
Under review as a conference paper at ICLR 2020

Plan2Vec: Unsupervised Representation
Learning by Latent Plans

Anonymous authors
Paper under double-blind review

Abstract

Creating a useful representation of the world takes more than just rote
memorization of individual data samples. This is because fundamentally,
we use our internal representation to plan and solve problems. In this paper,
we introduce Plan2Vec, an unsupervised representation learning objective
inspired by graph-planning algorithms and value-based reinforcement tech-
niques. By abstracting away low-level control with a learned local metric,
we show that it is possible to learn representations that inform long-range
structures, entirely passively from high-dimensional sequential datasets that
assume no access to action data or an expert policy. Plan2vec learns a la-
tent space through value iteration on the graph formed by the data points,
connected via a local metric function trained contrastively from context.
We show that the global metric on this learned embedding can be used to
plan with O(1) complexity by linear interpolation. This exponential speed-
up is critical for planning with a learned representation on any problem
containing non-trivial global topology. We demonstrate the effectiveness of
Plan2Vec on simulated as well as two real-world image datasets, showing
that Plan2Vec can effectively acquire representations that carry long-range
structure to accelerate planning. Additional results and videos can be found
at https://sites.google.com/view/plan2vec.

1 Introduction

Unsupervised representation learning is often motivated by the goal of reducing human in-
volvement in the learning loop, such that an algorithm can learn directly from streams of
unlabeled data. Much focus has been placed on an algorithm’s transfer performance across
supervised learning tasks. However, for control tasks, where an agent is planning on the
learned representation space, performance is often poor (Watter et al., 2015). A quick glance
at the representation learned by a variational auto-encoder (VAE) reveals that the learned
embedding often contains local patches that are quite reasonable by themselves, but the
global structure of the learned embedding is often “crumpled”, such that Euclidean lines
between points that are sufficiently far-apart either cross domain-boundaries, or otherwise
detach from the support of the learned manifold (see Fig.4). This observation implies that
although the VAE objective encourages embeddings that behave well locally, memorizing
individual image samples by reconstruction is insufficient to attain meaningful global struc-
ture. This raises an interesting and important question: if rote memorization is insufficient,
what else do we need in order to build an agent that can make good plans?
Various works in learning representations for planning attempt to address this issue by
learning locally constrained generative models (Banijamali et al., 2017; Watter et al., 2015;
Kurutach et al., 2018). One line of work, motivated by controlling complex dynamic systems
directly from high-dimensional input, attempts to learn generative models that explicitly
impose a reduced local linearity constraint on the learned dynamic manifold (Watter et al.,
2015; Banijamali et al., 2017). Such methods contain three major shortcomings. First,
some of these formulations rely on learning a forward model, which can not be applied to
datasets where action data is unavailable or ill-defined. Second, these generative models
rely heavily on the inductive prior within image generation, that images nearby in pixel
space are semantically similar, which limits the applicability of these methods to domains

1

https://sites.google.com/view/plan2vec

Under review as a conference paper at ICLR 2020

where visual similarities map well to the conceptual space. Finally, the linear constraint and
the optimization objective are both local, yet making plans involves non-local concepts of
distances and direction. How to learn from streams of observation data to attain a cognitive
map of the problem domain without relying on the image similarity priors provided by
generative models remains an open problem.
In this work, we pose the problem of unsupervised learning a plannable representation as
learning a map of the domain without access to the underlying sampling process and the
environment. Such a map has two main properties: First, the map informs conceptual dis-
tance between any pair of observations, beyond the typical limit of a short spatiotemporal
window (Perozzi et al., 2014; Caron et al., 2018). Second, this map has to be consistent with
a local metric1, which is easily attained via self-supervision. Motivated by this problem,
we propose Plan2Vec, a method for unsupervised representation learning that incorpo-
rates planning as part of the learning objective. The technical challenges of this work are
threefold: First, the standard formulation of reinforcement learning requires substantial hu-
man supervision in the form of meticulously shaped, dense rewards. Different tasks usually
require different reward functions, making it difficult to scale across multiple tasks. The
second issue is that reinforcement learning is active, as it requires access to an environment
between optimization phases to receive trajectories in order to learn. Third, to plan on a
continuous state and action space, one usually needs to learn a closed-form behavior policy
that outputs actions, or a forward model of the environment with actions as an input.
The main contributions of this paper is to overcome all three of these problems by formu-
lating the problem of learning the global structure of a data manifold as a goal-directed
reinforcement learning task. To solve the issue of offering a reward, we train a local metric
function from local context without supervision, and use it as a sparse reward for reaching
the goal with hind-sight relabeling. To address the necessity of active RL and extending
RL to a passive setting, we remove the need for either action data, or a model of the world,
by planning entirely in the latent configuration space on a graph. Goal-directed planning
can be done with a 1-step greedy policy in the learned representation space. We call our
method Plan2Vec, for learning an embedding space for planning.
To help illustrate our method, we lead the introduction of Plan2Vec with a set of toy tasks
on simulated navigation domains, and show visualization of the components and learned
manifold. We then evaluate Plan2Vec under two challenging task settings: First, we show
that we can learn representations on deformable objects such as a piece of rope, which is
otherwise hard to model. Moreover, we show qualitative results on visual plans between
pairs of rope configurations that are randomly selected from the dataset. Second, we tackle
real-world navigation on StreetLearn (Mirowski et al., 2018), where we learn to embed a map
directly from videos of a car driving through the streets, with no access to the ground-truth
GPS location data. We show quantitatively that under a constrained planning computation
budget, the embedding that Plan2Vec learns using a globally consistent planning objective
outperforms baselines that only plan with the local metric.

2 Related Works

The work most similar to ours from the manifold learning community is DeepWalk (Perozzi
et al., 2014). DeepWalk aims to embed a social graph by randomly sampling trajectories,
then use skip-gram (Mikolov et al., 2013) to embed each graph node contrastively from
its contrast. This is related to the contrastive learning objective we use to train our local
metric function. Despite of this, the random walk DeepWalk employs to sample those
trajectories is limited in terms of distance of travel. As a result it falls under the category of
representation learning algorithms that only learn from a localized context. Similarly there
is a strong connection between our value-iteration learning objective and the diffusion map
literature. In diffusion map, the distance on the learned manifold measures the “diffusion
distance” between two points on a graph G under a markovian transition kernel (Socher
& Hein, 2008). One can consider value-iteration as a non-parametric version of diffusion

1This can be relaxed into a pseudo metric, allowing different images to have zero conceptual
distances in-between. This does not affect the applicability of our approach.

2

Under review as a conference paper at ICLR 2020

map using neural networks for the kernel. A critical difference is that the transition kernel
in diffusion maps is not condition on a goal whereas the policy does. As a consequence,
the diffusion distance fall-off exponentially as the number of steps increases, just like with
DeepWalk. Locally linear embeddings (LLE) could be considered a “stronger” version of
skip-gram, where linear contributions of each neighbor is preserved. However, LLE enforces
global structure, and prevent volume collapse via addition of a global volume regularization
term. This is similar to the variational prior in a variational auto-encoder (VAE) in that
both lack meaningful alignment with planning semantics. Recent work in “robust features”
point to a connection between the injected noise and the alignment between the input and
output manifoldsIlyas et al. (2019) that might be an interesting direction to explore.
Other works look at planning over a graph with various assumptions (Savinov et al., 2018;
Zhang et al., 2018; Eysenbach et al., 2019). With semi-parametric topological memory
(SPTM) Savinov et al. (2018) the focus is on solving navigation instead of learning a vector
embedding. All of these methods use Dijkstra’s shortest path first (SPF) search (Dijkstra,
1959) on the graph to plan, resulting in a worst case bound of O(|E| + |V | log |V |) in
computation time where |E| is the number of edges on the graph and |V | the number of
vertices. In our experiment, we show quantitatively that the local embedding SPTM uses
to make plans is insufficient if the hard-coded planner has a restricted planning budget,
whereas the globally consistent representation that Plan2Vec learns via value iteration still
plans well. Our result illustrates the importance for an agent to acquire such a global view
of the domain and use it as heuristic for planning.
There are also gradient-based planning methods that require expert trajectories, which is a
strong assumption that we do not require. Universal Planning Networks and Distributional
Planning Networks (Srinivas et al., 2018; Yu et al., 2019) rely on supervised learning to
get to the reward through a differentiable forward model, trained end-to-end by grounding
through expert actions. Gupta et al. (2019); Tamar et al. (2016) assume that the feature
vectors live on a 2D grid world with known environment dynamics and well-defined local
connectivity between states.
There have also been Laplacian methods to learn representations efficient for planning (Wu
et al., 2019), using a spectral graph objective for approximating the Laplacian eigenfunc-
tions and using L2 distance in this space as a dense reward for goal-directed tasks. This
learns a similar type of space that is a compression of the original graph, but assumes the
original graph is fully given through acting in the environment as opposed to a disjoint set
of trajectories which are connected via a learned local metric.
Embed to control (E2C), RCE, L-SBMP and causal InfoGAN (Watter et al., 2015; Bani-
jamali et al., 2017; Ichter & Pavone, 2018; Kurutach et al., 2018) are a line of generative
model that explicitly incorporate forward modeling in the latent space. They show that the
learned representation is plannable, without directly incorporating a planner as part of their
learning objective. Our goal is drastically different – Plan2Vec learns a representation by
planning, as opposed to just showing one can plan with a learned representation. Plan2Vec
explicitly acquires the concept of “reachability” conditioned on an optimal policy as part of
the representation. This results in a semantically meaningful and locally consistent global
structure.
Another branch of work coming from the reinforcement learning community are self-
supervised or task-agnostic RL (Florensa et al., 2019; Kahn et al., 2017; Pong et al., 2019).
These work aim to reduce the amount of human involvement in designing reinforcement
learning algorithms for individual tasks. Plan2Vec is distinguished from these proposals in
that we do not aim to learn a policy distribution π(a|o). Instead, we want to learn gen-
eralizable representations of the environments that makes learning such a low-level policy,
or running classical control algorithms more efficient. By abstracting away the actions,
Plan2Vec is able to plan over much longer horizons, as demonstrated in Sec. 5.

3

Under review as a conference paper at ICLR 2020

3 Technical Background

We now overview methods that learn a local metric between pairs of images that are close-
by, and proximal dynamic programming under a standard Markov decision process (MDP)
formalism (Sutton & Barto, 1998).

Learning a Local Metric. Intuitively, a metric is a bivariate function that gives a mea-
sure of similarity between two points. Formally, fa,b∼D : (a, b) → R+ is a symmetric,
real-valued, and positive-definite function over its domain D×D. When distance labels are
available one can learn such a function via supervised learning. In reality, however, we often
need to work with sequential datasets without access to a sampling policy that is jointly
optimized, in which case one cannot assume long-horizon optimality in the sequences we
want to learn from. As a result, the distance information between frames of observations is
only good up to a limited temporal window, beyond which noise dominates.
In language modeling and unsupervised representation learning domains, it is often easy
to construct positive and negative examples, and pose a binary classification objective as
a Noise-Contrastive Density Estimator (NCE) (Gutmann & Hyvärinen, 2010),

LNCE = − log f(xi, c)∑
x∼X f(x, c)

, (1)

where f is a convex function proportional to the density p(x, c). Minimizing the NCE loss
can be mapped to maximizing a lower-bound on the mutual information between the latent
code c and the data distribution X (Oord et al., 2018; Hjelm et al., 2018),

I(X, c) = E
[

log P (X|C)

P (X)

]
≥ log(N)− LNCE . (2)

Rather than directly learning a representation this way (Sermanet et al., 2017), Plan2Vec
extends the standard binary NCE objective to learn a local metric function, and uses it as
a reward function.

Universal Value Function Approximator as a Metric. We formulate value iteration
under the Markov decision process (MDP) formalism (Bellman, 1957). The MDP is param-
eterized by the tuple ⟨S,A, P, r⟩. S and A are the sets of states and actions, P (s′|s, a) is
the transition model of the environment, and r(s, a, s′) is the reward function. An agent is
represented by its policy distribution π(a|s). The state value function Vπ : S → R repre-
sents the expected sum of discounted future rewards for being at state s, conditioned on the
reward r and the policy π. In sample-based value iteration with neural networks, we can
learn the value function by minimizing the empirical Bellman-residual

δ =
∥∥V (s; θ)− B∗πV

∥∥ , (3)

where the Bellman optimality operator is defined as

B∗πV = max
at

[
R(st, at, st+1) + γ

∑
st+1

P (st+1|st, at)V (st+1; θ)

]
. (4)

Universal Value Function Approximators (UVFAs) (Schaul et al., 2015) extend this task-
specific reward to learn a “universal” value function by generalizing to all goals g ∈ S.
The reward now conditions on the goal r(s, a, s′, g). Assuming that the goals are uniformly
sampled from S and the value function is symmetric, UVFA becomes a metric on S up to a
correction constant. If we further assume that the MDP is deterministic, the sample-based
Bellman residual can be reduced to

V (s, g; θ)← r(s, a, s′, g) + γV (s′, g; θ) , (5)

which we use to learn our latent space, as detailed in Sec. 4.2.

4 Learning Representations by Latent Planning

4

Under review as a conference paper at ICLR 2020

4
5

6

1
2

3

7
8

9
10

Figure 1: Example of a path (black
dashed arrow) found across indepen-
dent trajectories (colored lines) from
an initial state (gray circle) to a goal
state (blue square), with learned lo-
cal metric creating new connections.

Our goal is to learn a representation that goes be-
yond rote memorization of the dataset, which con-
sists of disjoint temporal sequences. Critically, we
want the structure of the embedding to capture the
global topology of the dataset, such that for any ob-
servation o in the domain, we can make useful infer-
ence with respect to another sample ogoal, no mat-
ter how far away ogoal is. Having access to such a
global metric, ∀ o, ogoal pairs, would enable effective
planning on non-trivial, high-dimensional, and/or
complex topologies that are otherwise prohibitively
slow. In this section we give a high-level overview of
Plan2Vec, with implementation details available in
Appendix ??. We first define local connectivity be-
tween states through a local metric function trained
in a self-supervised manner with a contrastive loss.
Different from Watter et al. (2015); Banijamali et al.
(2017) and similar to Kurutach et al. (2018), our
method does not rely on dynamics of the underlying
environment in the form of sampled action data, and
neither do we learned a forward model, which distracts from long-range planning. Instead,
this task occurs on a graph where disjoint temporal sequences are connected by the local
metric function. We learn a representation space that encodes paths on the graph such that
a 1-step greedy policy on the learned representation is equivalent to a path finding algorithm
on the graph.

4.1 Noise-Contrastive Learning the Local Metric

Algorithm 1 Contrastive Local Metric Learning
Require: set of observation sequences {τ = x[0:T]}
1: Initialize fϕ
2: Sample xt and xI = xt, yI = 0
3: Sample xt, x

+
t+1 where xt, xt+1 ∈ τi, y+ = 1

4: Sample xt, x
− where x− ∼ τj , xt /∈ τj , y− = 2

5: for each epoch do
6: minimize ∥fϕ(x, x∗)− y∗∥2 for x, x±,I, y±,I

7: end for

In many representation learning prob-
lems, one has access only to noisy bi-
nary or categorical learning signals.
It is often easy to find symmetry
transformations in a particular prob-
lem that make it trivial to define a
binary or ordered categorical relation-
ship between data-points. In skip-
grams (Mikolov et al., 2013; Jozefow-
icz et al., 2016) the classifier decides
whether a word belongs to a certain context. In time-contrastive networks (Sermanet et al.,
2017) classifiers decide whether two views correspond to the same scene. In our case, we
extend this dichotomy to one of {identical, close, or far-apart}. Formally this can be consid-
ered as a natural extension of the standard definition of a metric from the positive real-line
to a directed set where each element in the set corresponds to one of the categories. To
reflect the order between the category labels, we use a regression objective. The labels are
designated 0 for identity, k/K for true neighbors that are k steps apart if k ≤ K, and 2 for
negative samples for other trajectory or the same trajectory but more thank K steps apart.
Alg. 1 explains the procedure in detail. Fig. 3 illustrates the well-behaved distribution of
local distance scores for one of our experimental domains. Visualization of pairs show new
transitions that are not present in the training trajectories.

4.2 Extrapolating Local Metric to A Globally Consistent Embedding By
Planning

To extrapolate the local metric information to a globally consistent embedding that
can speed up planning, we first connect those disjoint trajectories in the dataset us-
ing the new connections found by the trained local metric function fϕ (see Alg. 1
and Fig. 3c). One can use this graph defined by fϕ to perform planning at infer-
ence time with a path finding algorithm. However, this takes O(|E| + |V | log |V |)
time (Fredman & Tarjan, 1987) where |E| is the number of edges and |V | is the
number of vertices in the graph. This quickly becomes intractable for large graphs.

5

Under review as a conference paper at ICLR 2020

Algorithm 2 Unsupervised Learning by Latent Plans
Require: planning horizon H
Require: set of observation sequences S = {τ = x[0:T]}
Require: local metric function ϕ(x, x

′) ⇒ R+

Require: reward function r(x, xg) = −fϕ(x, xg)
1: Initialize global embedding Φ(x) ⇒ R+

2: repeat
3: sample x0, xg ∈ S as start and goal
4: repeat {h=0, h++}
5: find set n = {x′ s.t. ϕ(x0, x

′) ∈ N(1, ϵ)}
6: find x∗ = arg minx∈n ϕ(x, xg)
7: compute rt = r(x∗, xg)
8: add ⟨x, x∗, rt, xg⟩ to buffer B
9: until r = 0 or h = H

10: Sample ⟨x, x′, r, xg⟩ from B
11: minimize δ =

∥∥VΦ(x, xg), r + VΦ(x
′, xg)

∥∥
p

where
VΦ(x, xg) := ∥Φ(x)− Φ(xg)∥p

12: until convergence

Instead, we can move this compu-
tation to training time to achieve
fast inference by learning a repre-
sentation that distills shortest path
information from this graph. Our
goal is to learn an embedding on
which there exists a metric that
correctly reflects the difference in
reachability between points in the
neighborhood of the current obser-
vation, and the goal. Now formu-
lated as an reinforcement learning
problem, this is equivalent to learn-
ing a goal-conditioned value func-
tion VΦ(s, g) := ∥Φ(s) − Φ(g)∥p at
state s towards the goal g, where
in practice we take p = 2. Hence,
the value function is defined as the
Euclidean distance between the two
states in the learned embedding
space. Similarly, the local metric f becomes the cost to travel the distance between
state s and the next step s′. The action set A(s) for the agent consists of a flexible
number 1-step neighbors, sourced from the local metric function fϕ for each node s in
the graph. As a reminder, fϕ is a regression function that outputs a score designating
“closeness” between a pair of states x, x′. In practice, we select a subset x′ ∈ X where
fϕ(x, x

′) ∈ N(1, ϵ) := [1 − ϵ, 1 + ϵ] with tuned hyperparameter ϵ and X is the set of all
states from the dataset. Choosing small ϵ leads to shorter steps between states and longer
paths, and vice versa. We have now created a reinforcement learning task and can learn this
value function with multi-step value iteration using transitions sampled from the graph (see
Alg. 2). To improve rate of learning, we use hindsight experience re-labeling (Andrychowicz
et al., 2017) to insert positive reaching examples.

5 Experimental Evaluation

In this section, we experimentally answer the following questions: 1) Can we build a graph
from sequential datasets using a contrastively trained local metric? 2) Can we extrapolate
this local metric to a global embedding, and make planning easier? 3) Would Plan2Vec work
in domains other than navigation, and learn features that are not visually apparent? To
answer these questions, we show quantitative results on simulated 2D navigation. Then we
extend Plan2Vec to the challenging deformable object manipulation tasks. Finally, we show
that Plan2Vec can learn non-visual features of the domain where other methods perform
poorly, on a real-world large-scale street view dataset.

5.1 Simulated Navigation

Figure 2: Simulated 2D navigation envi-
ronments. We use these domains to illus-
trate the various properties of our method.
left: Open, middle: Table, right: C-Maze.
The blue block is the agent, and the red
circle indicates the desired goal.

Our first domain is a room with a continuous, 2-
dimensional state space. A camera looks down
on a square arena with a robot (blue block).
The trajectory data consist of top-down im-
ages of the arena. We use ground-truth coordi-
nates for evaluation only. Our experiment cov-
ers three room layouts with increasing level of
difficulty: an open room, a room with a table in
the middle, and a room with a wall separating
it into two corridors that resembles a C-shaped
maze (see Fig. 2).

Connecting The Dots by Generalization. We first investigate if the contrastively
trained local metric function generalizes. To train the local metric contrastively on this

6

Under review as a conference paper at ICLR 2020

Figure 3: (1) Local metric score in comparison to ground-truth L2 distance with predicted
neighbors in red. (2) Trajectories given in the dataset. (3) Points from different trajectories
are connected by generalizing the local-metric function. Out-of-training-set Connections
shown in red. (4) Step sequence in C-Maze, learned via Plan2Vec. Gray dashed circle is
the goal position. Red dot is the planned next step (1-step), greedy w.r.t the global metric
function being learned. Blue dots are the neighbors sampled using the local metric function.
Gray dot indicates the current and past positions of the agent. Sequence shows the agent
getting around the wall in C-Maze. (5) Learned value function for a goal location on the
bottom left corner (white dashed circle). Blue color is further away, red is close.

Figure 4: Learned Embedding with VAE (top row) vs
Plan2Vec (bottom row). The columns correspond to the
Open Room, Table, and C-Maze domains. Representation
learned by the VAE is wrapped globally. Whereas Plan2Vec
learns a globally coherent embedding. In C-Maze, the two
ends of the tunnel are further apart, correctly reflecting the
decrease in reachability between those points.

Figure 5: (left and middle)
Difference in learned global
metric on Open Room and
C-Maze. The goal used to
query the value map is in-
dicated by the dashed cir-
cle. (right) shows the agent
getting around the wall with
the learned embedding (blue),
whereas a Euclidean planner
gets stuck.

domain, we restrict K = 1, such that only observations that are 1-step away are considered
neighbors. The local metric predicts a distance score that is between 0 and 2, where 0
corresponds to identical observations, 1 to neighbors, and 2 to observations that are further
apart. Fig. 3a shows the distribution of the score against ground-truth distance. In short
ranges, the learned model is able to recover the local metric but saturates as distances
increase. The score is well-behaved enough that it is easy to pick suitable values for the
neighbor threshold (indicated by the ceiling of the red points). We plot new transitions
found by the local metric against those in the dataset (blue). Fig. 3b visualizes the sampled
trajectories (in blue, of length 4), whereas Fig. 3c shows the new ones found by the learned
local metric function.

Table 1: Planning Performance on 2D Navigation

State Input Open Room Table C-Maze
Euclidean 100.0± 0.0 96.3± 1.4 88.7± 3.6
Plan2vec (L2) 100.0± 0.0 96.6± 0.9 86.0± 4.1
Plan2vec (pseudo) 96.9± 0.5 96.7± 2.0 83.1± 3.0

Image Input
Plan2vec (L2) 90.0± 2.0 76.4± 9.2 80.2± 6.3
SPTM (1-step) 39.7± 6.1 23.7± 6.1 31.4± 6.5
VAE 73.9± 4.3 30.2± 6.5 52.7± 5.8
Random 3.2± 2.5 3.5± 2.5 4.7± 2.8

Accelerating Planning with a
Learned Cognitive Map. To evaluate
Plan2vec, we compare with SPTM (Savi-
nov et al., 2018) and VAE (Kingma &
Welling, 2013) learned representations
under a restricted planning budget.
Table 1 shows the success rates on the 2D
navigation domains when the planning
horizon is limited to a single step in
the future. Under this regime, SPTM

7

Under review as a conference paper at ICLR 2020

Figure 6: Left: Comparison of Plan2Vec with full SPTM and a random baseline for varying
plan lengths. Center: Comparison of Plan2Vec with DQN in terms of sample efficiency. Right:
Comparison of computation time of Plan2Vec and Dijkstra’s.

fails to succeed most of the time. This is because the local similarity function used in
the parametric memory does not contain long-range information about the domain, and
hence is insufficient as a planning heuristic for a memoryless planner. The VAE learned
embedding does better on the Open Room domain, but falls short on more complex room
arrangements. In comparison, the representation learned by Plan2Vec succeeds most of the
time. To investigate this further, we visualize the learned global embedding for VAE versus
that of Plan2Vec (Fig. 4). With the Open Room, Plan2Vec learns a latent space that looks
flat. With Table and C-Maze, two points that are close in Euclidean space but separated
by the wall appear far away in the learned latent space, reflecting the reduced reachability
in between. For latent space higher dimension than 3, we can directly visualize the value
function as shown in Fig. 5.
We also include comparison to full SPTM, and find that Plan2Vec performs better at varying
planning lengths, compare sample complexity with DQN (Mnih et al., 2015) using the local
metric as a reward function, and computation time for planning of Dijkstra’s and Plan2Vec
to empirically validate the asymptotic bounds given in Section 4.2, all shown in Figure 6.
These are all run on state space of the Open Room domain.

5.2 Manipulation of Deformable Objects
While we have made strides in controlling rigid bodies with reinforcement learning, manip-
ulating deformable objects still remains an open problem. Methods so far rely on learning
a generative model over the image sample (Kurutach et al., 2018). To learn a plannable
representation in a purely discriminative manner we now apply our method to the rope
dataset (Wang et al., 2018). The rope dataset is composed of 18 independent trajectories
with 14k images total. Each image is a gray scale photo of a piece of rope wrapped around
two pegs that are fixed on the table surface. The two pegs help define distinct topology
for the configuration of the rope that needs to be respected for reasonable transitions. The
challenge with the rope dataset is that it does not have a well-defined low-dimensional con-
figuration space, making it difficult to design quantitative evaluation metrics. To get around
this issue, we evaluate our method with planning on single trajectories, where the original se-
quences of observation can be used as qualitative baselines. We do find that our local metric
generates a connected graph over all 18 trajectories, therefore there exists a viable plan from
any image os to any goal image og. The difficulty of the planning problem varies with the
connectivity of the graph, which is in turn dictated by the threshold set on local metric ϕ.

Figure 7: A visualization
of the three datasets Tiny,
Small, and Medium used
in our experiments.

Fig. 8 shows the distribution of neighbors for a set threshold T =
1.1, with both in and out-trajectory neighbors. This highlights
the difficulty of the rope manipulation task and learning a latent
representation that reflects a sparse connectivity graph. Fig. 9
shows an example of a plan generated by Plan2Vec for a given
start and goal state, where we can see that each transition only
perturbs the configuration of the rope locally.

5.3 Beyond
Visual Similarity: Real-world Navigation
To answer the question of whether Plan2Vec is able to learn non-
visual features of the domain, we evaluate on a visual navigation
task using the real world dataset StreetLearn (Mirowski et al.,
2018). In comparison to the previous two tasks, the StreetLearn
dataset offers an interesting alternative because the spatial re-

8

Under review as a conference paper at ICLR 2020

Figure 8: Histogram of number of neighbors per node, with visualized examples. Original
nodes are left of the red dashed line and out of trajectory neighbors are outlined in orange.

Query Image Visual Plans Goal Image

Figure 9: Example of visual plan generated by Plan2Vec on the Rope Domain showing
steps coming from two different trajectories (8 and 3). Each transition only perturbs the
configuration of the rope locally. The numbers above denote the trajectory and time step
the image is from, the number below represents the score by the local metric fϕ.

lationship between views at different locations is not visually
apparent. One can not easily tell that Union Square is to the
north of Washington Square Park from street views alone. Yet a city resident knows exactly
which general direction to turn to. This is in stark contrast to both the Room domain and
the rope domain, where visual similarity is easily mapped to being close in the configuration
space. We quantitatively evaluate the planning performance of Plan2Vec versus the VAE
baseline in Table 2 using generated datasets (Fig. 7). This result shows that the planning
performance of VAE on the StreetLearn dataset is barely above that of a random base-
line. This is a common short-coming with unsupervised models that rely on the inductive
prior of the generator to learn. Plan2Vec, on the other hand, uses planning as a general
framework to extend any type of local and semantically meaningful signal to a consistent
global embedding. We interpret these results by hypothesizing that Plan2Vec is successful
in learning non-visual concepts of reachability (in this case an idea of the map), whereas
VAE only clusters the images by visual similarity.

Table 2: 1-step Planning Performance on StreetLearn.
Numbers are percentage of success for reaching goals
that are within 50 steps of the starting point. Full
Graph Search methods succeed 100% of the time.

Success Rate (%)
StreetLearn Tiny Small Medium

Plan2vec (Ours) 92.2± 2.9 57.2± 4.3 51.4± 6.9
SPTM (1-step) 31.5± 5.8 19.3± 5.8 20.2± 5.2
VAE 25.5± 5.6 14.4± 4.8 16.9± 5.5
Random 19.9± 5.4 12.0± 5.2 12.7± 4.6

In Table 2, we also include compar-
isons with SPTM, where the agent
is only allowed to plan 1-step ahead.
This computation-constrained regime
is interesting because a good planning
heuristic is critical for good search per-
formance. The result shows that in
this regime, Plan2Vec performs well
above SPTM, which backs our intu-
ition that a good representation can
and should alleviate some of the compu-
tational cost of planning at test time.
Formally, Plan2Vec’s 1-step greedy planning is O(1) at test time, whereas SPTM is O(E)
where E is the size of the graph. This also shows that Plan2Vec memorizes information that
is computationally more valuable. Lastly, we observe that Plan2Vec generalizes – despite the
agent never having seen a particular combination of starts and goals in the original dataset
– by successfully navigating using the values acquired during training time as evidenced by
the large jump in performance compared to other methods in Table 2.

9

Under review as a conference paper at ICLR 2020

6 Conclusion

We have presented an approach to attain a globally consistent representation from streams
of observation data in a purely unsupervised fashion without generating images. Integral to
our approach is the incorporation of planning as part of our learning objective, to enforce the
semantic notion of reachability between any pair of images on the learned embedding. This
differs our approach from previous work in learning plannable representations – in that the
plannability is a consequence of the planning objective, instead of local linearity constrains.
In addition, we realize that formulating unsupervised learning as a reinforcement learning
problem has the added benefit of allowing one to insert arbitrary local information about
the domain as the reward R(s, s′), and the explicit including of a maximizing inner step.

References

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welin-
der, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. In Advances in Neural Information Processing Systems, pp. 5048–5058,
2017.

Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, and Ali Ghodsi. Robust
locally-linear controllable embedding. arXiv preprint arXiv:1710.05373, 2017.

Richard Bellman. A Markovian decision process. Journal of Mathematics and Mechanics,
pp. 679–684, 1957.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. arXiv preprint arXiv:1807.05520, 3, 2018.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathe-
matik, 1(1):269–271, 1959.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer:
Bridging planning and reinforcement learning. ArXiv, abs/1906.05253, 2019.

Carlos Florensa, Jonas Degrave, Nicolas Heess, Jost Tobias Springenberg, and Martin A.
Riedmiller. Self-supervised learning of image embedding for continuous control. CoRR,
abs/1901.00943, 2019. URL http://arxiv.org/abs/1901.00943.

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, July 1987. ISSN 0004-5411.
doi: 10.1145/28869.28874. URL http://doi.acm.org/10.1145/28869.28874.

Saurabh Gupta, Varun Tolani, James Davidson, Sergey Levine, Rahul Sukthankar, and
Jitendra Malik. Cognitive mapping and planning for visual navigation. International
Journal of Computer Vision, Oct 2019.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 297–304, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Adam Trischler,
and Yoshua Bengio. Learning deep representations by mutual information estimation and
maximization. arXiv preprint arXiv:1808.06670, 2018.

Brian Ichter and Marco Pavone. Robot motion planning in learned latent spaces. arXiv
preprint arXiv:1807.10366, 2018.

10

http://arxiv.org/abs/1901.00943
http://doi.acm.org/10.1145/28869.28874

Under review as a conference paper at ICLR 2020

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and
Aleksander Madry. Adversarial examples are not bugs, they are features. arXiv preprint
arXiv:1905.02175, 2019.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring
the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. Self-
supervised deep reinforcement learning with generalized computation graphs for robot
navigation. CoRR, abs/1709.10489, 2017. URL http://arxiv.org/abs/1709.10489.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel. Learn-
ing plannable representations with causal infogan. In Advances in Neural Information
Processing Systems, pp. 8747–8758, 2018.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Piotr Mirowski, Matthew Koichi Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith
Anderson, Denis Teplyashin, Karen Simonyan, Koray Kavukcuoglu, Andrew Zisserman,
and Raia Hadsell. Learning to navigate in cities without a map. In Neural Information
Processing Systems (NeurIPS), 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836.
URL http://dx.doi.org/10.1038/nature14236.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 701–710. ACM, 2014.

Vitchyr H. Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine.
Skew-fit: State-covering self-supervised reinforcement learning. CoRR, abs/1903.03698,
2019. URL http://arxiv.org/abs/1903.03698.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological
memory for navigation. arXiv preprint arXiv:1803.00653, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function
approximators. In International Conference on Machine Learning, pp. 1312–1320, 2015.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal,
and Sergey Levine. Time-contrastive networks: Self-supervised learning from pixels. 2017.

Richard Socher and Matthias Hein. Manifold learning and dimensionality reduction with
diffusion maps. In Seminar report, Saarland University, 2008.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal
planning networks: Learning generalizable representations for visuomotor control. In
Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4732–
4741, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

11

http://arxiv.org/abs/1709.10489
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1903.03698

Under review as a conference paper at ICLR 2020

Aviv Tamar, YI WU, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration
networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 29, pp. 2154–2162. Curran Associates,
Inc., 2016.

Angelina Wang, Thanard Kurutach, Aviv Tamar, and Pieter Abbeel. Learning robotic
manipulation through visual planning and acting. In Deep RL Workshop at NeurIPS,
2018.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. In Advances
in neural information processing systems, pp. 2746–2754, 2015.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in RL: Learning representations
with efficient approximations. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=HJlNpoA5YQ.

Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, and Chelsea Finn. Unsupervised visuomotor
control through distributional planning networks. CoRR, abs/1902.05542, 2019. URL
http://arxiv.org/abs/1902.05542.

Amy Zhang, Sainbayar Sukhbaatar, Adam Lerer, Arthur Szlam, and Rob Fergus. Com-
posable planning with attributes. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
pp. 5837–5846, 2018. URL http://proceedings.mlr.press/v80/zhang18k.html.

12

https://openreview.net/forum?id=HJlNpoA5YQ
http://arxiv.org/abs/1902.05542
http://proceedings.mlr.press/v80/zhang18k.html

Under review as a conference paper at ICLR 2020

Appendix

A Implementation Details

A.1 Architecture and Parameter Tuning
In our experience, we found that it is substantially easier to learn the local metric function,
versus the global metric. This is reflected in the network architecture that is needed for the
network to converge. For the local metric function, we typically achieve high-90% testing
accuracy on the fixed dataset. For the global metric function, we conduct architecture search
with supervised training. Results are averaged over 3 seeds that are not hand-picked.

A.1.1 Simulated Navigation with Proprioceptive Inputs

The local metric function is a simple 4-layer perceptron. To learn the local metric, we run
20 environment simulation in parallel, collect 50 rollouts each (1000 in total). Each rollout
has 10 timesteps. We then generate data pairs that are 1-step apart. We use a mini batch
size of 32, and a learning rate of 3×10−4. The rest of the Adam optimizer hyper parameters
are stock ones from pyTorch.

LocalMetric(
(embed): Linear(in_features=2, out_features=50, bias=True)
(head): Sequential(

(0): Linear(in_features=100, out_features=50, bias=True)
(1): ReLU()
(2): Linear(in_features=50, out_features=50, bias=True)
(3): ReLU()
(4): Linear(in_features=50, out_features=50, bias=True)
(5): ReLU()
(6): Linear(in_features=50, out_features=1, bias=True)

)
)

In order for the global metric function to converge on the same dataset, it needs to be wider
than the local metric function. This tangentially shows that the global metric is learning
more complex information than the local metric.

GlobalMetricDistance(
(embed): Sequential(

(0): Linear(in_features=2, out_features=200, bias=True)
(1): ReLU()
(2): Linear(in_features=200, out_features=200, bias=True)
(3): ReLU()
(4): Linear(in_features=200, out_features=200, bias=True)
(5): ReLU()
(6): Linear(in_features=200, out_features=100, bias=True)
(7): ReLU()
(8): Linear(in_features=100, out_features=2, bias=True)

)
(head): (self.head = (lambda a, b: (a - b).norm(2, dim=-1))
)

)

A.1.2 Network Architecture used in simulated navigation with image
inputs

The local metric function is a stacked five-layer convolution network. To make learning
easier, we stack the two input images channel wise, so that there is maximum flexibility for
the local metric function.

13

Under review as a conference paper at ICLR 2020

LocalMetricConvLarge(
(trunk): Sequential(

(0): Conv2d(2, 32, kernel_size=(4, 4), stride=(2, 2))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU()
(3): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU()
(6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2))
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
(8): ReLU()
(9): Conv2d(64, 32, kernel_size=(4, 4), stride=(2, 2))
(10): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(11): ReLU()
(12): View(-1, *(128,))
(13): Linear(in_features=128, out_features=128, bias=True)
(14): ReLU()
(15): Linear(in_features=128, out_features=100, bias=True)
(16): ReLU()
(17): Linear(in_features=100, out_features=1, bias=True)

)
)

We increase the capacity of the network for the global metric.

GlobalMetricConvL2_s1(
(embed): Sequential(

(0): Conv2d(1, 128, kernel_size=(7, 7), stride=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU()
(3): Conv2d(128, 256, kernel_size=(7, 7), stride=(1, 1))
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU()
(6): Conv2d(256, 256, kernel_size=(7, 7), stride=(2, 2))
(7): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(8): ReLU()
(9): Conv2d(256, 256, kernel_size=(7, 7), stride=(2, 2))
(10): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(11): ReLU()
(12): Conv2d(256, 256, kernel_size=(7, 7), stride=(2, 2))
(13): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(14): ReLU()
(15): Conv2d(256, 256, kernel_size=(2, 2), stride=(1, 1))
(16): ReLU()
(17): View(-1, *(256,))
(18): Linear(in_features=256, out_features=2, bias=True)

)
(head): (self.head = (lambda a, b: (a - b).norm(2, dim=-1))
)

)

A.1.3 Network Architecture used in Rope and StreetLearn

To obtain good performance on the vision task, we found that is it helpful to introduce the
ResNet18 architectureHe et al. (2016). We verify the learning capacity of this architecture
by running supervised learning on the StreetLearn dataset. For the local metric function, a
regular convolution network that is deeper and wider is sufficient.

LocalMetricConvDeep(

14

Under review as a conference paper at ICLR 2020

(trunk): Sequential(
(0): Conv2d(2, 128, kernel_size=(4, 4), stride=(2, 2))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU()
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2))
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU()
(6): Conv2d(128, 128, kernel_size=(4, 4), stride=(1, 1))
(7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(8): ReLU()
(9): Conv2d(128, 128, kernel_size=(4, 4), stride=(1, 1))
(10): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(11): ReLU()
(12): Conv2d(128, 128, kernel_size=(4, 4), stride=(1, 1))
(13): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(14): ReLU()
(15): Conv2d(128, 128, kernel_size=(4, 4), stride=(1, 1))
(16): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(17): ReLU()
(18): View(-1, *(512,))
(19): Linear(in_features=512, out_features=128, bias=True)
(20): ReLU()
(21): Linear(in_features=128, out_features=100, bias=True)
(22): ReLU()
(23): Linear(in_features=100, out_features=1, bias=True)

)
)

The global metric function uses a ResNet18 trunk.

ResNet18L1(
(embed): ResNet18(

(conv_1):
nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)

(ResNet18): ResNet18([2, 2, 2, 2])
)
(head): (self.head = (lambda a, b: (a - b).norm(p=1, dim=-1))
)

)

15

	Introduction
	Related Works
	Technical Background
	Learning Representations by Latent Planning
	Noise-Contrastive Learning the Local Metric
	Extrapolating Local Metric to A Globally Consistent Embedding By Planning

	Experimental Evaluation
	Simulated Navigation
	Manipulation of Deformable Objects
	Beyond Visual Similarity: Real-world Navigation

	Conclusion
	Implementation Details
	Architecture and Parameter Tuning
	Simulated Navigation with Proprioceptive Inputs
	 Network Architecture used in simulated navigation with image inputs
	 Network Architecture used in Rope and StreetLearn

