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ABSTRACT

Experience replay (ER) is crucial for attaining high data-efficiency in off-policy
deep reinforcement learning (RL). ER entails the recall of experiences obtained in
past iterations to compute gradient estimates for the current policy. However, the
accuracy of such updates may deteriorate when the policy diverges from past be-
haviors, possibly undermining the effectiveness of ER. Previous off-policy RL algo-
rithms mitigated this issue by tuning their hyper-parameters in order to abate policy
changes. We propose ReF-ER, a method for active management of experiences in
the Replay Memory (RM). ReF-ER forgets experiences that would be too unlikely
with the current policy and constrains policy changes within a trust region of the
behaviors in the RM. We couple ReF-ER with Q-learning, deterministic policy
gradient and off-policy gradient methods to show that ReF-ER reliably improves
the performance of continuous-action off-policy RL. We complement ReF-ER
with a novel off-policy actor-critic algorithm (RACER) for continuous-action con-
trol. RACER employs a computationally efficient closed-form approximation of the
action values and is shown to be highly competitive with state-of-the-art algorithms
on benchmark problems, while being robust to large hyper-parameter variations.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has an ever increasing number of success stories ranging from
realistic simulated environments (Schulman et al., 2015; Mnih et al., 2016), robotics (Levine et al.,
2016) and games (Mnih et al., 2015; Silver et al., 2016). Experience Replay (ER) (Lin, 1992)
enhances deep RL algorithms by using information collected in past policy (µ) iterations to compute
updates for the current policy (π). ER has become one of the mainstay techniques to improve the
sample-efficiency of off-policy deep RL. Sampling from a Replay Memory (RM) stabilizes stochastic
gradient descent (SGD) by disrupting temporal correlations and extracts information from useful
experiences over multiple updates (Schaul et al., 2015b). However, when π is parameterized by a
Neural Network (NN), SGD updates may result in significant changes to the policy, thereby shifting
the distribution of states observed from the environment. In this case sampling the RM for further
updates may lead to incorrect gradient estimates, therefore deep RL methods must account for and
limit the dissimilarity between π and behaviors in the RM. Previous works employed trust region
methods to bound policy updates (Schulman et al., 2015; Wang et al., 2017). Despite several successes,
deep RL algorithms are known to suffer from instabilities and exhibit high-variance of outcomes
(Islam et al., 2017; Henderson et al., 2017), especially continuous-action methods employing the
stochastic (Sutton et al., 2000) or deterministic (Silver et al., 2014) Policy Gradients (PG or DPG).

In this work we redesign ER in order to control the distance between the behaviors µ used to compute
the update and the current policy π. More specifically, we classify experiences either as “near-policy"
or “far-policy", depending on the ratio ρ of probabilities of selecting the associated action with π and
that with µ. The weight ρ appears in many estimators that are used with ER such as the off-policy
policy gradients (off-PG) (Degris et al., 2012) and the off-policy return-based evaluation algorithm
Retrace (Munos et al., 2016). From this classification, we introduce measures to limit the fraction
of “far-policy" samples in the RM, as well as computing gradient estimates only from “near-policy"
experiences. Furthermore, these hyper-parameters can be gradually annealed during training to obtain
increasingly accurate updates from nearly on-policy experiences. Remember and Forget Experience
Replay (ReF-ER) is a simple algorithm that can be applied to virtually any off-policy RL algorithm
with parameterized policies. We show that ReF-ER allows better stability and performance than
conventional ER in all three main classes of continuous-actions off-policy deep RL algorithms:
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methods based on the DPG (ie. DDPG (Lillicrap et al., 2016)), methods based on Q-learning (ie.
NAF (Gu et al., 2016)), and with off-PG (Degris et al., 2012; Wang et al., 2017).

In recent years, there has been a growing interest in coupling RL with high-fidelity physics sim-
ulations (Reddy et al., 2016; Novati et al., 2017; Colabrese et al., 2017; Verma et al., 2018). The
computational cost of these simulations calls for data-efficient RL methods that are reliable and do
not require problem-specific tweaks to the hyper-parameters. Moreover, while on-policy training of
simple policy architectures has been shown to be sufficient in some benchmark environments (Ra-
jeswaran et al., 2017), agents aiming to solve complex problems with highly non-linear dynamics
might require deep or recurrent models that can be trained more efficiently with off-policy methods.
We address these issues by introducing a simple and computationally efficient off-policy actor-critic
architecture (RACER) for continuous-action control problems. We systematically analyze a wide
range of hyper-parameters on the OpenAI Gym (Brockman et al., 2016) robotic tasks, and show that
RACER combined with ReF-ER reliably obtains results that are competitive with the state-of-the-art.

2 PRELIMINARIES

Consider the sequential decision process of an agent aiming to optimize its interaction with the
environment. At each step t, the agent observes its state st ∈ RdS , performs an action by sampling a
policy at ∼ µ(a|st) ∈ RdA , and transitions to a new state st+1 ∼ D(s|at, st) with reward rt+1 ∈ R.
These interactions {st, at, rt, µt} are stored in a RM, which constitutes the data used by off-policy RL
to train the parametric policy πw(a|s). The importance weight ρt = πw(at|st)/µt is the ratio between
the probability of selecting at with the current πw and with the behavior µt, which gradually becomes
dissimilar from πw as the latter is trained. The on-policy state-action value Qπ(s, a) measures the
expected returns from (s, a) following the policy πw:

Qπ(s, a) = E
st∼D, at∼πw

[
∞∑
t=0

γtrt+1

∣∣∣∣∣ s0 = s, a0 = a

]
(1)

Here γ is a discount factor. The value of state s is the on-policy expectation: V π(s) =
Ea∼π [Qπ(s, a)] and the action advantage is Aπ(s, a) = Qπ(s, a)−V π(s), such that
Ea∼π [Aπ(s, a)] :=0. We consider algorithms that train parametric approximators Qw from off-policy
data. The Q-learning target is q̂t = rt+1 + γ Ea′∼π Qw(st+1, a

′). The Retrace algorithm (Munos
et al., 2016) includes all the rewards obtained by the behavior µt in the value estimation:

Q̂ret
t = rt+1 + γV w(st+1) + γmin{1, ρt+1}

[
Q̂ret
t+1 −Qw(st+1, at+1)

]
(2)

The off-PG (Degris et al., 2012) can be used to update πw by ER: ĝoff-PG
t (w) = ρtÂ

π
t∇w log πw(at|st).

Here, Âπt is an estimator for the on-policy advantage, such as Âret
t := Q̂ret

t − V w(st).

3 REMEMBER AND FORGET EXPERIENCE REPLAY

In off-policy RL it is common to maximize on-policy returns averaged over the distribution of states
in a RM (Degris et al., 2012). However, as πw gradually shifts away from previous behaviors µt, the
distribution of states in the RM is increasingly dissimilar from the on-policy distribution, and trying
to increase an off-policy performance metric may not improve on-policy outcomes. This issue may
be compounded with algorithm-specific concerns. For example, in ACER (Wang et al., 2017) the
dissimilarity between µt and πw may cause vanishing or diverging importance weights ρt, thereby
increasing the variance of the off-PG and deteriorating the convergence speed of Retrace by inducing
“trace-cutting” (Munos et al., 2016). As a remedy, ACER tunes the learning rate and uses a target
network (Mnih et al., 2015), updated as a delayed copy of the policy network, to constrain policy
updates. Target networks are also employed in DDPG (Lillicrap et al., 2016) in order to slow down the
feedback loop between value-network and policy-network optimizations. This feedback loop causes
overestimated action values that can only be corrected by acquiring new on-policy samples. Recent
works (Henderson et al., 2017) have shown the opaque variability of outcomes of continuous-action
deep RL algorithms depending on hyper-parameters. Target-networks may be one of the sources of
this unpredictability. In fact, when using deep approximators, there is no guarantee that the small
weight changes imposed by target-networks correspond to small changes in the network’s output.
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Here we propose a set of three simple rules, collectively referred to as Remember and Forget ER
(ReF-ER), to directly control the degree of “off-policyness” of the samples in the RM:

1. Updates are computed from mini-batches drawn uniformly from a RM. We compute the importance
weight ρt of each sample and classify it as “near-policy" if 1/cmax<ρt<cmax with cmax>1. The
samples with vanishing (ρt<1/cmax) or exploding (ρt>cmax) importance weights are classified
as “far-policy". When computing off-policy estimators with finite batch-sizes, such as Q̂ret or the
off-PG, “far-policy" samples may either be irrelevant or increase the variance. ReF-ER allows
computing gradient estimates exclusively from “near-policy" samples. In order to efficiently
approximate the number of far-policy samples in the RM, we store for each step its most recent ρt.

2. When acquiring samples from the environment, older episodes with the highest fraction of
far-policy samples are removed until the number nobs of samples in the RM is at most N .

3. Policy updates are penalized in order to attract the current policy πw towards µt:

ĝReF-ER
t (w) =

{
β ĝt(w) −(1−β)∇DKL [µt‖πw(·|st)] if 1/cmax<ρt<cmax

−(1−β)∇DKL [µt‖πw(·|st)] otherwise
(3)

Here DKL is the Kullback–Leibler divergence and the coefficient β ∈ [0, 1] is updated after each
gradient step such that a fixed fraction D ∈ (0, 1) of the RM are far-policy samples:

β ←
{

(1− η)β if nfar/nobs > D

(1− η)β + η, otherwise
(4)

where η is the learning rate and nfar is the number of far-policy samples. Note that iteratively
updating β with Eq. 4 has fixed points in 0 for nfar/nobs>D and in 1 otherwise.

For cmax→1 and D→0, ReF-ER becomes asymptotically equivalent to computing updates from
on-policy samples. ReF-ER aims to reduce the sensitivity on the network architecture and hyper-
parameters by controlling the rate at which the policy can deviate from the behaviors in the RM.

4 RACER: REGULARIZED ACTOR-CRITIC WITH EXPERIENCE REPLAY

This work analyzes ReF-ER with three types of continuous-actions off-policy deep RL algorithms:
methods based on the DPG (i.e. DDPG), based on Q-learning (i.e. NAF), and based on the off-PG
(e.g. ACER (Wang et al., 2017) and IMPALA (Espeholt et al., 2018)). Here we introduce RACER, an
off-PG based architecture with some improvements over ACER and IMPALA which aid our analysis
of ReF-ER. First, RACER does not require expensive network architectures (easing reproducibility
and exploration of the hyper-parameters). Second, it samples time steps rather than episodes (like
DDPG and NAF and unlike ACER and IMPALA), further reducing its cost. Third, it does not introduce
any technique that would interfere with ReF-ER and affect its analysis. Specifically, ACER uses
the variance truncation and bias correction trick (TBC), employs a target network to bound policy
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Figure 1: (a) Diagram of asynchronous ER-based RL algorithms. (b) Neural network architecture
employed by RACER. Blue arrows connect each output with the elements of the actor-critic framework
for which it is used. Red arrows represent the flow of the error signals.
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updates with a trust-region scheme, and modifies Retrace to use dA
√
ρ instead of ρ. Lacking these

techniques, we expect RACER to require ReF-ER to deal with unbounded importance weights.

RACER’s network architecture consists of a single Multilayer Perceptron (MLP) with weights w which
receives the state s and outputs as shown in Fig. 1b. From the final layer, the first 2dA outputs are
taken as the mean m and diagonal covariance Σ of the Gaussian policy πw(a|s). One output estimates
the state value V w, and the remaining outputs are the parameters of a closed-form approximator for
the action advantage Aw. RACER can be extended for problems where the state is received as a visual
feed (by inserting convolutional layers), or where the state is only partially observable (by substituting
the MLP with a recurrent model). However, these extensions are outside the scope of this paper.

The parameters w are updated from mini-batches of off-policy time steps with ReF-ER. A separate
gradient is defined for each component of the actor-critic framework, as sketched in figure 1b. The
policy statistics m(s) and Σ(s) are updated with the off-PG (Degris et al., 2012):

ĝπt (w) = ρtÂ
ret
t ∇{m, Σ} log πw(at | st) (5)

We estimate the on-policy advantage with Retrace. From TBC and Retrace, we obtain an estimator
for the on-policy state value V̂ tbc

t = V w(st)+ min{1, ρt}(Q̂ret
t −Qw(st, at)), used as a target for V w:

ĝVt (w) = V̂ tbc(s)−V w(st) = min {1, ρt}
[
Q̂ret
t −Qw(st, at)

]
(6)

Rather than having a separate MLP with inputs (s, a) to parameterize Qw (as in ACER or DDPG),
whose expected value under the policy would be computationally demanding to compute, we employ
a closed-form equation for Aw inspired by NAF (Gu et al., 2016). The network outputs the coefficients
of a concave function fw(s, a) which is chosen such that its maximum coincides with the mean of the
policy m(s), and such that it is possible to derive analytical expectations for a ∼ πw. In App. B we
explore multiple choices of fw(s, a). For all results in the main text of the manuscript we used:

fw(s, a) = K(s) exp

[
−1

2
aᵀ

+ L
−1

+ (s) a+ −
1

2
aᵀ
− L

−1

− (s) a−

]
(7)

Here a−= min [a−m(s),0] and a+= max [a−m(s),0] (both element-wise operations). This pa-
rameterization requires one MLP output for K(s) and dA outputs for each diagonal matrix L+ and
L−. In total, given a state s, the MLP computes m, Σ, V , K, L+ and L−. From Eq.7, for any
action a the advantage is uniquely defined: Aw(s, a):= fw(s, a)−Ea′∼π [fw(s, a′)]. Like the exact
on-policy advantage Aπ, Aw has by design expectation zero under the policy. The parameterization
coefficients K and L are updated to minimize the L2 error from Âret

t :

ĝAt (w) = ρt

[
Âret
t −Aw(st, at)

]
∇{K, L}A

w(st, at) (8)

Here, ρt reduces the weight of estimation errors for unlikely actions, where Aw is expected to be less
accurate. To ensure that Σ, K, L+ and L− are positive definite, the respective outputs are mapped
onto R+ by a Softplus rectifier. The analytical derivation of Ea′∼π [fw(s, a′)] can be found in App. A.
Collectively, ĝπt (w), ĝVt (w), and ĝAt (w) form a vector ĝAC

t (w) with the same size as the MLP output.
ĝAC
t (w) is weighted with the ReF-ER penalization (Eq. 3) and then back-propagated to the MLP.

In order to estimate Q̂ret
t for a sampled time step t, Retrace (Eq. 2) requires V w and Qw for all future

steps in sample t’s episode. These are naturally computed when training from batches of episodes (as
in ACER) rather than time steps. However, the information contained in consecutive steps is highly
correlated, worsening the quality of the gradient estimate, and episodes can be composed of thousands
of time steps, increasing the computational cost. In order to efficiently train from uncorrelated time
steps, RACER stores for each sample in the RM the most recently computed estimations of V w(st),
Aw(st, at), ρt and Qret

t . When a batch of time steps is sampled, the stored Qret
t are used to compute

the gradient update. At the same time, the stored V w(st), Aw(st, at) and ρt are updated with the
current NN outputs and used to correct Qret for all prior time-steps in the respective episodes with
Eq. 2. A description of all remaining implementation details is provided in App. D.

5 RELATED WORK

The rules that determine which samples are kept in the RM and how they are used for training can be
designed to address several objectives. For example, properly designed ER may prove necessary to
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prevent lifelong learning agents from forgetting previously mastered tasks (Isele & Cosgun, 2018).
Prioritized Experience Replay (Schaul et al., 2015b) (PER) improves the performance of DQN (Mnih
et al., 2015) by biasing sampling in favor of experiences that cause large temporal-difference (TD)
errors. TD errors may signal rare events that would convey useful information to the learner. ER can
be used to train transition models in planning-based RL (Pan et al., 2018), or to train off-policy learners
on auxiliary tasks (Schaul et al., 2015a; Jaderberg et al., 2017) helping to shape the network features.
When rewards are very sparse, RL agents can be trained to repeat previous outcomes (Andrychowicz
et al., 2017) or to reproduce successful states or episodes (Oh et al., 2018; Goyal et al., 2018).

de Bruin et al. (2015) proposes a modification to ER that increases the diversity of behaviors contained
in the RM, which is the opposite of what ReF-ER achieves. The ideas proposed by de Bruin et al.
(2015) cannot readily be applied to complex tasks (they consider a low-dimensional problem which
can be learned with the RM holding a handful of episodes) and the authors concede that their method
is not suitable when the policy is advanced for many iterations. For these reasons, we compare
ReF-ER only to PER and conventional ER. We assume that if increasing the diversity of experiences
in the RM were beneficial to off-policy RL then either PER or ER would outperform ReF-ER.

ReF-ER is inspired by the techniques developed for on-policy RL to bound policy updates of
PPO (Schulman et al., 2017). Rule 1 of ReF-ER is similar to the clipped objective function of PPO
(gradients are zero if ρ lies outside of some range). However, Rule 1 is not affected by the sign of
the advantage estimate and clips both policy and value gradients. Like Rule 3, one variant of PPO
penalizes DKL(µt||πw) (also Schulman et al. (2015) and Wang et al. (2017) employ trust-region
schemes in the on- and off-policy setting respectively). While PPO picks one of the two techniques,
in ReF-ER Rules 1 and 3 complement each other and can be applied to most off-policy RL methods
with parametric policies. In the ER setting, samples remain in the RM over many iterations. If only
Rule 1 is included, any PG could push the sample’s ρ outside of the clipping range without means
to recover, leading to zero-valued gradients. Including only Rule 3 would not reduce the number of
hyper-parameters (a target DKL would be needed), and would not prevent unbounded ρ.

The first method to combine ER and PG was the Off-Policy Actor Critic (Degris et al., 2012). Further
contributions were introduced with ACER (Wang et al., 2017), such as extension to NN, estimation of
on-policy returns with Retrace, and the variance truncation and bias correction trick (TBC). In the
continuous-action domain, the proposed RACER offers several advantages over ACER: (a) reduced
complexity by employing a single NN and closed-form Aw (continuous-ACER uses 9 NN evaluations
per gradient). (b) relies on ReF-ER rather than constraining policy updates around a target network.
(c) samples time steps rather than episodes (which may consist of thousands of steps). (d) uses the
original Retrace estimator, which has better convergence guarantees than the value-estimators used
by continuous-ACER. Because of (a) and (c), RACER is two orders of magnitude faster than ACER.

6 RESULTS

In this section we couple ReF-ER, conventional ER and PER with one method from each of the three
main classes of deep continuous-action RL algorithms: DDPG, NAF, and RACER. The performance of
each combination of algorithms is measured on the MuJoCo (Todorov et al., 2012) tasks of OpenAI
Gym (Brockman et al., 2016) by plotting the mean cumulative reward R =

∑
t rt. Each plot tracks

the average R among all episodes entering the RM within intervals of 2·105 time steps and averaged
again among five differently seeded training trials. In the appendix we include contours of the 20th

to 80th percentiles of R obtained by DDPG and RACER on the OpenAI Gym and on the DeepMind
Control Suite (Tassa et al., 2018). The code to reproduce all present results is available on GitHub.1

6.1 RESULTS FOR DDPG

DDPG (Lillicrap et al., 2016) trains two networks by ER. The value network outputs Qw′(s, a) and is
trained to minimize the L2 distance from the Q-learning target (Sec. 2). The policy network outputs a
deterministic policy mw(s) and is trained with the DPG (Silver et al., 2014):

ĝDPG
t (w) = ∇wm

w(s) ∇aQw′(s, a)
∣∣∣
a=mw(s)

(9)

1 The repository is hidden to maintain anonymity during the review process.
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Figure 2: Cumulative rewards on OpenAI MuJoCo tasks for DDPG (green line), DDPG with rank-
based PER (gray line), u-DDPG with regular ER (blue), and ReF-ER with C = 8 (purple), C = 4
(red), C = 2 (orange). Implementation details in App. D.
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Noise is added to the deterministic policy πw=mw+N (0, σ2I) for exploration. We consider two
variants of DDPG: one with mw bounded to the unit box [−1, 1]dA (as in the original) and one without
bounds (referred to as u-DDPG, implementation details can be found in App. D). Bounding the policy
may lead to lower returns in the OpenAI MuJoCo benchmarks, which are defined for unbounded
actions. We note that, without measures to constrain policy updates or without careful tuning of the
hyper-parameters (we found the critic’s weight decay and temporally-correlated action noise to be
necessary), u-DDPG is unstable. The returns for u-DDPG can fall to large negative values, especially
in tasks that include a control-cost penalty in the reward such as Ant. This behavior is explained by
the value network not having learned local maxima with respect to the action (Silver et al., 2014).

By replacing ER with ReF-ER we can stabilize u-DDPG and greatly improve its performance,
especially for tasks with complex dynamics such as Humanoid or Ant. The hyper-parameter cmax
determines how much the policy is allowed to change from the behaviors in the RM. By annealing
cmax we can allow faster improvements at the beginning of training, when an inaccurate policy
gradient might be sufficient to estimate a good direction for the update. Conversely, during the later
stages of training, precise updates can be computed from almost on-policy samples. We anneal cmax
and the learning rate according to:

cmax(k) = 1 + C/(1 + 5e−7 · k), η(k) = η/(1 + 5e−7 · k) (10)

Here k is the gradient step index, η is the initial learning rate (10−4 and 10−5 for the value and
policy networks respectively, as when using regular ER). We found that annealing η worsened the
instability of u-DDPG with regular ER. Lower values of C reduce the speed of policy improvements,
but after 107 time steps C = 2 achieves the best performance in most tasks. In Fig. 3 we report for
a subset of problems the average DKL(µt||πw). DKL decreases for lower values of C and further
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Figure 4: Cumulative rewards on the OpenAI MuJoCo tasks for NAF (blue line), NAF with rank-based
PER (gray line), NAF with ReF-ER and C = 8 (purple), C = 4 (red), C = 2 (orange).

decreases during training due to the annealing process. With regular ER, even after lowering η by one
order of magnitude from that of the original paper, the distance between π and µ may span the entire
action space. In fact, in most tasks shown in Fig. 3 the DKL(µt||πw) of DDPG is of similar order of
magnitude as its maximum dA

2 (2/σ)2 (for example, since σ = 0.2, the maximum DKL is 850 for
Humanoid and 300 for Walker2d and it oscillates during training around 100 and 50 respectively).

ReF-ER maintains a RM of mostly near-policy samples, providing the value-network with multiple
examples of trajectories that are possible with the current policy. This focuses the predictive capa-
bilities of the value-network, enabling it to extrapolate the effect of a marginal change of action on
the expected returns, and therefore increasing the accuracy of the DPG. Any misstep of the DPG is
weighted with a penalization term that attracts the policy towards past behaviors. This allows time for
the learner to gather experiences with the new policy, improve the value-network, and correct the
misstep. This reasoning is almost diametrically opposed to that behind PER. In PER observations
that are associated with larger TD errors are sampled more frequently. In the continuous-action
setting, however, TD errors may be result from actions that are farther from the current policy.
Therefore, precisely estimating their value might not help the value network in yielding an accurate
estimate of the DPG. We obtained better results with the rank-based variant of PER, which has similar
performance to that of DDPG with ER. The main benefits over ReF-ER arise in tasks that require
more exploration, such as Swimmer and HumanoidStandup.

6.2 RESULTS FOR NAF

Normalized Advantage Functions (NAF) is the state-of-the-art of Q-learning based algorithms for
continuous-action problems. It employs a quadratic-form approximation of the advantage Aw,
analogous to the one employed by RACER:

Aw
NAF(s, a) = − [a−mw(s)]

ᵀ
Lw

Q(s)
[
Lw

Q(s)
]ᵀ

[a−mw(s)] (11)

NAF trains Aw with the Q-learning target (Sec. 2) and uses the location mw of its maximum as the
mean of the policy, with added Gaussian noise for exploration. When the actual Aπ is not well
approximated by a quadratic (e.g. when the return landscape is multi-modal), NAF may fail to
choose good actions. In contrast, RACER updates πw with the off-PG, which is independent of the
error in approximating Aπ(st, at) (but depends on the error at t+1). Figure 4 shows how NAF is
affected by the choice of ER algorithm. While Q-learning based methods are thought to be less
sensitive than PG-based methods to the dissimilarity between policy and stored behaviors owing to
the bootstrapped Q-learning target, NAF benefits from REF-ER. This is because Aπ is likely to be
approximated well by a quadratic in a small neighborhood near its local maxima. ReF-ER constrains
learning from actions within this neighborhood and prevents large TD errors from disrupting the
locally-accurate approximation of Aw. This intuition is supported by observing that rank-based PER
(the better performing variant of PER also in this case), often worsens the performance of NAF. PER
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Figure 5: Average cumulative rewards on MuJoCo OpenAI Gym tasks obtained with PPO (dashed
black lines), ACER (dash-dot purple lines) and with RACER by independently varying the two main
hyper-parameters of ReF-ER: the RM size N and C (colored lines).

aims at biasing sampling in favor of larger TD errors, which are more likely to be farther from m(s)
(note that fwNAF is unbounded), and their accurate prediction might not help the learner in fine-tuning
the policy by improving a local approximation of the advantage.

6.3 RESULTS FOR RACER

Here we compare RACER to ACER and PPO, an algorithm that owing to its simplicity and good
performance on MuJoCo tasks is often used as baseline. We omit results from coupling RACER with
ER or PER as it yields large negative R values. In fact, without ReF-ER, the unbounded importance
weights cause off-PG estimates to diverge, disrupting prior learning progress. Similarly to ReF-ER,
ACER’s techniques (Sec. 4) guard against the numerical instability of the off-PG. However, bounding
policy updates to a target-network does not ensure similarity between πw and RM behaviors (as shown
in Fig. 7). In fact, when using deep approximators, simply enforcing slow parameter updates does
not guarantee small changes in the output. As DKL(µt ‖ πw) grows, off-PG estimates may become
inaccurate, causing ACER to be outperformed by RACER and PPO. We note that, due to ACER’s cost,
we could only optimize some of its hyper-parameters relative to the original paper (see App. D). We
do not exclude that ACER could have performed better after more extensive tuning.

The two hyper-parameters that most strongly affect the performance of RACER are the RM size N
and cmax, annealed with Eq. 10 (for a discussion of the other parameters see App. B). RACER uses
the Retrace estimator Qret which is expected to converge to the on-policy Qπ (Munos et al., 2016).
Because πw is gradually changing during training, it is crucial to maximize the convergence speed of
Retrace to obtain accurate estimates of the off-PG. Large values of cmax increase the variance of the
policy gradient and increase the amount of “trace-cutting” as the importance weights are allowed
to diverge from 1. The cumulative rewards reported in Fig. 5 show that “stable” tasks, where the
agent’s success is less predicated on avoiding mistakes that would cause it to trip, are more tolerant
to high values of cmax (e.g. HalfCheetah). In most other tasks, especially those that require precise
controls (e.g. Walker), the best results are obtained for values of cmax that strike a balance between
strict penalty terms, which slow down policy improvements, and high-variance gradient estimates.
The RM size N has a parallel effect. A small RM may not contain enough diversity of samples for
the learner to accurately estimate the gradients. Conversely, a large RM is composed of episodes
obtained with increasingly older versions of πw. In this case, the penalty terms required to preserve
a sufficient fraction of near-policy samples may prevent the policy from improving. A discussion
of all the secondary hyper-parameters and the choice of function parameterizing Aw can be found
in App. B. For most combinations of hyper-parameters and tasks presented in this section, RACER
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outperforms the best result from DDPG (Sec. 6.1), PPO, and is competitive with the best results
found in the published literature, which to our knowledge were achieved by the on-policy algorithms
TRPO (Schulman et al., 2015) and Policy Search with Natural Gradient (Rajeswaran et al., 2017).

7 CONCLUSION

Many RL algorithms update a policy πw from past experiences collected with off-policy behaviors
µ. We present evidence that off-policy continuous-action deep RL methods benefit from actively
maintaining similarity between policy and replay behaviors. We propose a novel ER algorithm
(ReF-ER) that extends these benefits to off-policy PG, deterministic PG and Q-learning methods.
ReF-ER characterizes past behaviors either as “near-policy" or “far-policy" by the deviation from
one of the importance weight ρ=πw(a|s)/µ(a|s). ReF-ER consists of: 1) Computing gradients only
from near-policy experiences. 2) Forgetting far-policy samples when new observations are obtained
from the environment. 3) Regulating the pace at which πw is allowed to deviate from µ through
penalty terms that reduceDKL(µ||πw). This allows time for the learner to gather experiences with the
new policy, improve the value estimators, and increase the accuracy of the next steps. The extension
of ReF-ER to discrete-action methods is subject of ongoing work.

ReF-ER is combined with a novel method based on the off-policy PG (RACER). RACER uses a
closed-form parameterization of the advantage and it estimates on-policy returns with a bootstrapped
formulation of Retrace. These innovations greatly increase the computational efficiency of RACER
compared to similar methods. The application of ReF-ER and RACER to OpenAI Gym benchmarks
produces state-of-the-art results while being robust to large variations in their hyper-parameters.

REFERENCES

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel,
and W. Zaremba. Hindsight experience replay. In Advances in Neural Information Processing Systems, pp.
5048–5058, 2017.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

S. Colabrese, K. Gustavsson, A. Celani, and L. Biferale. Flow navigation by smart microswimmers via
reinforcement learning. Physical Review Letters, 118(15):158004, 2017.

T. de Bruin, J. Kober, K. Tuyls, and R. Babuška. The importance of experience replay database composition in
deep reinforcement learning. In Deep Reinforcement Learning Workshop, NIPS, 2015.

T. Degris, M. White, and R. S. Sutton. Off-policy actor-critic. arXiv preprint arXiv:1205.4839, 2012.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning for
continuous control. In International Conference on Machine Learning, pp. 1329–1338, 2016.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning,
et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. arXiv
preprint arXiv:1802.01561, 2018.

A. Goyal, P. Brakel, W. Fedus, T. Lillicrap, S. Levine, H. Larochelle, and Y. Bengio. Recall traces: Backtracking
models for efficient reinforcement learning. arXiv preprint arXiv:1804.00379, 2018.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based acceleration. In
International Conference on Machine Learning, pp. 2829–2838, 2016.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement learning that
matters. arXiv preprint arXiv:1709.06560, 2017.

D. Isele and A. Cosgun. Selective experience replay for lifelong learning. arXiv preprint arXiv:1802.10269,
2018.

R. Islam, P. Henderson, M. Gomrokchi, and D. Precup. Reproducibility of benchmarked deep reinforcement
learning tasks for continuous control. arXiv preprint arXiv:1708.04133, 2017.

9



Under review as a conference paper at ICLR 2019

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu. Reinforcement
learning with unsupervised auxiliary tasks. In International Conference on Learning Representations (ICLR),
2017.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control
with deep reinforcement learning. In International Conference on Learning Representations (ICLR), 2016.

L. H. Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine
learning, 8(3/4):69–97, 1992.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, j. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):
529, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International Conference on Machine Learning, pp. 1928–1937,
2016.

R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems, pp. 1054–1062, 2016.

G. Novati, S. Verma, D. Alexeev, D. Rossinelli, W. M. van Rees, and P. Koumoutsakos. Synchronisation through
learning for two self-propelled swimmers. Bioinspiration & Biomimetics, 12(3):036001, 2017.

J. Oh, Y. Guo, S. Singh, and H. Lee. Self-imitation learning. arXiv preprint arXiv:1806.05635, 2018.

Y. Pan, M. Zaheer, A. White, A. Patterson, and M. White. Organizing experience: A deeper look at replay
mechanisms for sample-based planning in continuous state domains. arXiv preprint arXiv:1806.04624, 2018.

A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade. Towards generalization and simplicity in continuous
control. In Advances in Neural Information Processing Systems, pp. 6553–6564, 2017.

G. Reddy, A. Celani, T. J. Sejnowski, and M. Vergassola. Learning to soar in turbulent environments. Proceedings
of the National Academy of Sciences, pp. 201606075, 2016.

T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In International
Conference on Machine Learning, pp. 1312–1320, 2015a.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In International Conference on
Learning Representations (ICLR), 2015b.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In Proceedings of
the 32nd International Conference on Machine Learning (ICML-15), pp. 1889–1897, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradient algorithms.
In ICML, 2014.

D. Silver, A. Huang, C. J Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural information processing systems, pp. 1057–1063, 2000.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. Casas, D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, et al.
Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–5033. IEEE, 2012.

S. Verma, G. Novati, and P. Koumoutsakos. Efficient collective swimming by harnessing vortices through deep
reinforcement learning. Proceedings of the National Academy of Sciences, 2018.

Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. K., and N. de Freitas. Sample efficient actor-critic with
experience replay. In International Conference on Learning Representations (ICLR), 2017.

10



Under review as a conference paper at ICLR 2019

A EXPECTATIONS OF THE PARAMETERIZED ADVANTAGE FUNCTIONS

We considered three parameterizations for the action advantage:

fwQ(s, a) = − 1
2 [a−m(s)]

ᵀ
LQ(s)Lᵀ

Q(s) [a−m(s)] (12)

fwSG(s, a) = K(s) exp
{
− 1

2 [a−m(s)]
ᵀ

L−1

SG(s) [a−m(s)]
}

(13)

fwDG(s, a) = K(s) exp
{
− 1

2aᵀ
+ L−1

+ (s) a+ − 1
2aᵀ
− L−1

− (s) a−
}

(14)

We recall a−= min [a−m(s),0] and a+= max [a−m(s),0]. The first parameterization fwQ is identi-
cal to the one employed by NAF (Gu et al., 2016), and requires training (d2

A + dA)/2 coefficients
of the lower triangular matrix LQ. Its quadratic complexity makes the choice of fwQ unfavorable for
high-dimensional action spaces (e.g. it requires 153 parameters for the 17-dimensional Humanoid
tasks of OpenAI Gym, against the 35 of fwDG). In order to preserve bijection between LQ and LQLᵀ

Q,
the diagonal terms are mapped toR+ with a Softplus function. The expectation under a Gaussian
policy can be computed as (Petersen et al., 2008):

Ea′∼π
[
fwQ(s, a′)

]
= Tr

[
LQ(s)Lᵀ

Q(s)Σ(s)
]

(15)

Here Tr denotes the trace of a matrix.
The second parameterization requires training the 1 + dA coefficients for K(s) and the diagonal
matrix L(s). The expectation can be easily derived from the properties of products of Gaussian
densities:

Ea′∼π [fwSG(s, a′)] = K(s)

√
|L(s)|

|L(s) + Σ(s)|
(16)

Here | · | denotes a determinant.
To derive the expectation of the third parameterization, which was used for most results in the paper,
we recall that the expectation of a product of independent variables is the product of the expectations.
For one component i of the action vector:

Ea′∼π
[
e−

1
2u

ᵀ
+,i L

−1
+,i(s) u+,i− 1

2u
ᵀ
−,i L

−1
−,i(s) u−,i

]
=

√
L+,i(s)

L+,i(s)+Σi(s)
+
√

L−,i(s)
L−,i(s)+Σi(s)

2
(17)

Here we exploited the symmetry of the Gaussian policy around the mean. Since Σ, L+, and L− are
all diagonal, we can compute the expectation:

Ea′∼π [fwDG(s, a′)] = K(s)

dA∏
i=1

√
L+,i(s)

L+,i(s)+Σi(s)
+
√

L−,i(s)
L−,i(s)+Σi(s)

2
(18)

Finally, we note that all these parameterizations are differentiable.

B SENSITIVITY TO HYPER-PARAMETERS

Figure 6 shows the robustness of RACER to various hyper-parameters and to the choice of the advan-
tage parameterizations introduced in App. A. Moreover, we can bypass the advantage approximator
(i.e. Aw:=0) and rely exclusively on the state value approximator. We recall the on-policy value
estimator obtained with “variance truncation and bias correction” (TBC) (Wang et al., 2017) (Sec. 4):

V̂ tbc
t = V w(st) + min{1, ρt}(Q̂ret

t −Qw(st, at)) (19)

From Eq. 2 and 19 we obtain Q̂ret(st, at) = rt+1 +γV̂ tbc(st+1). By neglecting Aw, from this relation
and Eq. 19, we obtain a recursive Retrace-based estimator for the on-policy state value that depends
on V w alone:

V̂ tbc
t = V w(st) + min {1, ρ(st, at)}

[
rt+1 + γV̂ tbc(st+1)− V w(st)

]
(20)

This target is equivalent to the recently proposed V-trace estimator (Espeholt et al., 2018) when
all importance weights are clipped at 1, which was empirically found by the authors to be the
best-performing solution. As expected, lacking a model for Aw(s, a), this architecture (denoted
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Figure 6: Mean cumulative rewards with RACER on OpenAI Gym tasks exploring the effect of the
choice of advantage parameterization, ReF-ER tolerance factor D, mini-batch size B, number of
time steps per gradient step F , and learning rate η. Dashed-black lines refer to the baseline parameters.
The y-axes are magnified around the final returns to clarify often minor differences in performance.

as V-RACER in the first column of results of Fig. 6) yielded worse performance than the original
RACER. However the difference is often minor and the increased simplicity of this architecture might
justify its adoption for some problems.

The tolerance D for far-policy samples in the RM has a similar effect as cmax: low values tend to
delay learning while high values reduce the fraction of the RM that is used to compute updates
and may decrease the accuracy of gradient estimates. Increasing the number F of time steps per
gradient step could either cause a rightward shift of the expected returns because the learner computes
fewer updates for the same budget of observations, or it could aid the learner by providing more
on-policy samples. The actual outcomes depend on the problem: tasks with simpler dynamics (e.g.
HalfCheetah) can be learned more quickly by performing more gradient steps, while problems with
more complex dynamics (e.g. Ant, Humanoid) benefit from more on-policy samples. The batch-size
B and learning rate η have a minor effect on performance.

C STATE, ACTION AND REWARD PREPROCESSING

Several authors have employed state (Henderson et al., 2017) and reward (Duan et al., 2016) (Gu et al.,
2017) rescaling to improve the learning results. This technique has not systematically been studied
but reflects a deeper challenge of RL. The success of any RL algorithm is intrinsically linked to the
design of the control problem. For example, the stability of DDPG is affected by the L2 weight decay
of the value-network. Depending on the numerical values of the distribution of rewards provided
by the environment and the choice of weight decay coefficient, the L2 penalization can be either
negligible or dominate the Bellman error. Similarly, the distribution of values describing the state
variables can increase the challenge of learning by gradient descent.

We propose partially addressing these issues by rescaling both rewards and state vectors depending
on the the experiences contained in the RM. At the beginning of training we prepare the RM by
collecting Nstart observations and then we compute:

µs = 1
nobs

∑nobs
t=0 st (21)

σs =
√

1
nobs

∑nobs
t=0 (st − µs)2 (22)
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Throughout training, µs and σs are used to standardize all state vectors ŝt = (st−µs)/(σs+ε) before
feeding them to the network approximators. Moreover, every 1000 steps, chosen as the smallest
power of ten that did not affect the run time, we loop over the nobs observations stored in the RM to
compute:

σr ←

√√√√ 1

nobs

nobs∑
t=0

(rt+1)
2 (23)

This value is used to scale the rewards r̂t = rt/(σr + ε) used by the Q-learning target of DDPG and
the Retrace algorithm for RACER. We use ε = 10−7 to ensure numerical stability.

The actions sampled by the learner may need to be rescaled or bounded to some interval de-
pending on the environment. For the OpenAI Gym tasks this amounts to a linear scaling
a′ = a (upper_value − lower_value)/2, where the values specified by the Gym library
are ±0.4 for the Humanoid tasks, ±8 for the Pendulum tasks, and ±1 for all others. The tasks of
DeepMind Control Suite are defined with all actions bounded do the interval [−1, 1]dA . In this case
we can learn Gaussian policies, as if the action space were unbounded, and then map the actions sent
to the environment with an hyperbolic tangent: a′t = tanh at. This approach, however, might prevent
efficiently learning policies that behave like bang-bang controllers. Close to the bounds of the control
space, actions that should be similar may be mapped to distant positions in the unbounded action
space. Therefore, learning bang-bang controls is more likely to be hindered by the DKL penalties of
ReF-ER. This issue may explain some poor results on the DeepMind Control Suite shown in Fig. 10
and 11. These results show that successfully tackling control problems with bounded action spaces
may require policies parameterized as Beta distribution (Chou et al., 2017).

D IMPLEMENTATION AND NETWORK ARCHITECTURE DETAILS

We implemented all presented learning algorithms within smarties,2 our open source C++ RL
framework, and optimized for high CPU-level efficiency through fine-grained multi-threading, strict
control of cache-locality, and computation-communication overlap. On every step, we asynchronously
obtain on-policy data by sampling the environment with π, which advances the index t of observed
time steps, and we compute updates by sampling from the Replay Memory (RM), which advances the
index k of gradient steps (Fig. 1a). During training, the ratio of time and update steps is usually equal
to a constant: t/k = F . This parameter affects the data efficiency of the algorithm; by lowering F
each sample is used more times to improve the policy before being replaced by newer samples. Upon
completion of all tasks, we apply the gradient update and proceed to the next step. The pseudo-codes
in App. E neglect parallelization details as they do not affect execution.

In order to evaluate all algorithms on equal footing, we use the same baseline network architecture for
RACER, DDPG and NAF, consisting of an MLP with two hidden layers of 128 units each. For the sake
of computational efficiency, we employed Softsign activation functions. The weights of the hidden
layers are initialized according to U

[
−6/
√
fi + fo, 6/

√
fi + fo

]
, where fi and fo are respectively

the layer’s fan-in and fan-out (Glorot & Bengio, 2010). The weights of the linear output layer are
initialized from the distribution U

[
−0.1/

√
fi, 0.1/

√
fi
]
, such that the MLP has near-zero outputs

at the beginning of training. When sampling the components of the action vectors, the policies are
treated as truncated normal distributions with symmetric bounds at three standard deviations from the
mean. Finally, we optimize the network weights with the Adam algorithm (Kingma & Ba, 2015).

RACER We note that the values of the diagonal covariance matrix are shared among all states and
initialized to Σ = 0.2I. The remaining hyper-parameters of RACER are listed in table 1.

DDPG In its original formulation, DDPG transforms the policy-network’s output onto the bounded
interval [−1, 1]dA with an hyperbolic tangent function. We found that bounding the action space may
limit the performance of DDPG with the OpenAI MuJoCo tasks. In order to stabilize the unbounded-
action version of DDPG (u-DDPG) we set the learning rate for the policy-network to 1 · 10−5 and that
of the value-network to 1 · 10−4 with L2 weight decay coefficient of 1 · 10−4. These changes lead to
better performance also with the bounded-action DDPG and therefore were used for all numerical
experiments. The RM is set to contain N=219 observations and we follow Henderson et al. (2017)
for the remaining hyper-parameters: mini-batches of B = 128 samples, γ=0.995, soft target network

2 The repository is hidden to maintain anonymity during the review process.
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Table 1: RACER architecture’s baseline hyper-parameters.

Short-hand Description Baseline value

C Annealing parameter of cmax. 4
N Size of the Replay Memory. 219

Nstart Number of samples gathered before training starts. 218

D Fraction of far-policy samples allowed in the RM. 0.1
B Mini-batch size. 256
F Ratio between observed time steps and gradient steps. 1
η Learning rate. 10−4

γ Discount factor. 0.995

update coefficient 0.01. We note that while DDPG is the only algorithm employing two networks,
choosing half the batch-size as RACER and NAF makes the compute cost roughly equal among the
three methods. Finally, when using ReF-ER we add exploratory Gaussian noise to the deterministic
policy: πw

′
=mw′+N (0, σ2I) with σ=0.2. When performing regular ER or PER we sample the

exploratory noise from an Ornstein–Uhlenbeck process with σ=0.2 and θ=0.15.

NAF We use the same baseline MLP architecture and learning rate η = 10−4, batch-size B = 256,
discount γ = 0.995, RM size N = 219, and soft target network update coefficient 0.01. Gaussian
noise is added to the deterministic policy πw

′
=mw′+N (0, σ2I) with σ=0.2.

PPO We tuned the hyper-parameters as Henderson et al. (2017): γ=0.995, GAE λ=0.97, policy
clipping at ∆ρt=0.2, and we alternate performing 2048 environment steps and 10 optimizer epochs
with batch-size 64 on the obtained data. Both the policy- and the value-network are 2-layer MLPs
with 64 units per layer. We further improved results by having separate learning rates (10−4 for the
policy and 3 · 10−4 for the critic) with the same annealing as used in the other experiments.

ACER We kept most hyper-parameters as described in the original paper (Wang et al., 2017): the
TBC clipping parameter is c = 5, the trust-region update parameter is δ = 1, and five samples of the
advantage network are used to compute Aw estimates under π. We use a RM of 1e5 samples, each
gradient is computed from 24 uniformly sampled episodes, and we perform one gradient step per
environment step. Because here learning is not from pixels, each network (value, advantage, and
policy) is an MLP with 2 layers and 64 units per layer (we tried training runs with 96 and 128 units
per layer and did not observe improvements). Accordingly, we reduced the soft target-network update
coefficient (α = 0.001) and the learning rates for the value- (η = 3 ·10−4) and for the policy-network
(η = 1 · 10−4). Despite these reduced learning rates, Fig. 7 shows that ACER’s techniques do not
prevent the policy from becoming disconnected from prior behaviors. We note that hyper-parameters
are known to affect performance (Henderson et al., 2017) and we do not exclude that ACER could
have performed better with more extensive tuning.

E PSEUDO-CODES

Remarks on algorithm 1: 1) It describes the general structure of the ER-based off-policy RL algorithms
implemented for this work (i.e. RACER, DDPG, and NAF). 2) This algorithm can be adapted to
conventional ER, PER (by modifying the sampling algorithm to compute the gradient estimates), or
ReF-ER (by following Sec. 3)). 3) The algorithm requires 3 hyper-parameters: the ratio of time step
to gradient steps F (usually set to 1 as in DDPG), the maximal size of the RM N , and the minimal
size of the RM before we begin gradient updates Nstart.

Remarks on algorithm 2: 1) The reward for an episode’s initial state, before having performed any
action, is zero by definition. 2) The value V w(st) for the last state of an episode is computed if the
episode has been truncated due the task’s time limits or is set to zero if st is a terminal state. 3) Each
time step we use the learner’s updated policy network and we store µt = {m(st),Σ(st)}.
Remarks on algorithm 3: 1) In order to compute the gradients ĝACti (w), we rely on advantage estimates
Qret
ti that were computed when subsequent time steps in ti’s episode were previously drawn by ER. Not

having to compute the quantitiesAw, V w, and ρ for all following steps comes with clear computational

14
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Algorithm 1 Serial description of the master algorithm.

t = 0, k = 0,
Initialize an empty RM, network weights w, and Adam’s (Kingma & Ba, 2015) moments.
while nobs < Nstart do

Advance the environment according algorithm 2.
end while
Compute the initial statistics used to standardize the state vectors (App. C).
Compute the initial statistics used to rescale the rewards (App. C).
while t < Tmax do

while t < F · k do
Advance the environment according to algorithm 2.
while nobs > Nstart do

Remove an episode from the RM (either first in first out or as in Sec. 3).
end while
t← t+ 1

end while
Sample B time steps from the RM to compute a gradient estimate (e.g. for RACER with
algorithm 3).
Perform the gradient step with the Adam algorithm.
If applicable, update the ReF-ER penalization coefficient β.
if modulo(k, 1000) is 0 then

Update the statistics used to rescale the rewards (App. C).
end if
k ← k + 1

end while

Algorithm 2 Environment sampling

Observe st and rt.
if st concludes an episode then

Store data for t into the RM: {st, rt, V w(st)}
Compute and store Qret for all steps of the episode

else
Sample the current policy at ∼ πw(a|st) = µt
Store data for t into the RM: {st, rt, at, µt, V w(st), A

w(st, at)}
Advance the environment by performing at

end if

efficiency benefits, at the risk of employing an incorrect estimate for Qret
ti . In practice, we find that the

Retrace values incur only minor changes between updates (even when large RM sizes decrease the

Algorithm 3 RACER’s gradient update

for mini-batch sample i = 0 to B do
Fetch all relevant information: sti , ati , Q

ret
ti , and µti = {mti ,Σti}.

Call the approximator to compute πw, V w(sti), A
w(sti , ati)

Update Qret for all prior steps in ti’s episode with V w(sti), A
w(sti , ati)

Update the importance weight ρti = πw(ati |sti)/µti(ati |sti)
if 1/cmax < ρti < cmax then

Compute ĝACti (w) according to Sec. 4
else
ĝACti (w) = 0

end if
ReF-ER penalization: ĝReF-ER

ti (w) = βĝACti (w)− (1−β)∇DKL[µti(·|sti)||πw(·|sti)]
end for
Accumulate the gradient estimate over the mini-batch 1

B

∑B
i=0 ĝ

ReF-ER
ti (w)

15
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Algorithm 4 DDPG’s gradient update with ReF-ER

for mini-batch sample i = 0 to B do
Fetch all relevant information: sti , ati , and µti = {mti ,Σti}.
The policy-network computes mw(sti) and the value-network computes Qw′(sti , ati).
Define a stochastic policy with Gaussian exploration noise: πw(a | sti) = mw(sti) +N
Update the importance weight ρti = πw(ati |sti)/µti(ati |sti)
if 1/cmax < ρti < cmax then

Compute the policy at ti+1 with the target-network: mw̃(sti+1)

Compute the Q-learning target: q̂ti = rti+1 + γQw̃′
(
sti+1, mw̃(sti+1)

)
The gradient gQti (w′) of the value-network minimizes the squared distance from q̂ti .
The gradient gDPG

ti (w) of the policy-network is the deterministic PG (Eq. 9).
else
gQti (w′) = 0, gDPG

ti (w) = 0
end if
ReF-ER penalization: ĝReF-ER

ti (w) = βgDPG
ti (w)− (1−β)∇DKL[µti(·|sti)||πw(·|sti)]

end for
Accumulate the gradient estimates over the mini-batch for both networks.
Update the target policy- (w̃← (1−α)w̃ + αw) and target value-networks (w̃′ ← (1−α)w̃′ + αw′).

frequency of updates to the Retrace estimator) and that relying on previous estimates has no evident
effect on performance. This could be attributed to the gradual policy changes enforced by ReF-ER.
2) With a little abuse of the notation, with π (or µ) we denote the statistics (mean, covariance) of the
multivariate normal policy, with π(a|s) we denote the probability of performing action a given state
s, and with π(·|s) we denote the probability density function over actions given state s.

Remarks on algorithm 4: 1) It assumes that weights and Adam are initialized for both policy-network
and value-network. 2) The “target” weights are initialized as identical to the “trained” weights. 3)
For the sake of brevity, we omit the algorithm for NAF, whose structure would be very similar to this
one. The key difference is that NAF employs only one network and all the gradients are computed
from the Q-learning target.
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Figure 8: 20th and 80th percentiles of cumulative rewards for episodes of OpenAI Gym tasks ended
within intervals of 2 · 105 time steps across 5 independent training runs. The figures includes results
for PPO (black contours), RACER baseline (green contours, C = 4, N = 1019), RACER with
conservative ReF-ER constraints and large RM size (blue contours, C = 2, N = 1020), and RACER
with relaxed ReF-ER constraints and smaller RM size (red contours, C = 8, N = 1018).

Figure 9: 20th and 80th percentiles of cumulative rewards for episodes of OpenAI Gym tasks ended
within intervals of 2·105 time steps across 5 independent training runs. The figures includes results for
DDPG (green contours), DDPG with PER (red contours), and u-DDPG with ReF-ER (blue contours,
C = 4, and all other hyper-parameters set according to App. D).
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Figure 10: 20th and 80th percentiles of cumulative rewards for trajectories of DeepMind Control Suite
tasks ended within intervals of 2 · 105 time steps across 5 independent training runs using the baseline
RACER hyper-parameters (Table 1).
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Figure 11: 20th and 80th percentiles of cumulative rewards for trajectories of DeepMind Control Suite
tasks ended within intervals of 2 · 105 time steps across 5 independent training runs for u-DDPG with
ReF-ER, C = 4, and all other hyper-parameters set according to App. D.
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