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ABSTRACT

Determining the source of uncertainties in the predictions of AI systems are im-
portant. It allows the users to act in an informative manner to improve the safety
of such systems, applied to the real-world sensitive applications. Predictive uncer-
tainties can originate from the uncertainty in model parameters, data uncertainty
or due to distributional mismatch between training and test examples. While re-
cently, significant progress has been made to improve the predictive uncertainty
estimation of deep learning models, most of these approaches either conflate the
distributional uncertainty with model uncertainty or data uncertainty. In contrast,
the Dirichlet Prior Network (DPN) can model distributional uncertainty distinctly
by parameterizing a prior Dirichlet over the predictive categorical distributions.
However, their complex loss function by explicitly incorporating KL divergence
between Dirichlet distributions often makes the error surface ill-suited to opti-
mize for challenging datasets with multiple classes. In this paper, we present an
improved DPN framework by proposing a novel loss function using the standard
cross-entropy loss along with a regularization term to control the sharpness of
the output Dirichlet distributions from the network. Our proposed loss function
aims to improve the training efficiency of the DPN framework for challenging
classification tasks with a large number of classes. In our experiments using syn-
thetic and real datasets, we demonstrate that our DPN models can distinguish the
distributional uncertainty from other uncertainty types. Our proposed approach
significantly improves DPN frameworks and outperform the existing OOD de-
tectors on CIFAR-10 and CIFAR-100 dataset while also being able to recognize
distributional uncertainty distinctly.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved impeccable success to address various real world tasks
(Simonyan & Zisserman, 2014a; Hinton et al., 2012; Litjens et al., 2017). However, despite impres-
sive, and ever-improving performance in various supervised learning tasks, DNNs tend to make
over-confident predictions for every input. Predictive uncertainties of DNNs can be confronted from
three different factors such as model uncertainty, data uncertainty and distributional uncertainty
(Malinin & Gales, 2018). Model or epistemic uncertainty captures the uncertainty in estimating
the model parameters, conditioning on training data (Gal, 2016). This uncertainty can be explained
away given enough training data. Data or aleatoric uncertainty is originated from the inherent com-
plexities of the training data, such as class overlap, label noise, homoscedastic and heteroscedastic
noise (Gal, 2016). Distributional uncertainty or dataset shift arises due to the distributional mis-
match between the training and test examples (Quionero-Candela et al., 2009; Malinin & Gales,
2018). In this case, as the network receives unfamiliar out-of-distribution (OOD) test data, it should
not confidently make predictions. The ability to separately model these three types of predictive
uncertainty is important, as it enables the users to take appropriate actions depending on the source
of uncertainty. For example, in the active learning scenario, distributional uncertainty indicates that
the classifier requires additional data for training. On the other hand, for various real-world appli-
cations where the cost of an error is high, such as in autonomous vehicle control, medical, financial
and legal fields, the source of uncertainty informs whether an input requires manual intervention.

Recently notable progress has been made to detect OOD images. Bayesian neural network based
approaches conflate the distributional uncertainty through model uncertainty (Hernandez-Lobato &
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Adams, 2015; Gal, 2016). However, since obtaining the true posterior distribution for the model
parameters are intractable, the success of these approaches depends on the chosen prior distribution
over parameters and the nature of approximations. Here, the predictive uncertainties can be mea-
sured by using an an ensemble of multiple stochastic forward passes using dropouts from a single
DNN (Monti-Carlo Dropout or MCDP) (Gal & Ghahramani, 2016) or by ensembling results from
multiple DNNs (Lakshminarayanan et al., 2017) and computing their mean and spread. On the
other hand, most of the non-Bayesian approaches model their distributional uncertainty with data
uncertainty. These approaches can explicitly train the network in a multi-task fashion incorporat-
ing both in-domain and OOD examples to produce sharp and flat predictive posteriors respectively
(Lee et al., 2018a; Hendrycks et al., 2019). However, none of these approaches can robustly de-
termine the source of uncertainty. Malinin & Gales (2018) introduced Dirichlet Prior Network
(DPN) to distinctly model the distributional uncertainty from the other uncertainty types. A DPN
classifier aims to produce sharp distributions to indicate low-order uncertainty for the in-domain
examples and flat distributions for the OOD examples. However, their complex loss function, using
the Kullback-Leibler (KL) divergence between Dirichlet distributions, results in the error surface to
become poorly suited for optimization and makes it difficult efficiently train the DNN classifiers for
challenging datasets with a large number of classes (Malinin & Gales, 2019).

In this work, we aim to improve the training efficiency of the DPN framework by proposing a novel
loss function that also allows the distributional uncertainty to be modeled distinctly from both data
uncertainty and model uncertainty. Instead of explicitly using Dirichlet distributions in the loss
function, we propose to apply the standard cross-entropy loss on the softmax outputs along with a
novel regularization term for the logit (pre-softmax activation) outputs. We train the models in a
multi-task function by leveraging both in-domain training images and OOD training images. The
proposed loss function can be also viewed from the perspective of the non-Bayesian frameworks
(Lee et al., 2018a; Hendrycks et al., 2019) where the proposed regularizer presents an additional term
to control the sharpness of the output Dirichlet distributions. In our experiments, we demonstrate
that our proposed regularization term can effectively control the sharpness of the output Dirichlet
distributions from the DPN to detect distributional uncertainties along with making the framework
scalable for more challenging datasets. We also find that the OOD detection performance of our DPN
models often improves by augmenting Gaussian noises with the OOD training images to train the
DPN. Our experimental results on CIFAR-10 and CIFAR-100 suggest that our proposed approach
significantly improves the performance of the DPN framework for OOD detection and out-performs
the recently proposed OOD detection techniques.

2 RELATED WORKS

In Bayesian frameworks, the predictive uncertainty of a classification model, trained on a finite
dataset, Din = {xi, yi}Ni=1 ∼ Pin(x, y), is expressed in terms of data (aleatoric) and model (epis-
temic) uncertainty (Gal, 2016). For an input x∗, the predictive uncertainty is expressed as:

p(ωc|x∗,Din) =

∫
p(ωc|x∗, θ) p(θ|Din) dθ (1)

Here, x and y represents the images and the corresponding class labels, sampled from an underlying
probability distribution pin(x, y). Here, the data uncertainty, p(ωc|x∗, θ) is described by the pos-
terior distribution over class labels given model parameters, θ and model uncertainty, p(θ|Din), is
given by the posterior distribution over parameters given the data, Din.

The expected distribution for predictive uncertainty, p(ωc|x∗,Din) is obtained by marginalizing out
θ. However, true posterior for p(θ|Din) is intractable. Approaches such as Monte-Carlo dropout
(MCDP) (Gal & Ghahramani, 2016), Langevin Dynamics (Welling & Teh, 2011), explicit ensem-
bling (Lakshminarayanan et al., 2017) approximate the integral in eq. 1 as:

p(ωc|x∗,Din) ≈ 1

M

M∑
m=1

p(ωc|x∗,θ(m)) θ(m) ∼ q(θ) (2)

where, θ(m) is sampled from an explicit or implicit variational approximation, q(θ) of the true pos-
terior p(θ|Din). Each p(ωc|x∗, θ(m)) represents a categorical distribution, µ = [µ1, · · · , µk] =
[p(y = ω1), · · · , p(y = ωK)] over the class labels and the ensemble can be visualized as a collec-
tion of points on the simplex. While for a confident prediction, the ensemble is expected to sharply
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(a) Confident prediction (b) Data uncertainty (c) Distributional uncertainty

Figure 1: Desired behavior of a DPN to indicate the three different uncertainties.

appear in one corner of the simplex, the flatly spread ensembles cannot determine whether the un-
certainty is due to data or distributional uncertainty. Furthermore, for standard DNNs, with millions
of parameters, it becomes even harder to find an appropriate prior distribution and inference scheme
to estimate the posterior distribution of the model. Dirichlet Prior Network (DPN) is introduced
to explicitly model the distributional uncertainty by parameterizing a Dirichlet distribution over a
simplex (Malinin & Gales, 2018). More discussions about DPN is presented in section 3.1.

Alternatively, non-Bayesian frameworks derive their measure of uncertainties using the predictive
posteriors obtained from DNNs. Lee et al. (2018a) and Hendrycks et al. (2019) introduce new
components in their loss functions to explicitly incorporate OOD data for training. DeVries & Taylor
(2018) append an auxiliary branch onto a pre-trained classifier to derive the OOD score. Shalev et al.
(2018) uses multiple semantic dense representations as the target label to train the OOD detection
network. Several recent works such as (Lee et al., 2018b; Liang et al., 2018) have demonstrated
that by tweaking the input images during inference using adversarial perturbations can enhance the
performance of a DNN for OOD detection (Goodfellow et al., 2014b). However, their discriminative
scores are achieved by tailoring the parameters for each OOD distributions during test time, which is
not possible for real-world OOD examples. Hein et al. (2019) propose an adversarial training (Madry
et al., 2018) like approach to produce lower confident predictions for OOD examples. However,
while these models can identify the total predictive uncertainties, they can not robustly determine
whether the source of uncertainty is due to an in-domain input in a region of class overlap or an
OOD example far away from the training distribution.

3 PROPOSED METHODOLOGY

This section first describes the DPN framework and the difficulties of the existing modeling tech-
niques to scale DPNs for challenging datasets. We then present our improved version DPN by
proposing a novel loss function to address these difficulties while allowing to model the distribu-
tional uncertainty distinctly from the model and data uncertainty.

3.1 DIRICHLET PRIOR NETWORK

A DPN for classification directly parametrizes a prior Dirichlet distribution over the categorical out-
put distributions on a simplex (Malinin & Gales, 2018). For in-domain examples, a DPN attempts to
produce sharp Dirichlet in one corner of the simplex, when it is confident in its predictions (Figure
1a). It should produce a sharp distribution in the middle of the simplex to indicate the data (low-
order) uncertainty for the in-domain example with a high degree of noise or belongs to a class over-
lapping region (Figure 1b). In contrast, for OOD examples, a DPN should produce a Dirichlet that
spreads over the simplex or across the edge of the simplex to indicate the distributional uncertainty
(Figure1c). Here, the data uncertainty is expressed by the point-estimate categorical distribution µ
while the distributional uncertainty is described using the distribution over the predictive categorical
i.e p(µ|x∗, θ). The overall predictive uncertainty is expressed as:

p(ωc|x∗,D) =

∫ ∫
p(ωc|µ) p(µ|x∗,θ) p(θ|D) dµ dθ (3)

This expression forms a three layered hierarchy of uncertainties: a large model uncertainty, p(θ|D)
would induce a large variation in distributional uncertainty in p(µ|x∗,θ) and a large degree of un-
certainty for µ leads to higher data uncertainty. DPN framework is consistent with the existing
approaches, where an additional layer of uncertainty is included to capture the distributional un-
certainty. For example, marginalization of µ in Eqn. 3 will reproduce Eqn. 1 while loose the
control over the sharpness of the output Dirichlet distributions. The marginalization of θ produces
the expected estimation of data and distributional uncertainty given model uncertainty as:

p(ωc|x∗,D) =

∫
p(ωc|µ)

[ ∫
p(µ|x∗,θ) p(θ|D)dθ

]
dµ =

∫
p(ωc|µ) p(µ|x∗,D)dµ (4)
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However, similar to eq. 1 marginalizing θ is eq. 4 is also intractable. Since the model uncertainty is
reducible given large training data, for simplicity, here we assume a dirac delta estimation, θ̂ for θ:

p(θ|D) = δ(θ − θ̂) =⇒ p(µ|x∗,D) ≈ p(µ|x∗, θ̂) (5)

Constructing a DPN. A DPN constructs a Dirichlet distribution as a prior over the categorical
distributions, which is parameterized by the concentration parameters, α = α1, · · · , αK .

Dir(µ|α) =
Γ(α0)∏K
c=1 Γ(αc)

K∏
c=1

µαc−1
c , αc > 0, α0 =

K∑
c=0

αc (6)

where, α0 is called the precision of the Dirichlet. A larger value of α0 produces sharper distribu-
tions to indicate low order uncertainties (fig 1a and 1b). A DPN, fθ̂ produces the concentration
parameters, α and the posterior over class labels, p(ωc|x∗; θ̂), is given by the mean of the Dirichlet.

α = fθ̂(x
∗) p(µ|x∗; θ̂) = Dir(µ|α) p(ωc|x∗; θ̂) =

∫
p(ωc|µ) p(µ|x∗; θ̂) dµ =

αc
α0

(7)

A standard DNN with the softmax activation function can be represented as a DPN where the con-
centration parameters are αc = ezc(x

∗); zc(x∗) is the pre-softmax (logit) output corresponding to
the class, c for an input x∗. The expected posterior probability of class label ωc is given as:

p(ωc|x∗; θ̂) =
αc
α0

=
ezc(x

∗)∑K
c=1 e

zc(x∗)
(8)

However, the mean of the Dirichlet is now insensitive to any arbitrary scaling of αc. Hence, the
precision of the Dirichlet, α0, degrades under the standard cross-entropy loss.

Malinin & Gales (2018) instead introduced a new loss function that explicitly minimizes the KL
divergence between the output Dirichlet and a target Dirichlet to produce a predefined target preci-
sion value for the output Dirichlet distributions. For in-domain examples, the target distribution is
chosen to be a sharp Dirichlet, Dir(µ|α̂y), focusing on their ground truth classes. While for OOD
examples, a flat Dirichlet, Dir(µ|α̃) is selected that spreads over the whole simplex.

L(θ) = EPinKL[Dir(µ|α̂y)||p(µ|x,θ)] + EPoutKL[Dir(µ|α̃)||p(µ|x,θ)] (9)

where, Pin and Pout are the underlying distribution of in-domain and OOD training examples re-
spectively. However, learning the model using sparse 1-hot continuous distributions for class labels,
which are effectively a delta function, is challenging due to their complex loss function (eq. 9).
Here, the error surface becomes poorly suited for optimization using the back-propagation algo-
rithm (Malinin & Gales, 2019). Malinin & Gales (2018) tackle this problem by using label smooth-
ing (Szegedy et al., 2016) or teacher-student training (Hinton et al., 2015a) to redistribute a small
amount of probability density to each corner of the Dirichlet. This technique is found to work well
for datasets with a fewer number of class labels. However, for more challenging datasets with a large
number of classes, even these techniques cannot efficiently redistribute the probability densities at
each corner and results in the target distribution to tend to a delta function. Hence, it becomes dif-
ficult to train the DPN to achieve competitive performances. Malinin & Gales (2019) have recently
proposed to reverse the terms within the KL divergence in eq. 9 to improve the training efficiency of
DPN models. This approach still requires to explicitly constrain the precision of the output Dirichlet
distributions using an appropriately chosen hyper-parameter for training.

3.2 IMPROVED DIRICHLET PRIOR NETWORK

We now propose an improved technique to model DPN by proposing a novel loss function using the
standard cross-entropy loss along with a regularization term to control the precision of the output
Dirichlet distribution from the network. As we have seen in equation 8, the precision of a Dirichlet
distribution produced by the standard DNN is given as

∑K
c=1 exp zc(x

∗). Hence, we can control the
sharpness of the distribution by designing a regularization term that increases the sum of logit (pre-
softmax) outputs for the in-domain examples to produce sharp distributions to indicate their lower
uncertainties. For the OOD examples, the regularization term aims to decrease the sum of logit (pre-
softmax) outputs to produce flat distributions to indicate distributional (higher-order) uncertainties.
Hence, instead of explicitly constraining the precision the output Dirichlet with a specific hyper-
parameter, we allow the network to appropriately produce the precision values for different input.
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(a) α = (50, 50, 50) (b) α = (1.5, 1.5, 1.5) (c) α = (0.99, 0.99, 0.99)

Figure 2: Dirichlet distributions become flatter as the precision is reduced (from (a) to (b)) and the densities
move to the edges as the concentration parameters become fractional i.e αc ∈ (0, 1).

In this paper, we propose the regularization term as 1
K

∑K
c=1 sigmoid(zc(x)) to control the sharp-

ness of the output Dirichlet distribution along with the standard cross-entropy loss for classification.
Here, the sigmoid function is chosen for the regularization term as it always produces a value within
the range of (0, 1) for any zc(x). For in-domain training examples, the loss function is given as:

Lin(θ) = EPin

[
− log p(y|x,θ)− λin

K

K∑
c=1

sigmoid(zc(x))
]
, (10)

For OOD training examples, the loss function is given as:

Lout(θ) = EPout

[
Hc(U ; p(ω|x,θ))− λout

K

K∑
c=1

sigmoid(zc(x))
]
, (11)

where, U denotes the uniform distribution over the class labels. Hc is the cross-entropy function.
We train the network in a multi-task fashion with the overall loss function as:

min
θ
L(θ) = Lin(θ) + λLout(θ), λ > 0 (12)

In this loss function, we have incorporated three user-defined hyper-parameters: λin , λout and λ
in Eq. 10, Eq. 11, and Eq. 12 respectively. λ balances between the loss values for in-domain
examples and OOD examples. The hyper-parameters λin and λout controls the sharpness of the
output Dirichlet from a DPN. By choosing λin > 0, we enforce the network to produce positive
logit values for in-domain examples that lead to producing sharper Dirichlet distributions (Fig. 2(a)).
We choose λin > λout to ensure that the density is either spread over the the simplex or across the
boundary (Fig 1c). The choice of λin > λout > 0 will lead the network to produce comparatively
flatter Dirichlet distributions for OOD examples (Fig. 2b). In contrast, by choosing λout < 0, we
enforce the network to produce negative values for zc(x∗) and hence fractional values for αc’s (i.e
αc ∈ (0, 1)) for OOD examples. This will cause the densities of the Dirichlet to be distributed in the
edges of the simplex and produces an extremely sharp distribution, as shown in Fig 2c.

The proposed loss function in Eq. 12 is also very closely related to non-Bayesian approaches, where
by choosing λin, λout to zero we re-obtain similar loss functions as proposed by Lee et al. (2018a);
Hendrycks et al. (2019). However, by setting λin, λout to zero, we lose control over the precision of
the Dirichlet distribution that distinguishes distributional uncertainty from data uncertainty.

Our multi-task loss function (eq. 12) requires training samples from the in-domain distribution,
Pin as well as from OOD Pout. However, since Pout is unknown, Lee et al. (2018a) propose to
synthetically generate the OOD training samples from the boundary of in-domain region, Pin using
generative models such as GAN (Goodfellow et al., 2014a). Alternatively, a different, easily avail-
able, real datasets can be used as OOD training examples. In practice, the latter approach is to found
to be more effective for training the OOD detectors and has been applied for our experiments on
vision datasets (Hendrycks et al., 2019).

4 EXPERIMENTAL STUDY

We demonstrate the effectiveness of the DPN framework using the proposed loss function by con-
ducting two sets of experiments. First, we experiment on a synthetic dataset. Next, we present a
comparative study of our proposed framework with the existing approaches on CIFAR10 and CI-
FAR100, and show the advantages over the original DPN framework (Malinin & Gales, 2018).

4.1 SYNTHETIC DATASET

We construct a simple dataset with three classes where the instances are sampled from three different
isotropic Gaussian distributions as shown in Figure 3(a). We select isotropic co-variances, σ2I with
σ = 4, to ensure that the classes are overlapping. We train a small DPN with 2 hidden layers of 50
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(a) Synthetic Data

(b)

(c) Max Probability

(d)

(e) Entropy

(f)

(g) D-Ent

(h)

(i)
∑K
c=1 e

zc(x
∗)

Figure 3: Visualizing the uncertainty measures for different data-points for DPN(β = 0.0) in the top row and
for DPN(β = 0.5) in the bottom row.

nodes each for the synthetic dataset. For our loss function, we set λ as 1.0. We choose both positive
and negative values for λout in our experiments. Here, λin and λout are chosen as λin = (1 − β)
and λout = ( 1

#class − β). We train two different sets of DPN models using β = 0.0 (i.e positive
λout) and 0.5 (i.e negative λout), denoted as DPN(β = 0.0) and DPN(β = 0.5), respectively (See
Appendix B for additional details).

An uncertainty measure can be computed as the probability of the predicted class or max probability,
maxP = maxc p(ωc|x∗, Din), in the expected predictive categorical distribution, p(ωc|x∗, Din)
(Figure 3(b) and 3(c) for DPN(β = 0.0) and DPN(β = 0.5), respectively).

Entropy of the predicted distribution,H[p(ωc|x∗, Din)] = −
∑K
c=1 p(ωc|x

∗, Din) ln p(ωc|x∗, Din), can
be also applied as a total uncertainty measure that produces low scores when the model is confident in its
prediction (Figure 3(d) and 3(e) for DPN(β = 0.0) and DPN(β = 0.5) respectively).

Max probability and entropy are the most frequently used uncertainty measures used by the existing OOD
detection models. However, since the predicted distribution is obtained by marginalizing µ (eq. 3), these mea-
sures cannot capture the sharpness of the output Dirichlet for a DPN. Hence, they cannot distinguish between
misclassified examples and OOD examples. This observation also indicates the limitation of the existing non-
DPN approachesto differentiate between data and distributional uncertainties (Malinin & Gales, 2018). A DPN
framework address this limitation by using the differential entropy (D-Ent) as an uncertainty measure that pro-
duces lower scores for sharper Dirichlet distributions (eq. 13). Appendix D presents the expression to compute
D-Ent scores for a given data point.

H[p(µ|x∗, Din)] = −
∫
SK−1

p(µ|x∗, Din) ln p(µ|x∗, Din) (13)

Figure 3(f) and 3(g) demonstrate that D-Ent can distinguish between in-domain and OOD examples. DPN(β =
0.0) produces smaller positive logit values, resulting in flat Dirichlet distributions for OOD examples. Hence,
we obtain relatively lower D-Ent scores for OOD examples compared to the in-domain examples (fig 3 (d)).
Subsequently, DPN(β = 0.5) produces negative logit values, resulting in sharp Dirichlet distributions across
the edge of the simplex for OOD examples (Fig. 2(c)). As we can see in Figure 3(g), the D-Ent scores for
OOD examples are even smaller than the in-domain confident predictions, indicating that the output Dirichlet
distributions for OOD examples are even sharper.

Since we explicitly constrain the logit outputs to produce smaller values for OOD examples, it is meaningful to
define the sum of the exponential of logits,

∑K
c=1 e

zc(x
∗), as a new measure of predictive uncertainty. In Figure

3(d) and 3(h), we visualize this uncertainty measure for our DPN(β = 0.0) and DPN(β = 0.5), respectively.
We found that our DPN models produce very high logit values. Hence, we scaled down these values by a factor
of 100 before computing this uncertainty measure for better visualization. We can see,

∑K
c=1 e

zc(x
∗) produces

high scores for all in-domain data points to distinguish them from OOD examples.

4.2 EXPERIMENTS ON CIFAR-10 AND CIFAR-100
Experimental setup. In this section, we present our experiments on CIFAR-10 and CIFAR-100 datasets
(Krizhevsky, 2009). CIFAR-10 images belong to 10 different classes while CIFAR-100 is a more challenging
dataset, containing 100 image classes. Both of these datasets contain 32×32 natural colored images of 50, 000
training and 10, 000 testing examples. In Appendix-A, we have also experimented on TinyImageNet (TIM)
that consists of 64× 64 natural images from 200 classes.

The CIFAR-10 classifiers are trained using CIFAR-10 training images as in-domain and CIFAR-100 training
images as OOD dataset (Simonyan & Zisserman, 2014b). We use VGG-16 architecture for this case. For
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Table 1: Training details for our proposed DPN models

Classification Task Input Shape #Classes Details of Training data Details of Test dataIn-Domain OOD

CIFAR-10 32× 32 10 CIFAR-10 training set
(50,000 images)

CIFAR-100 training set
(50,000 images)

In-Domain: CIFAR-10 test set
(10,000 Images)

OOD: TIM, LSUN, etc.

CIFAR-100 32× 32 100 CIFAR-100 training set
(50,000 images)

CIFAR-10 training set
(50,000 images)

In-Domain: CIFAR-10 test set
(10,000 Images)

OOD: TIM, LSUN, etc.

CIFAR-100, we use CIFAR-100 training images as in-domain and CIFAR-10 training images as the OOD
dataset. Here, we consider a DenseNet with depth = 55 and growth rate = 12 (Huang et al., 2017).

We present in-domain misclassification detection and OOD detection experiments to evaluate the performance
of our models. For our misclassification detection experiments, we take the in-domain test set and attempt to
distinguish the correctly classified examples from misclassified examples (see Table 2). The OOD detection
experiments attempt to distinguish the in-domain test images from unknown OOD images. In Table 3, we
present a smaller set of results where we consider TinyImageNet (TIM) as the OOD dataset and attempt to
distinguish them from in-domain test data points. In Appendix A, we present an expanded version of this
comparative table for a wide range of OOD examples. Note that, the OOD test images are selected from
datasets different from the datasets used for training. The description of our training and test datasets are
presented in Table 1. Please refer to Appendix C for further details.

Evaluation of Predictive Uncertainty Estimation. To evaluate the performance of our model for misclassi-
fication detection, we consider the misclassified examples as the positive class and correctly classified exam-
ples as the negative class. For the OOD detection task, we treat the OOD examples as the positive class and
in-domain examples as a negative class. The detection performance for these tasks are measured using two
metrics: area under the receiver operating characteristic curve (AUROC) and area under the precision-recall
curve (AUPR) (Hendrycks & Gimpel, 2016). The AUROC can be interpreted as the probability of an OOD
example to produce a higher detection score than an in-domain example (Davis & Goadrich, 2006). Hence, a
higher AUROC is desirable, and an uninformative detector produces an AUROC ≈ 50%. The AUPR is more
informative when the positive class and negative class have greatly differing base rates. It can take these base
rates into account (Manning & Schütze, 1999).

Dtestin Methods AUROC AUPR Acc.(%)
Max.P Ent.

∑
ezc(x

∗) D-Ent Max.P Ent.
∑
ezc(x

∗) D-Ent
Baseline 93.2 93.3 - - 43.0 46.6 - - 94.1

C
IF

A
R

-1
0

MCDP 93.6 93.6 - - 46.1 46.3 - - 94.1
ODIN 91.1 - - - 48.5 - - - 94.1
OE 92.1 91.6 - - 36.4 34.8 - - 94.0
DPNDir 92.2 92.1 - 90.9 52.7 51.0 - 45.5 92.5
DPNsoft(β : 0.0, σ : 0.0) 91.7 91.3 90.1 90.2 37.0 35.7 32.2 32.5 94.0
DPNsoft(β : 0.0, σ : 0.01) 91.3 90.8 88.5 88.9 35.0 33.3 29.1 29.7 93.6
DPNsoft(β : 0.0, σ : 0.05) 93.4 93.2 91.4 91.8 44.7 42.5 35.1 36.4 93.7
DPNsoft(β : 0.5, σ : 0.0) 92.0 91.6 89.9 60.3 36.8 34.8 31.5 17.0 94.1
DPNsoft(β : 0.5, σ : 0.01) 91.3 90.8 87.7 61.9 37.1 35.3 28.9 17.0 94.1
DPNsoft(β : 0.5, σ : 0.05) 93.0 92.8 90.1 88.8 39.8 38.3 29.8 32.8 94.1
Baseline 86.8 87.0 - - 63.6 64.7 - - 76.3

C
IF

A
R

-1
00

MCDP 87.7 87.7 - - 65.7 65.8 - - 76.9
ODIN 79.5 - - - 55.3 - - - 76.3
OE 86.0 85.0 - - 59.3 55.5 - - 76.3
DPNsoft(β : 0.0, σ : 0.0) 86.5 85.4 74.4 75.0 60.7 57.1 42.6 41.8 75.7
DPNsoft(β : 0.0, σ : 0.01) 86.9 86.2 75.1 75.6 61.5 58.5 43.3 43.1 75.6
DPNsoft(β : 0.0, σ : 0.05) 87.3 86.7 76.7 76.4 64.6 61.7 45.8 43.3 75.7
DPNsoft(β : 0.5, σ : 0.0) 86.7 85.6 73.5 73.1 61.3 57.3 41.4 41.9 76.0
DPNsoft(β : 0.5, σ : 0.01) 86.5 85.7 74.1 74.6 61.0 57.5 41.4 43.2 76.2
DPNsoft(β : 0.5, σ : 0.05) 87.6 87.0 76.3 77.1 64.6 61.9 45.4 46.1 76.3

Table 2: Comparative results of misclassified image detection for CIFAR-10 and CIFAR-100.

Hyper-parameters for Training Loss. Unlike Liang et al. (2018); Lee et al. (2018a), and similar toMalinin
& Gales (2018); Hendrycks et al. (2019), we do not require to tune any hyper-parameters during testing for
different datasets. In other words, the OOD test examples remain unknown to our DPN classifiers, as in a
real-world scenario. During training, we set λ = 0.5 (eq. 12), similar to Hendrycks et al. (2019). We train
multiple DPN models for CIFAR-10 and CIFAR-100 classifiers using both positive and negative values for
λout. We choose λin and λout as λin = (1 − β) and λout = ( 1

#class
− β). We train two different sets of

DPN models using 0.0 (i.e positive λout) and β = 0.5 (i.e negative λout), denoted as DPNsoft(β : 0.0) and
DPNsoft(β : 0.5), respectively.

Detecting the source of uncertainty. [1] DPN model with λout > 0: By choosing a positive value for λout,
we enforce the network to produce flat Dirichlet distributions over the simplex for OOD examples. Hence,
the D-Ent measure should produce higher scores for OOD examples and lower scores for in-domain examples.
Therefore, given a test example with high scores for both entropy as well as D-Ent, it indicates distributional
uncertainty. In contrast, if the test example achieves high entropy scores and lower D-Ent score, it indicates
data uncertainty. Our DPNsoft(β : 0.0) models achieve high AUROC and AUPR scores using D-Ent to
detect OOD examples for both CIFAR-10 and CIFAR-100 (see Table 3) while achieves lower AUROC and
AUPR scores for D-Ent while detecting misclasification for CIFAR-100 (see Table 2). However for CIFAR-
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Dtestin Dtestout Methods AUROC AUPR
Max.P Ent.

∑
ezc(x

∗) D-Ent Max.P Ent.
∑
ezc(x

∗) D-Ent
Baseline 88.8 89.4 - - 85.1 86.7 - -

C
IF

A
R

-1
0

T
IM

MCDP 88.5 89.2 - - 84.7 86.1 - -
ODIN 94.4 - - - 93.8 - - -
OE 98.0 98.0 - - 97.9 97.9 - -
DPNDir 94.3 94.3 94.6 94.0 94.0 94.2
DPNsoft(β : 0.0, σ : 0.0) 97.6 97.7 97.6 97.6 97.5 97.6 97.5 97.5
DPNsoft(β : 0.0, σ : 0.01) 98.5 98.5 98.4 98.5 98.4 98.5 98.3 98.4
DPNsoft(β : 0.0, σ : 0.05) 97.1 97.4 97.6 97.7 97.2 97.5 97.7 97.8
DPNsoft(β : 0.5, σ : 0.0) 98.7 98.8 96.7 6.8 98.6 98.7 92.8 32.5
DPNsoft(β : 0.5, σ : 0.01) 99.0 99.1 96.3 6.8 98.5 98.9 90.7 32.2
DPNsoft(β : 0.5, σ : 0.05) 97.9 98.2 98.2 30.9 97.9 98.2 98.1 54.1
Baseline 74.9 76.3 - - 71.1 73.1 - -

C
IF

A
R

-1
00

T
IM

MCDP 78.9 81.0 - - 75.4 78.0 - -
ODIN 83.8 - - - 81.4 - - -
OE 86.5 88.0 - - 82.8 83.0 - -
DPNsoft(β : 0.0, σ : 0.0) 88.9 90.3 91.1 90.7 86.1 86.4 85.4 83.6
DPNsoft(β : 0.0, σ : 0.01) 96.5 97.4 98.8 98.0 97.1 97.8 98.9 95.2
DPNsoft(β : 0.0, σ : 0.05) 95.8 96.7 98.0 96.7 96.4 97.2 98.2 92.9
DPNsoft(β : 0.5, σ : 0.0) 98.9 99.1 99.5 5.0 98.9 99.0 99.5 31.8
DPNsoft(β : 0.5, σ : 0.01) 99.1 99.3 99.7 5.9 99.2 99.3 99.7 32.4
DPNsoft(β : 0.5, σ : 0.05) 95.8 96.9 98.8 41.8 96.4 97.4 98.9 59.8

Table 3: Comparative results of OOD example detection for CIFAR-10 and CIFAR-100. Expanded version of
this table along with a wide range of OOD datasets are provided in Appendix A.

10, our DPNsoft(β : 0.0) models fail to produce low AUROC and AUPR scores under D-Ent measure for
misclassification detection. This indicates that these models achieve high D-Ent scores for both misclassified
and OOD examples and make it difficult to distinguish distributional uncertainty from data uncertainty for
CIFAR-10.

Note that, similar to our DPNsoft(β : 0.0), DPNDir (Malinin & Gales, 2018) also produces high AUPR and
AUROC scores under D-Ent measure for for both misclassified examples and OOD examples for CIFAR-10
model (Table 2 and 3). This indicates that both DPNDir and our DPNsoft(β : 0.0) models may be ineffective
to detect distributional uncertainty for CIFAR-10. In contrast, our DPNsoft(β : 0.5) models are always found
to be effective to identify the source of uncertainties.

[2] DPN model with λout < 0: In contrast, if we choose a negative value for λout, our DPN network produces
very sharp Dirichlet distributions across the edge of the simplex for OOD examples. Hence, it produces very
low D-Ent scores. Notably, these distributions are even sharper than the Dirichlet distributions obtained for
confidently predicted examples. Hence, for a test example, we can detect distributional uncertainty if it achieves
high entropy and low D-Ent scores. As we can see, our DPNsoft(β : 0.5) models produce very low AUROC
and AUPR scores for D-Ent measure to detect OOD examples (Table 3) while achieve relatively higher AUROC
and AUPR scores for detecting misclassified examples (Table 2).

Data Augmentation with white-noise for Training. After training our DPN models using clean training
images, we also fine-tune them using noisy OOD training images for a few epochs. We add minor Gaussian
noise sampled from isotropic Gaussian distributions N (0, σ2I) with our OOD training images. Here, the idea
is to add minor perturbation without distorting the features of the OOD training images. It further exposes the
network into the out of distribution space. Note that, the DPN models are fine-tuned only using OOD training
images. The OOD test examples remain unknown. In practice, this technique may often further improve the
OOD detection performance of our DPNsoft models as we choose σ = 0.01 (see Table 3). However, for larger
perturbation, performance degrades for the DPNsoft(σ = 0.05).

Comparative Study. In Table 2 and 3, we compare the performance of our approach with several baselines,
such as standard DNN (Hendrycks & Gimpel (2016)), MCDP (Gal & Ghahramani, 2016), DPNDir (Malinin &
Gales, 2018), ODIN (Liang et al., 2018), and OE (Hendrycks et al., 2019). We use the same architecture as our
DPNsoft models for all the competitive models. OE models are trained using the set of in-domain and OOD
training images with their proposed loss function (Hendrycks et al., 2019). Note that, since non-DPN methods
do not explicitly model the logit outputs, the D-Ent or

∑K
c=1 e

zc(x
∗) measures are not meaningful (Malinin &

Gales, 2018).

We also compare our results with the existing DPN framework, namely DPNDir Malinin & Gales (2018) for
CIFAR-10. Note that, the DPNDir framework fails to scale for the CIFAR-100 dataset that consists of 100
classes. Due to the unavailability of codes and results (under the same settings), we could not compare our
model with Malinin & Gales (2019). Overall, our DPNsoft models significantly improved the performance of
the DPN framework and consistently out-performed the existing OOD detection models. In addition, it is able
to distinguish distributional uncertainty from other uncertainty types.

5 CONCLUSION

In this paper, we propose a novel framework to improve the training efficiency of DPN models for challenging
classification tasks with large number of classes. We also propose a novel regularization term that allows con-
trols the sharpness of the Dirichlet distributions. We show that the proposed regularizer can be easily integrated
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with the standard cross-entropy loss function. Our experiments on synthetic and real datasets demonstrate
that our proposed framework can efficiently distinguish the distributional uncertainty from other uncertainty
types. We demonstrate that the OOD detection performance of our DPN models can be often improved by
training with noisy OOD examples. Experiments show that our proposed approach significantly improves DPN
frameworks, and outperforms the existing OOD detectors on both CIFAR-10 and CIFAR-100 datasets.
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A EXPANDED RESULTS

Table 4: Results of OOD image detection for CIFAR-10. Description of these OOD datasets are
provided in Appendix C.2.

Dtestout Methods AUROC AUPR
Max.P Ent.

∑
ezc(x

∗) D-Ent Max.P Ent.
∑
ezc(x

∗) D-Ent
Baseline 73.0 73.3 - - 70.4 71.3 - -

G
au

ss
ia

n

MCDP 74.0 74.0 - - 70.9 71.2 - -
ODIN 72.6 - - - 70.1 - - -
OE 81.9 82.0 - - 82.5 82.6 - -
DPNsoft(β : 0.0, σ : 0.0) 82.3 82.4 82.7 82.7 83.9 84.1 84.0 84.0
DPNsoft(β : 0.0, σ : 0.01) 96.0 96.2 96.4 96.4 96.3 96.7 96.7 96.7
DPNsoft(β : 0.0, σ : 0.05) 89.2 89.6 90.8 90.7 91.6 92.0 93.0 92.9
DPNsoft(β : 0.5, σ : 0.0) 82.9 83.0 83.3 37.3 83.8 83.9 82.6 48.7
DPNsoft(β : 0.5, σ : 0.01) 95.8 96.0 94.6 13.0 96.4 96.7 90.9 35.1
DPNsoft(β : 0.5, σ : 0.05) 90.2 90.6 92.4 28.1 92.4 92.8 94.0 47.3
Baseline 88.8 89.4 - - 85.1 86.7 - -

T
IM

MCDP 88.5 89.2 - - 84.7 86.1 - -
ODIN 94.4 - - - 93.8 - - -
OE 98.0 98.0 - - 97.9 97.9 - -
DPNDir 94.3 94.3 - 94.6 94.0 94.0 94.2
DPNsoft(β : 0.0, σ : 0.0) 97.6 97.7 97.6 97.6 97.5 97.6 97.5 97.5
DPNsoft(β : 0.0, σ : 0.01) 98.5 98.5 98.4 98.5 98.4 98.5 98.3 98.4
DPNsoft(β : 0.0, σ : 0.05) 97.1 97.4 97.6 97.7 97.2 97.5 97.7 97.8
DPNsoft(β : 0.5, σ : 0.0) 98.7 98.8 96.7 6.8 98.6 98.7 92.8 32.5
DPNsoft(β : 0.5, σ : 0.01) 99.0 99.1 96.3 6.8 98.5 98.9 90.7 32.2
DPNsoft(β : 0.5, σ : 0.05) 97.9 98.2 98.2 30.9 97.9 98.2 98.1 54.1
Baseline 90.2 91.0 - - 86.6 88.6 - -

L
SU

N

MCDP 90.3 91.1 - - 86.8 88.9 - -
ODIN 96.6 - - - 96.2 - - -
OE 97.9 98.0 - - 97.6 97.7 - -
DPNDir 94.4 94.4 94.6 93.3 93.4 93.3
DPNsoft(β : 0.0, σ : 0.0) 97.7 97.8 97.7 97.7 97.3 97.4 97.3 97.3
DPNsoft(β : 0.0, σ : 0.01) 98.7 98.7 98.6 98.6 98.5 98.5 98.3 98.3
DPNsoft(β : 0.0, σ : 0.05) 97.3 97.7 97.9 98.0 97.2 97.6 97.7 97.8
DPNsoft(β : 0.5, σ : 0.0) 98.8 98.8 97.1 6.2 98.6 98.6 93.8 32.4
DPNsoft(β : 0.5, σ : 0.01) 99.2 99.2 96.7 5.5 98.7 98.9 91.8 31.8
DPNsoft(β : 0.5, σ : 0.05) 97.9 98.2 98.4 33.0 97.7 98.1 98.3 56.0
Baseline 89.4 90.0 - - 95.6 96.2 - -

Pl
ac

es
36

5

MCDP 89.3 90.2 - - 95.6 96.2 - -
ODIN 95.4 - - - 98.5 - - -
OE 97.9 98.0 - - 99.4 99.4 - -
DPNsoft(β : 0.0, σ : 0.0) 97.7 97.8 97.7 97.7 99.3 99.3 99.3 99.3
DPNsoft(β : 0.0, σ : 0.01) 98.8 98.8 98.7 98.7 99.6 99.6 99.6 99.6
DPNsoft(β : 0.0, σ : 0.05) 97.3 97.6 97.8 97.8 99.2 99.3 99.4 99.4
DPNsoft(β : 0.5, σ : 0.0) 98.7 98.7 96.7 6.7 99.6 99.6 97.9 60.7
DPNsoft(β : 0.5, σ : 0.01) 99.2 99.3 96.5 5.4 99.6 99.7 97.3 59.5
DPNsoft(β : 0.5, σ : 0.05) 97.9 98.2 98.3 29.5 99.4 99.5 99.5 77.1
Baseline 88.6 89.0 - - 74.9 77.0 - -

Te
xt

ur
es

MCDP 87.6 88.0 - - 73.7 75.8 - -
ODIN 94.9 - - - 90.5 - - -
OE 99.2 99.7 - - 98.6 98.5 - -
DPNsoft(β : 0.0, σ : 0.0) 99.5 99.5 99.5 99.5 98.8 99.0 99.0 99.0
DPNsoft(β : 0.0, σ : 0.01) 99.5 99.5 99.3 99.4 98.9 98.9 98.6 98.7
DPNsoft(β : 0.0, σ : 0.05) 99.4 99.5 99.5 99.6 99.0 99.1 99.2 99.3
DPNsoft(β : 0.5, σ : 0.0) 99.5 99.5 96.7 4.6 99.1 99.1 85.6 21.3
DPNsoft(β : 0.5, σ : 0.01) 99.4 99.5 96.5 5.5 98.0 98.8 84.3 21.4
DPNsoft(β : 0.5, σ : 0.05) 99.1 99.3 98.7 24.7 98.3 98.7 97.3 38.3

B EXPERIMENTAL DETAILS ON SYNTHETIC DATASETS

The three classes of our synthetic dataset are constructed by sampling from three different isotropic Gaussian
distributions with means of (−4, 0), (4, 0) and (0, 5) and isotropic variances of σ = 4. We sample 200 training
data points from each distribution for each class. We also sample 600 OOD training examples from an uniform
distribution of U([−15, 15], [−13, 17]).
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Table 5: Results of OOD image detection for CIFAR-100. Description of these OOD datasets are
provided in Appendix C.2.

Dtestout Methods AUROC AUPR
Max.P Ent.

∑
ezc(x

∗) D-Ent Max.P Ent.
∑
ezc(x

∗) D-Ent
Baseline 73.2 74.0 - - 67.7 68.5 - -

G
au

ss
ia

n

MCDP 74.4 74.7 - - 68.9 69.3 - -
ODIN 80.4 - - - 76.2 - - -
OE 72.9 74.0 - - 64.6 64.9 - -
DPNsoft(β : 0.0, σ : 0.0) 71.7 72.6 71.9 71.9 63.6 63.9 61.7 61.5
DPNsoft(β : 0.0, σ : 0.01) 94.4 95.2 97.6 96.4 95.3 96.0 97.9 94.0
DPNsoft(β : 0.0, σ : 0.05) 96.1 96.7 98.7 97.2 97.0 97.5 98.9 93.5
DPNsoft(β : 0.5, σ : 0.0) 91.9 92.8 96.3 37.6 91.8 92.4 95.8 50.8
DPNsoft(β : 0.5, σ : 0.01) 98.3 98.6 99.6 3.4 98.6 98.8 99.7 31.0
DPNsoft(β : 0.5, σ : 0.05) 96.9 97.4 99.6 9.3 97.7 98.1 99.7 33.6
Baseline 74.9 76.3 - - 71.1 73.1 - -

T
IM

MCDP 78.9 81.0 - - 75.4 78.0 - -
ODIN 83.8 - - - 81.4 - - -
OE 86.5 88.0 - - 82.8 83.0 - -
DPNsoft(β : 0.0, σ : 0.0) 88.9 90.3 91.1 90.7 86.1 86.4 85.4 83.6
DPNsoft(β : 0.0, σ : 0.01) 96.5 97.4 98.8 98.0 97.1 97.8 98.9 95.2
DPNsoft(β : 0.0, σ : 0.05) 95.8 96.7 98.0 96.7 96.4 97.2 98.2 92.9
DPNsoft(β : 0.5, σ : 0.0) 98.9 99.1 99.5 5.0 98.9 99.0 99.5 31.8
DPNsoft(β : 0.5, σ : 0.01) 99.1 99.3 99.7 5.9 99.2 99.3 99.7 32.4
DPNsoft(β : 0.5, σ : 0.05) 95.8 96.9 98.8 41.8 96.4 97.4 98.9 59.8
Baseline 78.9 80.4 - - 74.2 75.9 - -

L
SU

N

MCDP 83.2 85.4 - - 79.0 81.5 - -
ODIN 87.8 - - - 84.6 - - -
OE 90.6 91.6 - - 86.5 86.1 - -
DPNsoft(β : 0.0, σ : 0.0) 91.6 92.6 93.3 92.6 88.3 88.3 87.3 85.4
DPNsoft(β : 0.0, σ : 0.01) 98.9 99.2 99.7 98.9 99.0 99.3 99.7 96.1
DPNsoft(β : 0.0, σ : 0.05) 96.0 96.8 98.2 96.8 96.6 97.2 98.4 93.0
DPNsoft(β : 0.5, σ : 0.0) 99.7 99.7 99.9 1.4 99.6 99.7 99.8 30.8
DPNsoft(β : 0.5, σ : 0.01) 99.7 99.7 99.9 2.8 99.7 99.7 99.9 31.1
DPNsoft(β : 0.5, σ : 0.05) 96.8 97.5 99.1 37.1 97.3 98.0 99.2 56.2
Baseline 76.6 78.1 - - 90.2 91.0 - -

Pl
ac

es
36

5

MCDP 80.9 83.1 - - 92.2 93.3 - -
ODIN 86.4 - - - 94.7 - - -
OE 88.8 90.1 - - 95.1 95.0 -
DPNsoft(β : 0.0, σ : 0.0) 90.5 91.3 92.6 92.0 96.0 96.0 95.9 94.9
DPNsoft(β : 0.0, σ : 0.01) 97.8 98.4 99.3 98.5 99.4 99.6 99.8 98.6
DPNsoft(β : 0.0, σ : 0.05) 95.9 96.7 98.1 96.7 98.9 99.1 99.5 97.6
DPNsoft(β : 0.5, σ : 0.0) 99.3 99.4 99.7 3.4 99.8 99.8 99.9 59.1
DPNsoft(β : 0.5, σ : 0.01) 99.4 99.5 99.8 4.8 99.8 99.9 99.9 60.3
DPNsoft(β : 0.5, σ : 0.05) 96.0 96.9 98.8 40.0 98.9 99.2 99.7 80.9
Baseline 60.0 60.2 - - 43.4 43.4 - -

Te
xt

ur
es

MCDP 64.0 64.3 - - 46.0 45.6 - -
ODIN 63.4 - - - 48.9 - - -
OE 73.6 74.8 - - 58.3 58.4 - -
DPNsoft(β : 0.0, σ : 0.0) 80.5 81.8 85.0 83.7 66.6 66.9 71.3 67.2
DPNsoft(β : 0.0, σ : 0.01) 84.3 86 92.9 90.9 81.3 83.3 90.9 84.1
DPNsoft(β : 0.0, σ : 0.05) 89.2 90.7 94.5 92.8 86.2 88.3 93.1 84.5
DPNsoft(β : 0.5, σ : 0.0) 89.7 91.2 96.2 10.6 86.1 87.8 95.1 22.4
DPNsoft(β : 0.5, σ : 0.01) 92.2 93.6 97.4 8.9 89.9 91.6 96.9 22.1
DPNsoft(β : 0.5, σ : 0.05) 86.7 88.9 96.6 29.6 83.7 86.8 96.1 35.1

We train a neural network with 2 hidden layers with 50 nodes each and relu activation function. The network
is trained for 2, 500 epochs using stochastic gradient descent (SGD) optimization with a constant learning rate
of 0.01.

C EXPERIMENTAL DETAILS ON CIFAR-10 AND CIFAR-100

C.1 TRAINING DETAILS

For our experiments on CIFAR-10, we train a VGG-16 model with CIFAR-10 as the in-domain and CIFAR-
100 as the OOD training data (Simonyan & Zisserman (2014b)). For CIFAR-100, we train a DenseNet with
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Table 6: Results for misclassification detection for TinyImageNet.

Dtestin Methods AUROC AUPR Acc.(%)
Max.P Ent.

∑
ezc(x

∗) D-Ent Max.P Ent.
∑
ezc(x

∗) D-Ent
Baseline 85.4 85.2 - - 78.3 77.8 - - 57.8

Ti
ny

Im
ag

eN
et MCDP 85.8 85.8 - - 77.9 77.9 - - 59.0

OE 85.2 85.4 - - 77.8 77.9 - - 57.7
DPNsoft(β : 0.0, σ : 0.0) 85.6 85.6 81.7 80.0 78.8 78.6 73.5 73.5 57.8
DPNsoft(β : 0.0, σ : 0.01) 85.7 85.8 81.8 80.2 79.0 78.7 73.6 73.6 57.8
DPNsoft(β : 0.0, σ : 0.05) 85.4 85.6 81.8 80.3 78.4 78.5 73.6 73.6 57.8
DPNsoft(β : 0.5, σ : 0.0) 85.9 86.3 81.8 77.6 79.7 80.1 73.6 72.7 57.5
DPNsoft(β : 0.5, σ : 0.01) 85.8 86.2 81.9 77.5 79.5 80.1 73.7 72.8 57.5
DPNsoft(β : 0.5, σ : 0.05) 85.7 86.1 81.8 77.9 79.2 80.0 73.7 73.1 57.6

Table 7: Results of OOD image detection for TinyImageNet classifiers. Description of these OOD
datasets are provided in Appendix C.2.

Dtestout Methods AUROC AUPR
Max.P Ent.

∑
ezc(x

∗) D-Ent Max.P Ent.
∑
ezc(x

∗) D-Ent
Baseline 62.9 61.7 - - 51.4 50.0 - -

ST
L

-1
0

MCDP 63.8 63.6 - - 52.2 51.8 - -
OE 98.9 99.0 - - 99.0 99.1 - -
DPNsoft(β : 0.0, σ : 0.0) 98.4 98.5 98.9 98.8 98.6 98.8 99.1 99.0
DPNsoft(β : 0.0, σ : 0.01) 98.1 98.5 98.6 98.6 98.4 98.6 98.9 98.8
DPNsoft(β : 0.0, σ : 0.05) 97.0 98.1 97.9 97.9 97.5 97.7 98.4 98.3
DPNsoft(β : 0.5, σ : 0.0) 98.6 98.7 99.0 4.3 98.8 98.9 99.2 28.3
DPNsoft(β : 0.5, σ : 0.01) 98.3 98.4 98.8 5.2 98.5 98.7 99.0 28.8
DPNsoft(β : 0.5, σ : 0.05) 97.5 97.7 98.4 7.6 97.8 98.0 98.6 30.3
Baseline 64.9 65.6 - - 59.7 59.5 - -

L
SU

N

MCDP 65.9 66.1 - - 60.3 60.2 - -
OE 98.2 98.5 - - 98.7 99.0 - -
DPNsoft(β : 0.0, σ : 0.0) 97.8 98.2 98.9 98.8 98.4 98.7 99.2 99.2
DPNsoft(β : 0.0, σ : 0.01) 97.3 97.7 98.7 98.6 98.1 98.4 99.0 99.0
DPNsoft(β : 0.0, σ : 0.05) 95.2 95.9 97.7 97.5 96.5 97.0 98.3 98.1
DPNsoft(β : 0.5, σ : 0.0) 98.2 97.6 99.1 6.8 99.1 98.9 99.4 35.0
DPNsoft(β : 0.5, σ : 0.01) 97.6 98.0 98.8 9.1 98.3 98.6 99.1 36.8
DPNsoft(β : 0.5, σ : 0.05) 96.1 96.6 98.0 14.4 97.1 97.1 98.6 40.8
Baseline 67.8 68.9 - - 85.8 86.0 - -

Pl
ac

es
36

5

MCDP 68.5 68.9 - - 86.1 86.2 - -
OE 95.8 96.5 - - 98.9 99.1 - -
DPNsoft(β : 0.0, σ : 0.0) 95.0 95.8 97.3 97.1 98.7 98.9 99.3 99.3
DPNsoft(β : 0.0, σ : 0.01) 94.1 94.9 96.7 96.5 98.5 98.7 99.1 99.1
DPNsoft(β : 0.0, σ : 0.05) 90.5 91.8 94.4 94.1 97.4 97.4 98.5 98.5
DPNsoft(β : 0.5, σ : 0.0) 95.6 96.2 97.6 17.0 98.9 99.0 99.4 69.6
DPNsoft(β : 0.5, σ : 0.01) 94.4 95.1 96.8 21.3 98.6 98.7 99.2 72.1
DPNsoft(β : 0.5, σ : 0.05) 91.6 92.6 95.0 30.8 97.8 98.0 98.7 77.0
Baseline 68.8 70.9 - - 51.0 53.3 - -

Te
xt

ur
es

MCDP 69.1 69.7 - - 51.0 51.6 - -
OE 87.5 89.1 - - 85.6 87.5 - -
DPNsoft(β : 0.0, σ : 0.0) 85.1 86.8 88.4 89.0 82.6 84.7 86.0 86.6
DPNsoft(β : 0.0, σ : 0.01) 83.9 85.8 87.6 88.2 81.1 83.3 85.0 85.6
DPNsoft(β : 0.0, σ : 0.05) 81.4 83.5 85.6 86.2 77.3 79.9 81.9 82.6
DPNsoft(β : 0.5, σ : 0.0) 85.7 87.0 88.1 45.0 83.3 84.8 85.8 46.6
DPNsoft(β : 0.5, σ : 0.01) 84.5 85.8 87.1 47.5 81.6 83.3 84.4 48.4
DPNsoft(β : 0.5, σ : 0.05) 82.3 83.8 85.3 53.0 78.5 80.4 81.8 52.0

depth = 55, growth rate = 12 and CIFAR-100 as the in-domain and CIFAR-10 as the OOD training data
(Huang et al. (2017)). We trained multiple DPNsoft models using our proposed loss functions with different
hyper-parameters.

For CIFAR-10, we use the VGG-16 network. Here, we use CIFAR-10 training images (50, 000 images) as our
in-domain training data and CIFAR-100 training images (50, 000 images) as our OOD training data.

For CIFAR-100, Densenet(55, 12) is trained using the same setup as proposed by Huang et al. (2017). Here,
we use CIFAR-100 training images (50, 000 images) as our in-domain training data and CIFAR-10 training
images (50, 000 images) as our OOD training data.
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For TinyImageNet (TIM), we use the VGG-16 network. Here, we use TIM training images (100,000 images) as
our in-domain training data and ImageNet-25K images (25, 000 images) as our OOD training data. ImageNet-
25K is obtained by randomly selecting 25, 000 images from the ImageNet dataset (Deng et al., 2009).

After training the models with clean in-domain and OOD images, we further fine-tune the models using noisy
OOD training images for 50 epochs with the learning rate of 0.0001. The noises are chosen form an isotropic
Gaussian distribution, N (0, σ2I). We have experimented with three different values of σ as {0.0, 0.01, 0.05}
to introduce different level of noises.

Table 8: Details of training and test datasets

Classification Task Input Shape #Classes Details of Training data Details of Test dataIn-Domain OOD

CIFAR-10 32× 32 10 CIFAR-10 training set
(50,000 images)

CIFAR-100 training set
(50,000 images)

In-Domain: CIFAR-10 test set
(10,000 Images)

OOD: TIM, LSUN, etc.

CIFAR-100 32× 32 100 CIFAR-100 training set
(50,000 images)

CIFAR-10 training set
(50,000 images)

In-Domain: CIFAR-100 test set
(10,000 Images)

OOD: TIM, LSUN, etc.

TinyImageNet
(TIM) 64× 64 200 TinyImageNet training set

(100,000 images)

ImageNet-25K
(25,000 randomly sampled

images from ImageNet)

In-Domain: TIM test set
(10,000 Images)

OOD: STL-10, LSUN, etc.

C.2 OOD TEST DATASETS

We use a wide range of OOD dataset to evaluate the performance of our proposed OOD detection models. For
CIFAR-10 and CIFAR-100 classifiers, these input test images are resized to 32× 32, while for TinyImageNet
classifiers, we resize them to 64 × 64. In this task, we attempt to distinguish the unknown OOD images from
the corresponding in-domain test images from different classification tasks. We compute different uncertainty
measures for these images for this purpose. For our evaluations, we use the following OOD images as described
in the following.

1. TinyImageNet (TIM) (Li et al. (2017)). This is a subset of Imagenet dataset. We use the validation
set, that contains 10, 000 test images from 200 different image classes for our evaluation during test
time. This dataset is used as an OOD test dataset only for CIFAR-10 and CIFAR-100 classifiers. Note
that, for TinyImageNet classifiers, this is the in-domain test set.

2. LSUN (Yu et al. (2015)). The Large-scale Scene UNderstanding dataset (LSUN) contains images of
10 different scene categories. We use its validation set, containing 10, 000 images, as an unknown
OOD test set.

3. Places 365 (Zhou et al. (2017)). The validation set of this dataset consists of 36500 images of 365
scene categories.

4. Textures (Cimpoi et al. (2014)) contains 5640 textural images in the wild belonging to 47 categories.

5. STL-10 contains 8, 000 images of natural images from 10 different classes (Coates et al., 2011).

6. Gaussian Noise. This is an artificially generated dataset obtained by adding Gaussian noise to the
in-domain test images. The Gaussian noises are sampled from an isotropic Gaussian distribution,
N (0, σ2I) with σ = 0.05.

C.3 DETAILS OF COMPETITIVE SYSTEMS

We compare the performance of our models with standard DNN as baseline model (Hendrycks & Gimpel
(2016)), the Bayesian framework, monti-carlo dropout (MCDP) (Gal & Ghahramani (2016)), DPNDir using
the loss function proposed by Malinin & Gales (2018), non-Bayesian frameworks such as ODIN (Liang et al.
(2018)) and outlier exposure (OE) by Hendrycks et al. (2019). We use the same architecture as DPNsoftmax for
the competitive models. For DPNDirichlet, we could not reproduce the same performance as given in Malinin
& Gales (2018) and hence use their reported results for CIFAR-10 for our comparison.

For MCDP, we use the standard DNN model with randomly dropping the nodes during test time. The predictive
categorical distributions are obtained by averaging the outputs for 10 iterations.

ODIN applies the standard DNN models trained only using in-domain training examples for OOD detec-
tion. During testing phase, it perturbs the input images using FGSM adversarial attack (Goodfellow et al.
(2014b))and softmax activation function by incorporating the temperature hyper-parameter (Hinton et al.
(2015b)). The maximum Probability score is then applied for their uncertainty measure. They propose to
use different hyper-parameters for different OOD examples. However, in practice, the source of expected OOD
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examples cannot be known. Hence, for our comparisons, we always set the perturbation size to 0.002 and the
temperature to 1000.

OE models are trained using the proposed loss function by Hendrycks et al. (2019). Here, we use the same
training set up as applied for our DPNsoft models: CIFAR-10 classifiers are trained using CIFAR-10 training
images as in-domain examples and CIFAR-100 training images as OOD examples. For CIFAR-100, the OE
models are trained using CIFAR-10 training images as OOD examples.

D DIFFERENTIAL ENTROPY MEASURE FOR DIRICHLET PRIOR NETWORK

Differential Entropy of a Dirichlet distribution can be calculated as follows (Malinin & Gales, 2018):

H[p(µ|x∗, Din)] = −
∫
SK−1

p(µ|x∗, Din) ln p(µ|x∗, Din)

=

K∑
c=1

ln Γ(αc)− ln Γ(α0)−
K∑
c=1

(αc − 1)(ψ(αc)− ψ(α0))

(14)

Note that, αc is a function of x∗. Γ and ψ denotes the Gamma and digamma functions respectively.
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