connected network with the same number of parameters
as our models by reducing the number of neurons in the first hidden layer of baseline to 850. We
trained all four models using Adam (Kingma & Ba (2015)) algorithm for 200 epochs. In all models
we applied 0.1 dropout (Srivastava et al. (2014)) rate of the input and used ReLU (Glorot et al.
(2011)) for activation function.

Summarized results are shown in Table 1. It is evident that our models significantly outperform the
fully connected networks. This is especially significant since there is more than 70% reduction in
number of parameters in multi-layer floating network with respect to the fully connected network of
the same architecture. The performance gap is worsened when comparing with the smaller base-line.

The results show that FNNs are able to obtain comparable results. The slightly better performance
of multi-layer floating network perform with respect to FNN is not unexpected. The structure for
the multi-layer floating network is the same as the baseline which was chosen by searching through
the architecture space. Moreover, the FNN was trained with almost no hyper-parameter tuning.

4.2 ANALYSIS OF LEARNED EMBEDDINGS

We analyzed the embeddings of an FNN with 1024 neurons, 256 embedding size, and 1 iteration
trained on MNIST (LeCun et al. (1998a)). The training setting was the same as the previous section.

6

Under review as a conference paper at ICLR 2020

Model Top-1 Accuracy(%) # of Parameters
Baseline 53.69 7151510

Small-Baseline 52.29 2077850
Floating Network 63.18 2080156

FNN 63.01 2080156

Table 1: The performance of FFNs in comparison with baseline method.

1

2

3

4

5

6

7

8

Figure 4: The l2-norm of each input neuron’s
embedding is calculated and plotted at its corre-
sponding cell.

Figure 5: The input embeddings are projected
to 2D space using UMAP. Only neurons in the
inner 20× 20 box are included. Neurons corre-
sponding to adjacent cells are connected with a
line.

In Figure 4, each cell is colored according to the l2-norm of its corresponding neuron’s output
embeddings. It can be seen that marginal neurons have much lower l2-norms. This means that
the embeddings are much smaller for these neurons, and so they have little effect on the model’s
output. Note that this is expected since the marginal pixels in MNIST images seldom provide useful
information.

Figure 5 depicts the projection of the learned embeddings to 2D space. The projection is performed
using Uniform Manifold Approximation and Projection (UMAP, McInnes et al. (2018)). Neurons
corresponding to adjacent cells are connected with a line. Marginal neurons are excluded in order to
obtain a better projection of the embeddings. It is apparent in the figure that the learned embeddings
respect the locality of pixels, so a pair of pixels close to each other have similar embeddings. Hence,
it can be seen that FNN is able to assign meaningful embeddings to the neurons.

4.3 INTEGRATION WITH CNNS

Convolutional neural networks (LeCun et al. (1998b)) are widely used in image classification tasks
and have been able to produce state of the art results. Commonly in such networks, convolutional
layers are employed for feature extraction. The extracted features are then fed into several fully con-
nected layers for classification. We propose that FNNs can be used to replace these fully connected
layers.

To test this, we compared FNN with a baseline model on CIFAR10 and CIFAR100 datasets. We use
a slightly modified version of VGG16 Simonyan & Zisserman (2014) which is suitable for CIFAR
as our baseline. In this version, all layers after the last max-pooling layer are replaced with fully
connected network with one hidden layer of 512 neurons. Batch normalization and a dropout rate of
0.5 is applied after the hidden layer. The same dropout rate is also applied before the hidden layer.
We used ReLU as the activation function. A similar model has been used as a baseline in other
studies (Rohekar et al. (2018); Li et al. (2016)).

7

Under review as a conference paper at ICLR 2020

Model Top-1 Accuracy(%)
CIFAR10 CIFAR100

VGG16 + Dense 92.98 73.19
VGG16 + FNN 93.51 73.33

Table 2: Top-1 accuracies when using normal dense layers or a FNN in VGG16.

We compare this baseline with an alternative architecture consisting of an FNN with 1024 neurons
after the last max-pooling layer. The number of iterations was set to 3. We used Stochastic Gradi-
ent Descent (SGD) with 0.9 momentum Rumelhart et al. (1988) for training and employed 0.0005
weight decay regularization.

The maximum test accuracy of both models are presented in Table 2. It is evident that our model
outperforms the dense layers on both datasets.

5 FUTURE WORK

We established that FNNs are able to replace and outperform fully connected layers.

FNNs are an extreme case of sharing embeddings between layers of a multi-layer floating neural
network. We note that it is possible to use different patterns of sharing. Exploring this area might
specially be interesting in the case of auto-encoders.

We conjecture that some of the neuron embeddings trained to solve one task can be used to solve
similar tasks. The input neuron embeddings projection in Figure 5 supports this conjecture. How-
ever, this task is not trivial, and we leave it as a future work.

Another interesting direction is to assign different activation functions to different neurons in an
FNN. This feature allows a combination of activation functions to be used together which is, to the
best of our knowledge, something less explored in hand-crafted architectures.

6 CONCLUSION

In this paper, we introduced a method to learn the network structure internally during training. This
was done mainly based on the new approach of assigning parameters to the neurons instead of the
connection between them. Using this approach, we introduced a novel neural network structure
called Farfalle Neural Network. We established through experiments that this new structure can
outperform dense layers in various scenarios while even sometimes using significantly (70%) lower
number of parameters. We also discussed how this approach could significantly reduce the memory
requirements during the inference process.

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hy-
perparameter optimization in hundreds of dimensions for vision architectures. In Pro-
ceedings of the 30th International Conference on International Conference on Ma-
chine Learning - Volume 28, ICML’13, pp. I–115–I–123. JMLR.org, 2013. URL
http://dl.acm.org/citation.cfm?id=3042817.3042832.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by
network transformation. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Pre-
dicting parameters in deep learning. In Advances in neural information processing systems, pp.
2148–2156, 2013.

8

Under review as a conference paper at ICLR 2020

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in neural informa-
tion processing systems, pp. 1269–1277, 2014.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323, 2011.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998a.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998b.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets, 2016.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction, 2018.

Raanan Y Rohekar, Shami Nisimov, Yaniv Gurwicz, Guy Koren, and Gal Novik. Constructing
deep neural networks by bayesian network structure learning. In Advances in Neural Information
Processing Systems, pp. 3047–3058, 2018.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations by
back-propagating errors. Cognitive modeling, 5(3):1, 1988.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in neural information processing systems, pp. 3856–3866, 2017.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets.
In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6655–
6659. IEEE, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sean C Smithson, Guang Yang, Warren J Gross, and Brett H Meyer. Neural networks designing
neural networks: multi-objective hyper-parameter optimization. In Proceedings of the 35th Inter-
national Conference on Computer-Aided Design, pp. 104. ACM, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

9

Under review as a conference paper at ICLR 2020

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Guoqiang Zhong, Tao Li, Wenxue Liu, and Yang Chen. Structure learning of deep networks via dna
computing algorithm. arXiv preprint arXiv:1810.10687, 2018.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

10

Under review as a conference paper at ICLR 2020

A ABLATION STUDY

In this section, we investigate the effect of three hyper-parameters, specifically number of iterations,
embedding size, and normalization function, on the performance of FNNs. To assess the effect
of each hyper-parameter, we set all other hyper-parameters to a default value and evaluate model
performance for various values of this hyper-parameter. The default values are 3 for the number of
iterations, 256 for the embedding size, and l2 for the normalization function. In all experiments, the
FNN consists of 1024 neurons. The results are presented in Figure 6.

35

40

45

50

55

60

65

no hidden 1 2 3 4 5 6
Number of iterations

A
cc

ur
ac

y

60.0

60.5

61.0

61.5

64 128 256 384 512
Embedding Size (d)

A
cc

ur
ac

y

48

52

56

60

L2 Normalization No Normalization Softmax

Normalization function

A
cc

ur
ac

y

Figure 6: The effect of different parameters on the performance of FNNs. The default values for
number of iterations, embedding size, number of neurons, and normalization function are 3, 256,
1024, and l2 respectively. The default values are used if not specified.

B INTEGRATION WITH OTHER CNNS

In this section we present results of using FNNs instead of the fully connected layers at the tail
of other convolutional networks, specifically Residual Networks He et al. (2016). We compare
performance of our models with baseline models on CIFAR100 dataset.

We train ResNet18 as our baseline and compare it with a variant of ResNet18 with an FNN instead
of the tail fully connected layer. The FNN has 512 neurons with 64 embedding size. The number of
iterations is set to 1 so the network is equivalent with a multi-layer floating network with one hidden
layer. For this task, we fixed the transformation function of the input neurons to identity. The results
are presented in Table 3.

Model Top-1 Accuracy(%)
ResNet18 + Dense 76.55
ResNet18 + FNN 76.60

Table 3: The performance of ResNet18 and a variant of it with an FNN instead of the tail fully
connected layer on CIFAR100.

11

Under review as a conference paper at ICLR 2020

SUPPLEMENTARY FIGURES

Figure 7: Unrolling Farfalle Neural Networks. FNNs have a recurrent block of floating neurons.
Unrolling this structure results in a layered structure of floating neurons, in which the parameters
are shared between layers. In addition, input is fed into each hidden layer.

Figure 8: The recurrent structure allows the network to balance the number of neurons employed
in different levels of abstraction. This illustration employs unrolled structure to show how neurons
can combine information from different levels of abstraction. Red lines specify active connections
(connections that significantly influence output) of each iteration.

12

