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Abstract

We study deep neural networks with polynomial activations, particularly their
expressive power. For a fixed architecture and activation degree, a polynomial
neural network defines an algebraic map from weights to polynomials. The image
of this map is the functional space associated to the network, and it is an irreducible
algebraic variety upon taking closure. This paper proposes the dimension of this
variety as a precise measure of the expressive power of polynomial neural networks.
We obtain several theoretical results regarding this dimension as a function of
architecture, including an exact formula for high activation degrees, as well as
upper and lower bounds on layer widths in order for deep polynomials networks to
fill the ambient functional space. We also present computational evidence that it is
profitable in terms of expressiveness for layer widths to increase monotonically and
then decrease monotonically. Finally, we link our study to favorable optimization
properties when training weights, and we draw intriguing connections with tensor
and polynomial decompositions.

1 Introduction

A fundamental problem in the theory of deep learning is to study the functional space of deep neural
networks. A network can be modeled as a composition of elementary maps, however the family of
all functions that can be obtained in this way is extremely complex. Many recent papers paint an
accurate picture for the case of shallow networks (e.g., using mean field theory [7, 27]) and of deep
linear networks [2, 3, 21], however a similar investigation of deep nonlinear networks appears to be
significantly more challenging, and require very different tools.

In this paper, we consider a general model for deep polynomial neural networks, where the activation
function is a polynomial (r-th power) exponentiation. The advantage of this framework is that
the functional space associated with a network architecture is algebraic, so we can use tools from
algebraic geometry [17] for a precise investigation of deep neural networks. Indeed, for a fixed
activation degree r and architecture d = (d0, . . . , dh) (expressed as a sequence of widths), the family
of all networks with varying weights can be identified with an algebraic variety Vd,r, embedded
in a finite-dimensional Euclidean space. In this setting, an algebraic variety can be thought of as a
manifold that may have singularities.

In this paper, our main object of study is the dimension of Vd,r as a variety (in practice, as a manifold),
which may be regarded as a precise measure of the architecture’s expressiveness. Specifically, we
prove that this dimension stabilizes when activations are high degree, and we provide an exact
dimension formula for this case (Theorem 14). We also investigate conditions under which Vd,r

fills its ambient space. This question is important from the vantage point of optimization, since an
architecture is “filling” if and only if it corresponds to a convex functional space (Proposition 6). In
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this direction, we prove a bottleneck property, that if a width is not sufficiently large, the network can
never fill the ambient space regardless of the size of other layers (Theorem 19).

In a broader sense, our work introduces a powerful language and suite of mathematical tools for
studying the geometry of network architectures. Although this setting requires polynomial activations,
it may be used as a testing ground for more general situations and, e.g., to verify rules of thumb
rigorously. Finally, our results show that polynomial neural networks are intimately related to
the theory of tensor decompositions [22]. In fact, representing a polynomial as a deep network
corresponds to a type of decomposition of tensors which may be viewed as a composition of
decompositions of a recently introduced sort [24]. Using this connection, we establish general
non-trivial upper bounds on filling widths (Theorem 10). We believe that our work can serve as a
first step towards many interesting research challenges in developing the theoretical underpinnings of
deep learning.

1.1 Related work

The study of the expressive power of neural networks dates back to seminal work on the universality
of networks as function approximators [10, 19]. More recently, there has been research supporting
the hypothesis of “depth efficiency”, i.e., the fact that deep networks can approximate functions more
efficiently than shallow networks [11, 25, 8, 9]. In contrast to this line of work, we study the class
of functions that can be expressed exactly using a network. Our analysis may of course be used to
investigate the problem of approximation, however this is not the focus of this paper.

Most of the aforementioned studies make strong hypotheses on the network architecture. In par-
ticular, [11, 25] focus on arithmetic circuits, or sum-product networks [29]. These are networks
composed of units that compute either the product or a weighted sum of their inputs. In [8], the
authors introduce a model of convolutional arithmetic circuits. This is a particular class of arithmetic
circuits that includes networks with layers of 1D convolutions and product pooling. This model does
not allow for non-linear activations (beside the product pooling), although the follow-up paper [9]
extends some results to ReLU activations with sum pooling. Interestingly, these networks are related
to Hierarchical Tucker (HT) decomposition of tensors.

The polynomial networks studied in this paper are not arithmetic circuits, but feedforward deep
networks with polynomial r-th power activations. This is a vast generalization of a setting consid-
ered in several recent papers [33, 14, 31], that study shallow (two layer) networks with quadratic
activations (r = 2). These papers show that if the width of the intermediate layer is at least twice
the input dimension, then the quadratic loss has no “bad” local minima. This result in line with our
Proposition 5, which explains in this case the functional space is convex and fills the ambient space.
We also point out that polynomial activations are required for the functional space of the network to
span a finite dimensional vector space [23, 33].

The polynomial networks considered in this paper do not correspond to HT tensor decompositions as
in [8, 9], rather they are related to a different polynomial/tensor decomposition attracting very recent
interest [16, 24]. These generalize usual decompositions, however their algorithmic and theoretical
understanding are, mostly, wide open. Neural networks motivate several questions in this vein.

Finally, we mention other recent works that study neural networks from the perspective of algebraic
geometry [26, 32, 20].

Main contributions. Our main contributions can be summarized as follows.

• We give a precise formulation of the expressiveness of polynomial networks in terms of the
algebraic dimension of the functional space as an algebraic variety.

• We spell out the close, two-way relationship between polynomial networks and a particular
family of decompositions of tensors.

• We prove several theoretical results on the functional space of polynomial networks. Notably,
we give a formula for the dimension that holds for sufficiently high activation degrees
(Theorem 14) and we prove a tight lower bound on the width of the layers for the network
to be “filling” in the functional space (Theorem 19).
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Notation. We use Symd(Rn) to denote the space of homogeneous polynomials of degree d in n

variables with coefficients in R. This set is a vector space over R of dimension Nd,n =
�n+d�1

d

�
,

spanned by all monomials of degree d in n variables. In practice, Symd(Rn) is isomorphic to RNd,n ,
and our networks will correspond to points in this high dimensional space. The notation Symd(Rn)
expresses the fact that a polynomial of degree d in n variables can always be identified with a
symmetric tensor in (Rn)⌦d that collects all of its coefficients.

2 Basic setup

A polynomial network is a function p✓ : Rd0 ! Rdh of the form

p✓(x) = Wh⇢rWh�1⇢r . . . ⇢rW1x, Wi 2 Rdi⇥di�1 ,

where the activation ⇢r(z) raises all elements of z to the r-th power (r 2 N). The parameters
✓ = (Wh, . . . ,W1) 2 Rd✓ (with d✓ =

Ph
i=1 didi�1) are the network’s weights, and the network’s

architecture is encoded by the sequence d = (d0, . . . , dh) (specifying the depth h and widths
di). Clearly, p✓ is a homogeneous polynomial mapping Rd0 ! Rdh of degree r

h�1, i.e., p✓ 2
Symrh�1(Rd0)dh .

For fixed degree r and architecture d = (d0, . . . , dh), there exists an algebraic map

�d,r : ✓ 7! p✓ =

2

64
p✓1

...
p✓dh+1

3

75 , (1)

where each p✓i is a polynomial in d0 variables. The image of �d,r is a set of vectors of polynomials,
i.e., a subset Fd,r of Symrh�1(Rd0)dh , and it is the functional space represented by the network. In
this paper, we consider the “Zariski closure” Vd,r = Fd,r of the functional space.1 We refer to Vd,r

as functional variety of the network architecture, as it is in fact an irreducible algebraic variety. In
particular, Vd,r can be studied using powerful machinery from algebraic geometry.

Remark 1. The functional variety Vd,r may be significantly larger than the actual functional space
Fd,r, since the Zariski closure is typically larger than the closure with respect to the standard the
Euclidean topology. On the other hand, the dimensions of the spaces Vd,r and Fd,r agree, and the
set Vd,r is usually “nicer” (it can be described by polynomial equations, whereas an exact implicit
description of Fd,r may require inequalities).

2.1 Examples

We present some examples that describe the functional variety Vd,r in simple cases.
Example 2. A linear network is a polynomial network with r = 1. In this case, the network map
�d,r : Rd✓ ! Sym1(Rd0)dh ⇠= Rdh⇥d0 is simply matrix multiplication:

✓ = (Wh,Wh�1, . . . ,W1) 7! p✓ = WhWh�1 . . .W1x.

The functional space Fd,r ✓ Rdh⇥d0 is the set of matrices with rank at most dmin = mini{di}. This
set is already characterized by polynomial equations, as the common zero set of all (1+ dmin)⇥ (1+
dmin) minors, so Fd,r = Vd,r in this case. The dimension of Vd,r ⇢ Rdh⇥d0 is dmin(d0+dh�dmin).

Example 3. Consider d = (2, 2, 3) and r = 2. The input variables are x = [x1, x2]T , and the
parameters ✓ are the weights

W1 =


w111 w112

w121 w122

�
, W2 =

2

64
w211 w212

w221 w222

w231 w232

3

75 .

1The Zariski closure of a set X is the smallest set containing X that can be described by polynomial
equations.

3



The network map p✓ is a triple of quadratic polynomials in x1, x2, that can be written as

W2⇢2W1x =

2

64
w211(w111x1 + w112x2)2 + w212(w121x1 + w122x2)2

w221(w111x1 + w112x2)2 + w222(w121x1 + w122x2)2

w231(w111x1 + w112x2)2 + w232(w121x1 + w122x2)2

3

75 . (2)

The map �(2,2,3),2 in (1) takes W1,W2 (that have d✓ = 10 parameters) to the three quadratics in
x1, x2 displayed above. The quadratics have a total of dim Sym2(R2)3 = 9 coefficients, however
these coefficients are not arbitrary, i.e., not all possible triples of polynomials occur in the functional
space. Writing c

(k)
ij for the coefficient of xixj in p✓k in (2) (with k = 1, 2, 3 i, j = 1, 2) then it is a

simple exercise to show that

det

2

664

c
(1)
11 c

(1)
12 c

(1)
22

c
(2)
11 c

(2)
12 c

(2)
22

c
(3)
11 c

(3)
12 c

(3)
22

3

775 = 0.

This cubic equation describes the functional variety V(2,3,3),2, which is in this case an eight-
dimensional subset (hypersurface) of Sym2(R2)3 ⇠= R9.

2.2 Objectives

The main goal of this paper is to study the dimension of Vd,r as the network’s architecture d and
the activation degree r vary. This dimension may be considered a precise and intrinsic measure of
the polynomial network’s expressivity, quantifying degrees of freedom of the functional space. For
example, the dimension reflects the number of input/output pairs the network can interpolate, as each
sample imposes one linear constraint on the variety Vd,r.

In general, the variety Vd,r lives in the ambient space Symrh�1(Rd0)dh , which in turn only depends
on the activation degree r, network depth h, and the input/output dimensions d0 and dh. We are thus
interested in the role of the intermediate widths in the dimension of Vd,r.
Definition 4. A network architecture d = (d0, . . . , dh) has a filling functional variety for the
activation degree r if Vd,r = Symrh�1(Rd0)dh .

It is important to note that if the functional variety Vd,r is filling, then actual functional space
Fd,r (before taking closure) is in general only thick, i.e., it has positive Lebesgue measure in
Symrh�1(Rd0)dh (see Remark 1). On the other hand, given an architecture with a thick functional
space, we can find another architecture whose functional space is the whole ambient space.
Proposition 5 (Filling functional space). Fix r and suppose d = (d0, d1, . . . , dh�1, dh) has a filling
functional variety Vd,r. Then the architecture d0 = (d0, 2d1, . . . , 2dh�1, dh) has a filling functional
space, i.e., Fd0,r = Symrh�1(Rd0)dh .

In summary, while an architecture with a filling functional variety may not necessarily have a filling
functional space, it is sufficient to double all the intermediate widths for this stronger condition to
hold. As argued below, we expect architectures with thick/filling functional spaces to have more
favorable properties in terms of optimization and training. On the other hand, non-filling architectures
may lead to interesting functional spaces for capturing patterns in data. In fact, we show in Section 3.2
that non-filling architectures generalize families of low-rank tensors.

2.3 Connection to optimization

The following two results illustrate that thick/filling functional spaces are helpful for optimization.
Proposition 6. If the closure of a set C ⇢ Rn is not convex, then there exists a convex function f

on Rn whose restriction to C has arbitrarily “bad” local minima (that is, there exist local minima
whose value is arbitrarily larger than that of a global minimum).

Proposition 7. If a functional space Fd,r is not thick, then it is not convex.
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These two facts show that if the functional space is not thick, we can always find a convex loss
function and a data distribution that lead to a landscape with arbitrarily bad local minima. There is
also an obvious weak converse, namely that if the functional space is filling Fd,r = Symrh�1(Rd0)dh ,
then any convex loss function Fd,r will have a unique global minimum (although there may be
“spurious” critical points that arise from the non-convex parameterization).

3 Architecture dimensions

In this section, we begin our study of the dimension of Vd,r. We describe the connection between
polynomial networks and tensor decompositions for both shallow (Section 3.1) and deep (Section 3.2)
networks, and we present some computational examples (Section 3.3).

3.1 Shallow networks and tensors

Polynomial networks with h = 2 are closely related to CP tensor decomposition [22]. Indeed in the
shallow case, we can verify the network map �(d0,d1,d2),r sends W1 2 Rd1⇥d0 ,W2 2 Rd2⇥d1 to:

W2⇢rW1x =
⇣ d1X

i=1

W2(:, i)⌦W1(i, :)
⌦r
⌘
· x

⌦r =: �(W2,W1) · x
⌦r

.

Here �(W2,W1) 2 Rd2 ⇥ Symr(Rd0) is a partially symmetric d2 ⇥ d
⇥r
0 tensor, expressed as a sum

of d1 partially symmetric rank 1 terms, and · denotes contraction of the last r indices. Thus the
functional space F(d0,d1,d2),r is the set of rank  d1 partially symmetric tensors. Algorithms for
low-rank CP decomposition could be applied to �(W2,W1) to recover W2 and W1. In particular,
when d2 = 1, we obtain a symmetric d

⇥r
0 tensor. For this case, we have the following.

Lemma 8. A shallow architecture d = (d0, d1, 1) is filling for the activation degree r if and only if
every symmetric tensor T 2 Symr(Rd0) has rank at most d1.

Furthermore, the celebrated Alexander-Hirschowitz Theorem [1] from algebraic geometry provides
the dimension of Vd,r for all shallow, single-output architectures.
Theorem 9 (Alexander-Hirschowitz). If d = (d0, d1, 1), the dimension of Vd,r is given by
min

⇣
d0d1,

�d0+r�1
r

�⌘
, except for the following cases:

• r = 2, 2  d1  d0 � 1,

• r = 3, d0 = 5, d1 = 7,

• r = 4, d0 = 3, d1 = 5,

• r = 4, d0 = 4, d1 = 9,

• r = 4, d0 = 5, d1 = 15.

3.2 Deep networks and tensors

Deep polynomial networks also relate to a certain iterated tensor decomposition. We first note the
map �d,r may be expressed via the so-called Khatri-Rao product from multilinear algebra. Indeed ✓

maps to:
SymRow Wh((Wh�1 . . . (W2(W

•r
1 ))•r . . . )•r). (3)

Here the Khatri-Rao product operates on rows: for M 2 Ra⇥b, the power M•r
2 Ra⇥br replaces

each row, M(i, :), by its vectorized r-fold outer product, vec(M(i, :)⌦r). Also in (3), SymRow
denotes symmetrization of rows, regarded as points in (Rd0)⌦rh�1

, a certain linear operator.

Another viewpoint comes from using polynomials and inspecting the layers in reverse order. Writing
[p✓1, . . . , p✓dh�1 ]

T for the output polynomials at depth h� 1, the top output at depth h is:

wh11 p
r
✓1 + wh12 p

r
✓2 + . . .+ wh1dh�1 p

r
✓dh�1

. (4)
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This expresses a polynomial as a weighted sum of r-th powers of other (nonlinear) polynomials.
Recently, a study of such decompositions has been initiated in the algebra community [24]. Such
expressions extend usual tensor decompositions, since weighted sums of powers of homogeneous
linear forms correspond to CP symmetric decompositions. Accounting for earlier layers, our neural
network expresses each p✓i in (4) as r-th powers of lower-degree polynomials at depth h� 2, so forth.
Iterating the main result in [16] on decompositions of type (4), we obtain the following bound on
filling intermediate widths.
Theorem 10 (Bound on filling widths). Suppose d = (d0, d1, . . . , dh) and r � 2 satisfy

dh�i � min

✓
dh · r

i(d0�1)
,

✓
r
h�i + d0 � 1

rh�i

◆◆

for each i = 1, . . . , h� 1. Then the functional variety Vd,r is filling.

3.3 Computational investigation of dimensions

We have written code2 in the mathematical software SageMath [12] that computes the dimension
of Vd,r for a general architecture d and activation degree r. Our approach is based on randomly
selecting parameters ✓ = (Wh, . . . ,W1) and computing the rank of the Jacobian of �d,r(✓) in (1).
This method is based on the following lemma, coming from the fact that the map �d,r is algebraic.

Lemma 11. For all ✓ 2 Rd✓ , the rank of the Jacobian matrix Jac �d,r(✓) is at most the dimension
of the variety Vd,r. Furthermore, there is equality for almost all ✓ (i.e., for a non-empty Zariski-open
subset of Rd✓ ).

Thus if Jac �d,r(✓) is full rank at any ✓, this witnesses a mathematical proof Vd,r is filling. On the
other hand if the Jacobian is rank-deficient at random ✓, this indicates with “probability 1" that Vd,r

is not filling. We have implemented two variations of this strategy, by leveraging backpropagation.
Both work over a finite field F = Z/pZ to avoid floating-point computations (for almost all primes p,
this provides the correct dimension over R).

1. Backpropagation over a polynomial ring. We defined a network class over a ring
F[x1, . . . , xd0 ], taking as input a vector variables x = (x1, . . . , xd0). Performing automatic
differentiation (backpropagation) of the output function yields polynomials corresponding
to dp✓(x)/dw, for any entry w of a weight matrix Wi. Extracting the coefficients of the
monomials in x, we recover the entries of the Jacobian of �d,r(✓).

2. Backpropagation over a finite field. We defined a network class over the finite field F =
Z/pZ. After performing backpropagation at a sufficient number of random sample points x,
we can recover the entries of the Jacobian of �d,r(✓) by solving a linear system (this system
is overdetermined, but it will have an exact solution in finite field arithmetic).

The first algorithm is simpler and does not require interpolation, but is generally slower. We present
examples of some of our computations in Tables 1 and 2. Table 1 shows minimal architectures
d = (d0, . . . , dh) that are filling, as the depth h varies. Here, “minimal” is with respect to the partial
ordering comparing all widths. It is interesting to note that for deeper networks, there is not a unique

2Available at https://github.com/mtrager/polynomial_networks.

Table 1: Minimal filling widths for r = 2, d0 = 2, dh = 1

Depth (h) Degree (rh�1) Minimal filling (d)

3 4 (2,2,2,1)
4 8 (2,3,3,2,1)
5 16 (2,3,3,3,2,1)
6 32 (2,3,3,4,4,2,1)
7 64 (2,3,4,5,6,4,2,1)
8 128 (2,3,4,5,7,7,6,2,1) or (2,3,5,5,7,7,5,2,1)
9 256 (2,3,4,8,8,8,8,8,4,1) or (2,3,4,5,8,9,8,8,4,1)
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Table 2: Examples of dimensions of Vd,r

r = 2 r = 3 r = 4 r = 5 r = 6

d = (3, 2, 1) 5 6 6 6 6
d = (2, 3, 2) 6 8 9 9 9
d = (2, 3, 2, 3) 10 12 13 13 13
d = (2, 3, 2, 3, 4) 16 21 22 22 22

minimally filling network. Also conspicuous is that minimal filling widths are “unimodal", (weakly)
increasing and then (weakly) decreasing. Arguably, this pattern conforms with common wisdom.
Conjecture 12 (Minimal filling widths are unimodal). Fix r, h, d0 and dh. If d = (d0, d1, . . . , dh)
is a minimal filling architecture, there is i such that d0  d1  . . .  di and di � di+1 � . . . � dh.

Table 2 shows examples of computed dimensions, for varying architectures and degrees. Notice that
the dimension of an architecture stabilizes as the degree r increases.

4 General results

This section presents general results on the dimension of Vd,r. We begin by pointing out symmetries
in the network map �d,r, under suitable scaling and permutation.

Lemma 13 (Multi-homogeneity). For arbitrary invertible diagonal matrices Di 2 Rdi⇥di and
permutation matrices Pi 2 Zdi⇥di (i = 1, . . . , h� 1), the map �d,r returns the same output under
the replacement:

W1  P1D1W1

W2  P2D2W2D
�r
1 P

T
1

W3  P3D3W3D
�r
2 P

T
2

...

Wh  WhD
�r
h�1P

T
h�1.

Thus the dimension of a generic fiber (pre-image) of �d,r is at least
Ph�1

i=1 di.

Our next result deduces a general upper bound on the dimension of Vd,r. Conditional on a standalone
conjecture in algebra, we prove that equality in the bound is achieved for all sufficiently high activation
degrees r. An unconditional result is achieved by varying the activation degrees per layer.

Theorem 14 (Naive bound and equality for high activation degree). If d = (d0, . . . , dh), then

dimVd,r  min

 
dh +

hX

i=1

(di�1 � 1)di, dh

✓
d0 + r

h�1
� 1

rh�1

◆!
. (5)

Conditional on Conjecture 16, for fixed d satisfying di > 1 (i = 1, . . . , h� 1), there exists r̃ = r̃(d)
such that whenever r > r̃, we have an equality in (5). Unconditionally, for fixed d satisfying
di > 1 (i = 1, . . . , h � 1), there exist infinitely many (rh�1, rh�2, . . . , r1) such that the image of
(Wh, . . . ,W1) 7!Wh⇢rh�1Wh�1⇢rh�2 . . . ⇢1W1x has dimension dh +

P
i(di�1 � 1)di.

Proposition 15. Given positive integers d, k, s, there exists r̃ = r̃(d, k, s) with the following property.
Whenever p1, . . . , pk 2 R[x1, . . . , xd] are k homogeneous polynomials of the same degree s in d

variables, no two of which are linearly dependent, then p
r
1, . . . , p

r
k are linearly independent if r > r̃.

Conjecture 16. In the setting of Proposition 15, r̃ may be taken to depend only on d and k.

Proposition 15 and Conjecture 16 are used in induction on h for the equality statements in Theorem 14.
We remark that following our arXiv version of this paper, progress toward Conjecture 16 was made
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in [30]. There, it is shown that there exists r between 1 and k! such that pr1, . . . , prk are linearly
independent; however, it remains open whether there exists r̃ as we conjecture.

The next result uses the iterative nature of neural networks to provide a recursive dimension bound.

Proposition 17 (Recursive Bound). For all (d0, . . . , dk, . . . , dh) and r, we have:
dimV(d0,...,dh),r  dimV(d0,...,dk),r + dimV(dk,...,dh),r � dk.

Using the recursive bound, we can prove an interesting bottleneck property for polynomial networks.

Definition 18. The width di in layer i is an asymptotic bottleneck (for r, d0 and i) if there exists h̃
such that for all h > h̃ and all d1, . . . , di�1, di+1, . . . , dh, then the widths (d0, d1, . . . , di, . . . , dh)
are non-filling.

This expresses our finding that too narrow a layer can “choke" a polynomial network, such that there
is no hope of filling the ambient space, regardless of how wide elsewhere or how deep the network is.

Theorem 19 (Bottlenecks). If r � 2, d0 � 2, i � 1, then di = 2d0 � 2 is an asymptotic bottleneck.
Moreover conditional on Conjecture 2 in [28], then di = 2d0 is not an asymptotic bottleneck.

Proposition 17 affords a simple proof that di = d0�1 is an asymptotic bottleneck. However to obtain
the full statement of Theorem 19, we seem to need more powerful tools from algebraic geometry.

5 Conclusion

We have studied the functional space of neural networks from a novel perspective. Deep polynomial
networks furnish a framework for nonlinear networks, to which the powerful mathematical machinery
of algebraic geometry may be applied. In this respect, we believe polynomial networks can help us
access a better understanding of deep nonlinear architectures, for which a precise theoretical analysis
has been extremely difficult to obtain. Furthermore, polynomials can be used to approximate any
continuous activation function over any compact support (Stone-Weierstrass theorem). For these
reasons, developing a theory of deep polynomial networks is likely to pay dividends in building
understanding of general neural networks.

In this paper, we have focused our attention on the dimension of the functional space of polynomial
networks. The dimension is the first and most basic descriptor of an algebraic variety, and in this
context it provides an exact measure of the expressive power of an architecture. Our novel theoretical
results include a general formula for the dimension of the architecture attained in high degree, as well
as a tight lower bound and nontrivial upper bounds on the width of layers in order for the functional
variety to be filling. We have also demonstrated intriguing connections with tensor and polynomial
decompositions, including some which appear in very recent literature in algebraic geometry.

The tools and concepts introduced in this work for fully connected feedforward polynomial networks
can be applied in principle to more general algebraic network architectures. Variations of our algebraic
model could include multiple polynomial activations (rather than just single exponentiations) or
more complex connectivity patterns of the network (convolutions, skip connections, etc.). The
functional varieties of these architectures could be studied in detail and compared. Another possible
research direction is a geometric study of the functional varieties, beyond the simple dimension. For
example, the degree or the Euclidean distance degree [13] of these varieties could be used to bound
the number of critical points of a loss function. Additionally, motivated by Section 3.2, we would
like to develop computational methods for constructing a network architecture that represents an
assigned polynomial mapping. Such algorithms might lead to “closed form” approaches for learning
using polynomial networks (similar to SVD or tensor decomposition), as a provable counterpoint to
gradient descent methods. Our research program might also shed light on the practical problem of
choosing an appropriate architecture for a given application.
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