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Abstract

Many approaches to causal discovery are limited by their inability to discriminate between
Markov equivalent graphs given only observational data. We formulate causal discovery
as a marginal likelihood based Bayesian model selection problem. We adopt a param-
eterization based on the notion of the independence of causal mechanisms which renders
Markov equivalent graphs distinguishable. We complement this with an empirical Bayesian
approach to setting priors so that the actual underlying causal graph is assigned a higher
marginal likelihood than its alternatives. Adopting a Bayesian approach also allows for
straightforward modeling of unobserved confounding variables, for which we provide a
variational algorithm to approximate the marginal likelihood, since this desirable feat ren-
ders the computation of the marginal likelihood intractable. We believe that the Bayesian
approach to causal discovery both allows the rich methodology of Bayesian inference to
be used in various difficult aspects of this problem and provides a unifying framework to
causal discovery research. We demonstrate promising results in experiments conducted on
real data, supporting our modeling approach and our inference methodology.

1. Introduction

Causal networks (CNs) are special Bayesian networks where all edges reflect causal relations
(Pearl, 2009). The aim of causal structure learning is identifying the CN underlying the ob-
served data. In this paper, we focus on the problem of scoring causal graphs using marginal
likelihood in a way that identifies the unique causal generative graph. Succeeding to do so
is very valuable, since once the correct CN is selected, various causal inference tasks such as
estimating causal effects or examining confounder distributions becomes straightforward in
a Bayesian framework. A central challenge in such an attempt, however, is adopting a prior
selection policy that not only allows discriminating between Markov equivalent graphs but
also assigns higher marginal likelihood score to the actual underlying CN.

The key notion underlying our solution to first part of this challenge is the widely
accepted principle of independence of the cause-effect mechanisms (Janzing et al., 2012),
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that is, the natural mechanisms that generate the cause and the effect (based on cause)
must be independent of each other. We embody this assumption by assuming the mutual
independence of the parameters pertaining to cause and effect distributions in a Bayesian
model, a line of reasoning that is natural to this modeling perspective, where parameters are
modeled as random variables (Spiegelhalter et al., 1993; Heckerman et al., 1995; Geiger et al.,
1997; Blei et al., 2003). By assigning independent priors to the cause and effect variables, we
render them statistically independent. Critically, this assignment of independent priors also
breaks the likelihood equivalence between Markov equivalent graphs. This is contrast to
other ways of selecting independent priors such as the BDeu prior, which leads to assigning
equal marginal likelihood to Markov equivalent graphs (Heckerman et al., 1995).

As mentioned above, though breaking likelihood equivalence does not necessarily lead
to assigning a higher marginal likelihood to the actual underlying CN, it is a prerequisite
for doing so1. The second part of the problem is adapting a prior selection policy that leads
to assigning a higher marginal likelihood to the actual CN compared to its alternatives. In
this work, we use an empirical Bayesian approach in selecting the hyperparameters of the
independent priors described above, as we learn the priors that lead to assigning higher
marginal likelihood to the actual CN from labeled data.

The current approach is in the intersection of various other approaches in the literature,
thereby combining many of their respective advantages (Spirtes and Zhang, 2016; Glymour
et al., 2019). It is based on the notion of mechanism independence similar to Janzing et al.
(2012); Zhang et al. (2015), does not assume causal sufficiency similar to Silva et al. (2006);
Shimizu et al. (2009); Janzing et al. (2009, 2012); Zhang et al. (2015); Schölkopf et al. (2016),
can theoretically work on arbitrary graph structures that possibly include latent variables
similar to Spirtes et al. (1993), and can discriminate between Markov equivalent structures
similar to Shimizu et al. (2006); Zhang and Hyvärinen (2008); Hoyer et al. (2009); Janzing
et al. (2012); Zhang et al. (2015). Our approach diverges from other Bayesian methods
(Stegle et al., 2010; Shimizu and Bollen, 2014; Zhang et al., 2016) in various dimensions such
as by being able to distinguish between Markov equivalent causal graphs, using marginal
likelihood (or approximations thereof) instead of surrogate scores such as BIC, or being
able to model non-linear relationships.

In Section 2, we introduce an example model for continuous observations and latent
categorical confounders. To approximate the marginal likelihood in graphs which include
latent confounders, we present a variational inference algorithm in Section 3. After testing
our approach on various real data sets in Section 4, we present our conclusions and further
avenues of research in Section 5.

2. A Mixture of Linear Basis Functions Model

A general causal graph G(VG , EG) is a combination of a vertex set VG , which is the set of
observed and latent random variables, and a set of directed edges EG ⊆ VG × VG where
directed edges imply immediate cause-effect relationships between these variables. Let
{x1, . . . ,xn, . . . ,xN} ⊆ VG denote the set of continuous random variables, and similarly

1. We conduct a more in-depth exploration of identifiability conditions in Bayesian networks, and discuss the
relationship among the concepts Markov equivalence, distribution equivalence, and likelihood equivalence
in Appendix A.
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{r1 . . . , rk, . . . , rK} ⊆ VG denote the discrete latent variables of the network where each xn
and each rk are defined in the domains Xn and Rk, respectively. The set of parent vertices
of a vertex v ∈ VG is denoted by π(v), while we denote its continuous parents by xπ(v), and
discrete parents by rπ(v).

For the scope of this text, we specify conditional distributions for the graphs as follows:
we assume categorical distributions on the discrete variables r1:K and linear basis func-
tions models with Gaussian noise on the continuous variables x1:N . Though these choices
are by no means mandatory for our framework, we define latent variables as categorical.
Furthermore, we restrict our attention to the graphical structures that do not include a
continuous variable as a parent of a categorical variable for inferential convenience (Heck-
erman et al., 1995), and construct the following generative model for T independent and
identically distributed observations from the network G:

∀k, t : rtk | rtπ(rk) ∼ Categorical(θk|rt
π(rk)

) (1)

∀n, t : xtn | xtπ(xn), r
t
π(xn) ∼ N (wn|rt

π(xn)

Tφ(xtπ(xn)), ρn|rtπ(xn)

−1) (2)

where 1 ≤ t ≤ T , φ is an arbitrary basis function with the convention φ({}) = 1, and
θk|rt

π(rk)
, wn|rt

π(xn)
, ρn|rt

π(xn)
’s are the parameters of the conditional distributions. Namely,

θk is the conditional distribution table of rk, wn is the weights of the basis functions, and
ρn is the precision parameter of the conditional distribution of xn.

Notice that declaring parameters as random variables simplifies the notion of indepen-
dent cause-effect mechanisms as follows: Since the conditional distributions are the func-
tions of the parameters, independence of the conditional distributions boils down to the
independence of the parameters. Therefore, we complete our generative model by defining
independent conjugate prior distributions on the parameters

∀k, rπ(rk) : θk|rπ(rk)
∼ Dirichlet(γk|rπ(rk)

) (3)

∀n, rπ(xn) : wn|rπ(xn)
, ρn|rπ(xn)

∼ NG(mn|rπ(xn)
,Λn|rπ(xn)

, an|rπ(xn)
, bn|rπ(xn)

) (4)

where γk|rπ(rk)
, mn|rπ(xn)

, Λn|rπ(xn)
, an|rπ(xn)

, bn|rπ(xn)
are the prior parameters, i.e. hyper-

parameters, of our generative model.

3. Mean-Field Variational Bayes

Variational Bayesian inference (VB) (Beal et al., 2006) is a technique where an intractable
posterior distribution P is approximated by a variational distribution Q via minimizing
Kullback-Leibler divergence KL(Q||P). In the context of Bayesian model selection, mini-
mization of the KL(Q||P) corresponds to establishing a tight lower bound for the marginal
log-likelihood, which we refer to as evidence lower bound (ELBO). This correspondence is
due to the following decomposition of marginal log-likelihood

log p(x1:T
1:N ) = KL(Q‖P) + BP [Q] ≥ BP [Q] (5)

where P = p(r1:T
1:K ,θ1:K ,ρ1:N ,w1:N | x1:T

1:N ) is the full posterior distribution, and ELBO is
denoted by BP [Q]. In a typical scenario of VB, Q is assumed to be a member of a restricted
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family of distributions. In its most common form, also known as mean-field approximation,
Q is assumed to factorize over some partition of the latent variables, in a way that is
reminiscent to a rank-one approximation in the space of distributions

Q(r1:T
1:K ,θ1:K ,ρ1:N ,w1:N ) = q(r1:T

1:K) q(θ1:K ,ρ1:N ,w1:N )

ELBO is then maximized with respect to Q which is restricted to the class of factorized
distributions. Due to conjugacy, maximization of Q results in further factorized variational
distributions which also belong to the same family as the prior

q(rt1:K) = Categorical(rt1:K ; θ̂t)

q(θk|rπ(rk)
) = Dirichlet(θk|rπ(rk)

; γ̂k|rπ(rk)
)

q(wn|rπ(xn)
,ρn|rπ(xn)

) = NG(m̂n|rπ(xn)
, Λ̂n|rπ(xn)

, ân|rπ(xn)
, b̂n|rπ(xn)

)

Here θ̂t, γ̂k|rπ(rk)
, m̂n|rπ(xn)

, Λ̂n|rπ(xn)
, ân|rπ(xn)

, b̂n|rπ(xn)
represent the variational parameters.

To calculate variational parameter updates, we need to calculate the expected sufficient
statistics. In its final form, our variational algorithm becomes equivalent to iteratively
calculating the expected sufficient statistics and updating the parameters. The explicit
forms for the variational parameters and ELBO can be found in Appendix C.

4. Experiments

In Section 4.1 we test the performance of our approach in bivariate causal discovery. Then
in Section 4.2 we identify the cardinality and distribution of a latent confounder in a mul-
tivariate data set, exemplifying the versatility of a Bayesian approach to causality.

4.1. Finding Causal Direction: The CauseEffectPairs Data Set

In the first part we measured the accuracy of VB for the causal direction determination
problem. The data set in this part is CEP (Mooij et al., 2016), frequently used in causal
discovery research, which includes 100 data sets, vast majority of which is bivariate. For
the hyperparameters of the model, we created 36 different settings by varying the critical
hyperparameters systematically. We detail this hyperparameter creation process in the Ap-
pendix D.1. In making a decision between two causal directions in a given hyperparameter
setting, we choose the model which obtains a higher ELBO2. We tested our algorithm on
the data set by using 10× 3 cross-validation. That is, for each test, we separated the data
set into three, detected the hyperparameter setting (of 36) that obtained the best accuracy
score on the first two thirds, and tested our model on the last third of the data set, which
corresponds to an empirical Bayesian approach to prior selection. We conducted the same
process two more times, each fold becoming the test set once. We conducted this split and
tested randomly 10 times. We report the accuracy and AUC values according to these 10
runs. the CEP data set, we obtained a mean accuracy of .78±.09 and AUC score of .84±.13
(the values following the mean values correspond to 68% CI) where the accuracy and AUC
calculations are performed by using the weights mentioned by Mooij et al. (2016). Mooij
et al. (2016) also compared most recent methods on their performance on the data set; our
results correspond to a state-of-the-art performance in bivariate causality detection.

2. The two models compared in this experiment are depicted in Figures 2(b) and 2(c) in Appendix A.1.
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Figure 1: (a) Causal graph of thyroid data and (b) ELBO with respect to |R1|.

4.2. Inferring the Latent Confounder: The Thyroid Data Set

Using a different data set, we next examine the ability of our approach to identify a latent
confounder. For this purpose, we use the smallest database in the Thyroid data set from
the UCI repository (Dheeru and Karra Taniskidou, 2017). This data involves five different
diagnostic measurements from patients with low, normal, and high thyroid activity. This
being a diagnostic data set, the causal structure is known, where the thyroid activity is the
cause of the rest of the variables (Figure 1(a)). In our experiments we ignore the thyroid
activity variable, thus it becomes a latent confounder. This way we can test how well our
approach identifies the latent confounder.

To assess our method’s performance, we first examine whether the latent variable car-
dinality our method favors corresponds to the cardinality of the actual variable that we
held out. Figure 1(b) shows that the ELBO of the model is maximized at the latent cardi-
nality which corresponds to the actual cardinality of thyroid activity variable (which is 3).
Then, to ascertain that the inferred latent variable indeed corresponds to thyroid activity
variable, we compare the assignments of our model to actual patient thyroid activity levels.
The results demonstrate an accuracy of .93, thus we conclude that our method accurately
identified the latent causal variable.

5. Conclusion

Overall, we show that Bayesian model selection is a promising framework that can facilitate
causal research significantly both through conceptual unification and increased performance.
Given that Bayesian modeling is agnostic to specific variable types, conditional distributions,
and to approximate inference methodology, the value of a successful Bayesian modeling
approach for causal research is immense.

Though our empirical Bayesian approach to setting priors can be useful in various con-
texts (e.g. in data sets where only some of the bivariate causal directions are known), finding
other principled ways of assigning (or integrating out) priors that do not require labeled
data is an important direction for future research. Conducting causal discovery with differ-
ent variable types, and/or different distributions would also be beneficial for demonstrating
current approach’s viability in various contexts.
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Appendix A. Identifiability of Markov Equivalent Graphs

When constructing a generative model for causal inference, our aim is making Markov
equivalent graph structures identifiable. However, the model that is described only by
Equations (1) and (2) is not necessarily identifiable (Shimizu et al., 2006; Hoyer et al.,
2009). To be more precise, consider the case where we have two continuous variables and
no latent categorical variable, which is equivalent to the following structural equation model:

x1 = w1(1) + ρ
−1/2
1 ε1 ε1 ∼ N (0, 1)

x2 = w2(1)x1 + w2(2) + ρ
−1/2
2 ε2 ε2 ∼ N (0, 1)

One can also construct the following equivalent structural equation model in which the
dependence structure is reversed:

x2 = w1(1)w2(1) + w2(2) + ρ̂
−1/2
2 ε̂2 = ŵ2(1) + ρ̂

−1/2
2 ε̂2 ε̂2 ∼ N (0, 1)

x1 =
1

w2(1)
x2 −

w2(2)

w2(1)
+ ρ̂
−1/2
1 ε̂1 = ŵ1(1)x2 − ŵ1(2) + ρ̂

−1/2
1 ε̂1 ε̂1 ∼ N (0, 1)

These two models are not identifiable with the descriptions above, since they both corre-
spond to linear models with Gaussian noise. However, by assuming priors on the parameters
we can break the symmetry and make these Markov equivalent models identifiable. For in-
stance, assuming Gaussian priors on the weights of the first model implies non-Gaussian
priors on the second model, which makes these two models distribution inequivalent (Spirtes
and Zhang, 2016). Moreover, even when two Markov equivalent models are also distribu-
tion equivalent, choosing appropriate prior parameters that violate likelihood equivalence
still makes them identifiable (Heckerman et al., 1995). Indeed, for a model with a parame-
terization as described, only a very specific choice of priors leads to likelihood equivalence
between the Markov equivalent models (Geiger et al., 1997; Dawid et al., 1993), and we
will avoid following such a constraint. Choosing arbitrary priors almost always leads to
likelihood inequivalent, hence identifiable models.

A.1. Identifiable Graphical Models for Bivariate Causality

In this section, we define the appropriate graphical structures for causal structure learning
in the bivariate case. As we stated in Section 1, we do not assume causal sufficiency and
allow the existence of possibly many exogenous variables. Luckily, we can combine the
effects of exogenous variables into a single latent variable with an arbitrary cardinality. As
a result, the relationship between two observable dependent variables x1 and x2 boils down
to one of three cases due to causal Markov condition (Hausman and Woodward, 1999):

1. x1 causes x2,

2. x2 causes x1,

3. they do not cause each other, but a latent variable r1 causes both of them.

Associated causal networks corresponding to each of these hypotheses are depicted in
Figure 2, where latent variable r1 represents the overall effect of the all unobserved vari-
ables. For the spurious relationship (Figure 2(a)), marginally correlated variables x1 and
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rt1

xt
1 xt

2

θ1w1, ρ1 w2, ρ2

t = 1, . . . , T

(a) Spurious correlation.

rt1

xt
1 xt

2

θ1w1, ρ1 w2, ρ2

t = 1, . . . , T

(b) x1 causes x2.

rt1

xt
1 xt

2

θ1w1, ρ1 w2, ρ2

t = 1, . . . , T

(c) x2 causes x1.

Figure 2: Graphical models for bivariate causality.

x2 become independent once the latent common cause variable r1 is known. However in
direct causal relationships (Figures 2(b) and 2(c)), even when the latent common cause is
known, two variables are still dependent and the direction of cause-effect relationship is
implicit in the parameterization of the models.

The identifiability of these models resides in the fact that modelling parameters explicitly
as random variables makes these graphs Markov inequivalent. If we were considering only
the marginal models of the observed variables, then we would end up with three Markov
equivalent graphs. However, including latent variables and independent parameters renders
distinctive conditional independence properties for each graph. For instance, when x2 and
r1 are known, x1 and the parameters of x2 are dependent only in the case of x1 → x2, or
knowing r1 makes x1 and x2 independent only if they have a spurious relationship. These
distinctive conditional independence properties are the underlying reasons making all of
these graphs identifiable.

Appendix B. Exponential Family

B.1. Basic Distributions

In this section, we supply the brief descriptions of the basic distributions that we mentioned
in the main part of the manuscript.

B.1.1. Gamma Distribution

1. Gamma function:

Γ(z) ≡
∫ ∞

0
xz−1e−z dx

which is equal to (z − 1)! for nonnegative integer z.

2. Gamma density:

Gamma(ρ; a, b) = exp((a− 1) log ρ− bρ− log Γ(a) + a log b)

where a is the shape and b is the rate parameter.

3. Expected sufficient statistics:

E {ρ} = a/b, E {log ρ} = ψ(a)− log(b)

9
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4. Cross entropy:

EGamma(ρ;â,b̂) {− log Gamma(ρ; a, b)}

= −(a− 1)E {log ρ}+ bE {ρ}+ log Γ(a)− a log b

= −(a− 1)(ψ(â)− log(b̂)) +
âb

b̂
+ log Γ(a)− a log b

Here, ψ(x) is the digamma function which is defined as ψ(x) = d log Γ(x)
dx .

B.1.2. Dirichlet Distribution

1. Multivariate Beta function:

B(γ) =

∏
r Γ(γr)

Γ(
∑

r γr)

2. Dirichlet density:

Dirichlet(θ; γ) =
1

B(γ)
exp
(∑
r

(γr − 1) log θr
)

3. Expected sufficient statistics:

E {θr} =
γr∑
m γm

, E {log θr} = ψ(γr)− ψ(
∑
m

γm)

4. Cross entropy:

EDirichlet(θ;γ̂) {− log Dirichlet(θ; γ)} = logB(γ)−
∑
r

(γr − 1)E {log θr}

= logB(γ)−
∑
r

(γr − 1)
(
ψ(γr)− ψ(

∑
m

γm)
)

B.1.3. Categorical Distribution

1. Categorical density:

Categorical(r; θ) =

K∏
k=1

θ
1{r=k}
k

2. Expected sufficient statistics:
E
{
1{r=k}

}
= θk

3. Cross entropy:

ECategorical(r;θ̂) {− log Categorical(r; θ)} = −
∑
k

θ̂k log θk
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B.1.4. Normal Distribution

1. Normal density:

x ∼ N (µ, ρ−1) =
1√
2π

exp
(1

2
log ρ− 1

2
ρ(x− µ)2

)
where µ is the mean parameter and ρ is the precision parameter, i.e. ρ−1 is the
variance.

2. Expected sufficient statistics

E {x} = µ E
{
x2
}

= µ2 + ρ−1

B.1.5. Multivariate Normal Distribution

1. Multivariate Normal density:

x ∼ N (µ,Λ−1) =
1

(2π)K/2
exp
(1

2
log det(Λ)− 1

2
(x− µ)TΛ(x− µ)

)
where µ is the mean vector and Λ is the precision matrix, i.e. Λ−1 is the covariance
matrix.

2. Expected sufficient statistics:

E {x} = µ E
{
xTAx

}
= µTAµ+ tr(Λ−1A)

for any symmetric matrix A.

B.1.6. Normal-Gamma Distribution

1. Normal-Gamma density:

µ, ρ ∼ NG(m,λ, a, b) =
ba
√
λ

Γ(a)
√

2π
exp
((
a− 1

2

)
log ρ− bρ− λ

2
ρ(µ−m)2

)
which can be equivalently decomposed into a marginal Gamma distribution and a
conditional Normal distribution:

ρ ∼ Gamma(a, b) x | ρ ∼ N (m, (λρ)−1)

2. Expected sufficient statistics:

E {log ρ} = ψ(a)− log b E {ρ} =
a

b
E {ρµ} = m

a

b
E
{
ρµ2
}

=
1

λ
+m2a

b

3. Cross entropy:

ENG(m̂,λ̂,â,b̂) {− logNG(µ, ρ;m,λ, a, b)} =

−a log b+ log Γ(a)− 1

2
log λ+

λ

2λ̂
+

1

2
log 2π

−
(
a− 1

2

)
(ψ(â)− log b̂) +

âb

b̂
+

â

2b̂
λ(m̂−m)2

11
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B.1.7. Multivariate Normal-Gamma Distribution

1. Multivariate Normal-Gamma density:

w, ρ ∼ NG(m,Λ, a, b)

=
ba
√

det(Λ)

(2π)M/2Γ(a)
exp

((
a+

M

2
− 1
)

log ρ− bρ− 1

2
ρ(w −m)TΛ(w −m)

)

which can be equivalently decomposed into a marginal Gamma distribution and a
conditional Multivariate Normal distribution:

ρ ∼ Gamma(a, b) x | ρ ∼ N (m, (ρΛ)−1)

2. Expected sufficient statistics:

E {log ρ} = ψ(a)− log b E {ρ} =
a

b
E {ρw} =

a

b
m

E
{
ρ wTAw

}
= tr(Λ−1A) +

a

b
mTAm

for any symmetric matrix A.

3. Cross entropy:

ENG(m̂,Λ̂,â,b̂) {− logNG(w, ρ;m,Λ, a, b)} =

−a log b+ log Γ(a)− 1

2
log det(Λ) +

1

2
tr(Λ̂−1Λ) +

M

2
log 2π

−
(
a+

M

2
− 1
)

(ψ(â)− log b̂) +
âb

b̂
+

â

2b̂
(m̂−m)TΛ(m̂−m)

B.2. Basic Conjugate Models

In this section we summarize the basic conjugate models that are closely related to our
example model.

B.2.1. Dirichlet-Categorical Model

1. Generative model:

θ ∼ Dirichlet(γ)

r1, . . . , rT ∼ Categorical(θ)

2. Posterior of θ:

θ | r1, . . . , rT ∼ Dirichlet(γ∗)

where γ∗r = γr +
∑T

t=1 1{r=rt}

12
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B.2.2. Normal-Gamma-Normal Model

1. Generative model:

µ, ρ ∼ NG(m,λ, a, b)

x1, . . . , xT ∼ N (µ, ρ−1)

2. Posterior of µ and ρ:

µ, ρ | x1, . . . , xT ∼ NG(m∗, λ∗, a∗, b∗)

where

λ∗ ≡ λ+ T m∗ ≡
λm+

∑
t x

t

λ∗

a∗ ≡ a+
T

2
b∗ ≡ b+

1

2

(
λm2 − λ∗m∗2 +

∑
t

(xt)2
)

B.2.3. Bayesian Linear Regression

1. Generative model:

yt = wTxt + ρ−1/2εt εt ∼ N (0, 1)

An equivalent description with Normal-Gamma priors is

w, ρ ∼ NG(m,Λ, a, b)

yt | xt ∼ N (wTxt, ρ−1)

2. Posterior of w and ρ:

w, ρ | (x1, y1), . . . , (xT , yT ) ∼ NG(m∗,Λ∗, a∗, b∗)

where

Λ∗ ≡ Λ +
∑

t
xtxt

T
m∗ ≡ Λ∗−1(Λm+

∑
t
ytxt

)
a∗ ≡ a+

T

2
b∗ ≡ b+

1

2

(
mTΛm−m∗TΛ∗m∗ +

∑
t

(xt)2
)

Appendix C. Variational Bayes

Minimization of KL(Q‖P) ends up with the following marginal variational distributions:

q(r1:T
1:K) ∝ exp

(
Eq(θ1:K ,ρ1:N ,w1:N )

{
log p(r1:T

1:K , x
1:T
1:N ,θ1:K ,ρ1:N ,w1:N )

})
(6)

q(θ1:K ,ρ1:N ,w1:N ) ∝ exp
(
Eq(r1:T1:K)

{
log p(r1:T

1:K , x
1:T
1:N ,θ1:K ,ρ1:N ,w1:N )

})
(7)

In this section, we will explicitly evaluate these equations to derive closed form expressions
for the variational posteriors:

13
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1. We first simplify the (6) via factorization property of the joint distribution and re-
moving the multiplicative constants

q(r1:T
1:K) ∝ exp

(
Eq(θ1:K ,ρ1:N ,w1:N )

{
log p(r1:T

1:K , x
1:T
1:N ,θ1:K ,ρ1:N ,w1:N )

})
∝ exp

(
Eq(θ1:K ,ρ1:N ,w1:N )

{
log p(r1:T

1:K , x
1:T
1:N | θ1:K ,ρ1:N ,w1:N )

})
=

T∏
t=1

exp
(
Eq(θ1:K ,ρ1:N ,w1:N )

{
log p(rt1:K , x

t
1:N | θ1:K ,ρ1:N ,w1:N )

})
∝

T∏
t=1

q(rt1:K)

In order to keep the notation uncluttered, from now on we will omit the implicit
subscripts in expectation operators. So each individual factor q(rt1:K) above is equal
to

q(rt1:K) ∝ exp
(
E
{

log p(rt1:K , x
t
1:N | θ1:K ,ρ1:N ,w1:N )

})
= exp

( K∑
k=1

E
{

log p(rtk | rtπ(rk),θk)
}

+
N∑
n=1

E
{

log p(xtn | rtπ(xn), x
t
π(xn),wn,ρn)

})
∝ exp

( K∑
k=1

E
{

log θk|rt
π(rk)

(rtk)
}

+
1

2

N∑
n=1

E
{

logρn|rt
π(xn)

}
− 1

2

N∑
n=1

E
{
ρn|rt

π(xn)

(
wn|rt

π(xn)

Tφ(xtπ(xn))− x
t
n

)2}
∝ Categorical(rt1:K ; θ̂t)

2. We now pursue the same strategy for the expression in (7)

q(θ1:K , ρ1:N , w1:N ) ∝ exp
(
Eq(r1:T1:K)

{
log p(θ1:K , ρ1:N , w1:N | r1:T

1:K , x
1:T
1:N )

})
=
( K∏
k=1

∏
rπ(rk)

exp
(
E
{

log p(θk|rπ(rk)
| r1:T

1:K)
}))

( N∏
n=1

∏
rπ(xn)

exp
(
E
{

log p(wn|rπ(xn)
, ρn|rπ(xn)

| r1:T
1:K , x

1:T
1:N )

}))

∝
( K∏
k=1

∏
rπ(rk)

q(θk|rπ(rk)
)
)( N∏

n=1

∏
rπ(xn)

q(wn|rπ(xn)
, ρn|rπ(xn)

)
)

14
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where each individual factor turns out to be

q(θk|rπ(rk)
) ∝ exp

(
E
{

log p(θk|rπ(rk)
| r1:T

1:K)
})

∝ exp

(∑
rk

(
γk|rπ(rk)

+

T∑
t=1

E

{
1{rtk=rk}1

{
rt
π(rk)

=rπ(rk)

}}− 1

)
log θk|rπ(rk)

(rk)

)
∝ Dirichlet(θk|rπ(rk)

; γ̂k|rπ(rk)
)

q(wn|rπ(xn)
, ρn|rπ(xn)

) ∝ exp
(
E
{

log p(wn|rπ(xn)
, ρn|rπ(xn)

| r1:T
1:K , x

1:T
1:N )

})
∝ exp

(
log p(wn|rπ(xn)

, ρn|rπ(xn)
) + E

{
log p(x1:T

1:N | r1:T
1:K , wn|rπ(xn)

, ρn|rπ(xn)
)
})

∝ exp
(
log p(wn|rπ(xn)

, ρn|rπ(xn)
)

+

T∑
t=1

E

{
1{

rt
π(xn)

=rπ(xn)

}} log p(xtn | xtπ(xn), wn|rπ(xn)
, ρn|rπ(xn)

)
)

∝ NG(wn|rπ(xn)
, ρn|rπ(xn)

; m̂n|rπ(xn)
, Λ̂n|rπ(xn)

, ân|rπ(xn)
, b̂n|rπ(xn)

)

Finally, we match the coefficients of the sufficient statistics in above equations with
the natural parameters and find the following variational parameters in terms of the
expected sufficient statistics:

log θ̂t(rt1:K) =+
K∑
k=1

EQ

{
log θk|rt

π(rk)
(rtk)

}
− 1

2

N∑
n=1

φ(xtπ(xn))
T

Λ̂−1
n|rt

π(xn)

φ(xtπ(xn))

+
1

2

N∑
n=1

EQ

{
log ρn|rt

π(xn)

}
− 1

2

N∑
n=1

(
m̂T
n|rt

π(xn)
φ(xtπ(xn))− x

t
n

)2
EQ

{
ρn|rt

π(xn)

}
γ̂k|rπ(rk)

(rk) = γk|rπ(rk)
+

T∑
t=1

EQ

{
1{

rt
π(rk)

=rπ(rk)

}1{rtk=rk}

}

Λ̂n|rπ(xn)
= Λn|rπ(xn)

+
T∑
t=1

EQ

{
1{

rt
π(xn)

=rπ(xn)

}}φ(xtπ(xn))φ(xtπ(xn))
T

m̂n|rπ(xn)
= Λ̂−1

n|rπ(xn)

(
Λn|rπ(xn)

mn|rπ(xn)
+

T∑
t=1

EQ

{
1{

rt
π(xn)

=rπ(xn)

}}xtnφ(xtπ(xn))
)

ân|rπ(xn)
= an|rπ(xn)

+
1

2

T∑
t=1

EQ

{
1{

rt
π(xn)

=rπ(xn)

}}
b̂n|rπ(xn)

= bn|rπ(xn)
+

1

2

(
mn|rπ(xn)

TΛn|rπ(xn)
mn|rπ(xn)

− m̂T
n|rπ(xn)

Λ̂n|rπ(xn)
m̂n|rπ(xn)

+

T∑
t=1

EQ

{
1{

rt
π(xn)

=rπ(xn)

}} (xtn)2
)

15



Bayesian Model Selection for Identifying Markov Equivalent Causal Graphs

Algorithm 1 VB-CN: Variational inference for causal networks

Require: G,x1:T
1:N

Initialize γ̂1:K , m̂1:N , Λ̂1:N , â1:N , b̂1:N

repeat
Update expected sufficient statistics

• EQ

{
logρn|rπ(xn)

}
← ψ(ân|rπ(xn)

)− log b̂n|rπ(xn)

• EQ

{
ρn|rπ(xn)

}
←

ân|rπ(xn)

b̂n|rπ(xn)

• EQ

{
log θk|rπ(rk)

(rk)
}
← ψ

(
γ̂k|rπ(rk)

(rk)
)
− ψ

(∑
r′k
γ̂k|rπ(rk)

(r′k)
)

for t = 1, . . . , T do
Update log θ̂t

Update expected sufficient statistics

• EQ

{
1{

rt
π(rk)

=rπ(rk)

}1{rtk=rk}

}
←
∑

r¬U
θ̂t(r1:K) where U = π(rk) ∪ {k}

• EQ

{
1{

rt
π(xn)

=rπ(xn)

}}←∑
r¬U

θ̂t(r1:K) where U = π(xn)

end for
Update γ̂1:K , m̂1:N , Λ̂1:N , â1:N , b̂1:N w.r.t. the expected sufficient statistics.
Update BP [Q] via Equation (8)

until BP [Q] converges
return Variational parameters θ̂1:T , γ̂1:K , m̂1:N , Λ̂1:N , â1:N , b̂1:N

return The evidence lower bound BP [Q].

A simplified sketch of our variational inference algorithm VB-CN is also presented in
Algorithm 1.

C.1. Evidence Lower Bound

ELBO can be expressed as a sum of expectation terms most of which are in the form of
negative cross entropy or negative entropy:

BP [Q] ≡ EQ
{

log p(r1:T
1:K , x

1:T
1:N ,θ1:K ,ρ1:N ,w1:N )− logQ(r1:T

1:K ,θ1:K ,ρ1:N ,w1:N )
}

(8)

=

T∑
t=1

N∑
n=1

EQ

{
log p(xtn | xtπ(xn), r

t
π(xn),wn,ρn)

}
(9)

+

T∑
t=1

( K∑
k=1

EQ

{
log p(rtk | rtπ(rk),θk)

}
− EQ

{
log q(rt1:K)

})
(10)

+
K∑
k=1

∑
rπ(rk)

(
EQ

{
log p(θk|rπ(rk)

)
}
− EQ

{
log q(θk|rπ(rk)

)
})

(11)

+
N∑
n=1

∑
rπ(xn)

(
EQ

{
log p(wn|rπ(xn)

,ρn|rπ(xn)
)
}
− EQ

{
log q(wn|rπ(xn)

,ρn|rπ(xn)
)
})

(12)
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In this section we will evaluate each of those expectations explicitly. We start our
derivation with the trickier Gaussian log-likelihood term, then the rest of the expectations
will correspond to negative cross entropy values of standard exponential family distributions:

EQ

{
log p(xtn | xtπ(xn), r

t
π(xn),wn,ρn)

}
=
∑
rπ(xn)

E

{
1{
rt
π(xn)

=rπ(xn)

}}E
{

log p(xtn | xtπ(xn),wn|rπ(xn)
,ρn|rπ(xn)

)
}

=
1

2

∑
rπ(xn)

E

{
1{
rt
π(xn)

=rπ(xn)

}}(E {logρn|rπ(xn)

}
−E

{
ρn|rπ(xn)

(
xtn −wn|rπ(xn)

Tφ(xtπ(xn))
)2}− log 2π

)
=

1

2

∑
rπ(xn)

∑
r¬π(xn)

θ̂t(rπ(xn), r¬π(xn))
(
ψ(ân|rπ(xn)

)− log b̂n|rπ(xn)

−
ân|rπ(xn)

b̂n|rπ(xn)

(
xtn − m̂T

n|rπ(xn)
φ(xtπ(xn))

)2 − φ(xtπ(xn))
T

Λ̂−1
n|rπ(xn)

φ(xtπ(xn))− log 2π
)

Variational distribution Q treats rt1:K and θ1:K as independent variables. So, the expec-
tations of the categorical log-likelihood terms admit the following form

EQ

{
log p(rtk | rtπ(rk),θk)

}
=
∑
rk

∑
rπ(rk)

E

{
1{rtk=rk}1

{
rt
π(rk)

=rπ(rk)

}}E
{

log θk|rπ(rk)
(rk)

}
=
∑
r1:K

θ̂t(r1:K)
(
ψ
(
γ̂k|rπ(rk)

(rk)
)
− ψ

(∑
r′k

γ̂k|rπ(rk)
(r′k)

))
The rest of the terms are related to cross entropy or entropy of the well-known exponen-

tial family distributions, and closed form expressions for them are supplied in Appendix B.
So here, we only modify these expressions by changing their parameters with the appropriate
variational parameters.

1. By using the negative cross entropy formulation in Appendix B.1.3 for categorical
distributions:

EQ
{

log q(rt1:K)
}

=
∑
r1:K

θ̂t(r1:K) log θ̂t(r1:K)
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2. By using the Dirichlet negative cross entropy formulation in Appendix B.1.2:

EQ

{
log p(θk|rπ(rk)

)
}

= log Γ
(∑
rk

γk|rπ(rk)
(rk)

)
−
∑
rk

log Γ
(
γk|rπ(rk)

(rk)
)

+
∑
rk

(
γk|rπ(rk)

(rk)− 1
)(
ψ
(
γ̂k|rπ(rk)

(rk)
)
− ψ

(∑
r′k

γ̂k|rπ(rk)
(r′k)

))

EQ

{
log q(θk|rπ(rk)

)
}

= log Γ
(∑
rk

γ̂k|rπ(rk)
(rk)

)
−
∑
rk

log Γ
(
γ̂k|rπ(rk)

(rk)
)

+
∑
rk

(
γ̂k|rπ(rk)

(rk)− 1
)(
ψ
(
γ̂k|rπ(rk)

(rk)
)
− ψ

(∑
r′k

γ̂k|rπ(rk)
(r′k)

))

3. Finally, by using the Multivariate Normal-Gamma negative cross entropy formulation
in Appendix B.1.7:

EQ

{
log p(wn|rπ(xn)

,ρn|rπ(xn)
)
}

=

an|rπ(xn)
log bn|rπ(xn)

− log Γ(an|rπ(xn)
) +

1

2
log det(Λn|rπ(xn)

)− 1

2
tr(Λ̂−1

n|rπ(xn)
Λn|rπ(xn)

)

− M

2
log 2π +

(
an|rπ(xn)

+
M

2
− 1
)(
ψ(ân|rπ(xn)

)− log b̂n|rπ(xn)
)
)
− bn|rπ(xn)

ân|rπ(xn)

b̂n|rπ(xn)

−
ân|rπ(xn)

2b̂n|rπ(xn)

(m̂n|rπ(xn)
−mn|rπ(xn)

)TΛn|rπ(xn)
(m̂n|rπ(xn)

−mn|rπ(xn)
)

E
{

log q(wn|rπ(xn)
,ρn|rπ(xn)

)
}

=

ân|rπ(xn)
log b̂n|rπ(xn)

− log Γ(ân|rπ(xn)
) +

1

2
log det(Λ̂n|rπ(xn)

)− M

2

− M

2
log 2π +

(
ân|rπ(xn)

+
M

2
− 1
)(
ψ(ân|rπ(xn)

)− log b̂n|rπ(xn)
)
)
− ân|rπ(xn)

Appendix D. About Experiments

D.1. Hyperparameter settings

Given that some of our experiments are computationally demanding, certain parameters
were fixed for all our experiments when it was reasonable to do so, in order to avoid excessive
computational costs. For all experiments, the basis function were allowed to be of linear,
quadratic, and cubic order, and the cardinality |R1| of the latent variable was allowed to
range between 1 and 5. For the bivariate models in Figure 2, the cardinality |R1| of the
latent variable r1 was allowed to range between 1 and 5, in each case the cardinality and
basis function order that leads to the highest marginal likelihood was selected. As the
parameters we fixed before inference: for both values of n ∈ {1, 2} and for all values of
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r1 ∈ R1, mn|r1 ’s were set to 0, and Λn|r1 ’s were set to 1
10I each; while for all values of

r1 ∈ R1, γ1(r1)’s were set to 10.
We next describe the remaining hyperparameters with respect to the causal graph in

Figure 2(b) in which x1 causes x2. Their adaptation to other two graphs is straightforward
due to symmetry. The hyperparameters of the Gamma distributions, (a1, b1, a2, b2), from
which the precision of the observed variables were drawn, were allowed to take different
values with the condition that an|r1 ≥ bn|r1 at all times, but again every element of these
vectors corresponding to different values of r1 assumed to be constant within the vector.
This is because the mean of a Gamma distribution Gamma(a, b) is a/b and its variance
is a/b2, therefore when b is allowed to take a greater value than a, this results in a close
to zero precision value for the relevant distribution for the observed variable. Obeying
the constraint, the a and b’s were allowed to take values among 1, 10, and 100 each.
The a parameter was not allowed to be larger than 100 since this leads to an equivalent
sample size much larger than the sample size of certain data sets used in experiments,
effectively rendering the observations unimportant. The b parameter was not allowed to be
smaller than 1 since this again implies extremely imprecise Gaussian distributions for the
observed variables to which the Gamma distribution provided the precision variable. The
combinations with these constraints lead to a total of 36 sets of hyperparameters.

While doing model comparison in a hyperparameter setting, we expect several criteria to
be satisfied for maintaining consistency. For instance, in the spurious model (Figure 2(a))
there is no reason to assign different priors on variables x1 and x2. Otherwise, just by
permuting the labels of the pairs, we would obtain inconsistent marginal likelihoods. Like-
wise, when the labels of a pair are permuted, e.g. x̂1:T

1 ≡ x1:T
2 and x̂1:T

2 ≡ x1:T
1 , we expect

the marginal likelihood of the pair (x1:T
1 , x1:T

2 ) given the relation x1 → x2 to be equal
to the marginal likelihood of the permuted pair (x̂1:T

1 , x̂1:T
2 ) given the relation x̂2 → x̂1.

The rule we used to solve inconsistency issues in such situations is the following: the prior
parameters of two variables must be identical whenever the parental graphs of them are
homomorphic. So, if we are calculating the marginal likelihood of the relation x1 → x2

with a particular hyperparameter setting, say (a1 = 100, b1 = 10, a2 = 10, b2 = 1), then the
corresponding consistent hyperparameter setting for x2 → x1 should be (a1 = 10, b1 = 1,
a2 = 100, b2 = 10), whereas the corresponding consistent hyperparameters for the spurious
relationship should be (a1 = 100, b1 = 10, a2 = 100, b2 = 10).

D.2. Synthetic Data Experiments
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Figure 3: The ROC curves for synthetic data experiments.
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For this experiment, for each of 36 hyperparameter combinations, and for each rank
values of |R1| = 1 to 5 for the linear model, a total of 3 different data pairs (one for each
different graphical model) with 2000 observations were generated. This amounted to a
total of 540 data pairs. For each synthetic data pair, the corresponding hyperparameters
were used to compare the three hypotheses demonstrated in Figure 2 using the marginal
likelihood estimate of the variational Bayes algorithm. The resulting ROC curves can
be seen in the Figure 3. With an overall accuracy of .961 and AUC of .998, the results
demonstrate that our method can identify the data generating graph comfortably, given
the correct hyperparameter settings.

D.3. Detecting Spurious Relationships in the CEP Data Set

The CEP data set is not labeled as to the spurious relationships, therefore it is not possible
to conduct hyperparameter selection with cross-validation. However, we ran the experi-
ments again, this time including the spurious relationship hypothesis in the experiments,
for all 36 parameter settings, and recorded the pairs for which the marginal likelihood of the
spurious hypothesis was the highest. We observed that, using the hyperparameter setting
that achieved the highest accuracy in the previous experiment, these four data sets were
found to be spurious: 19, 91, 92, and 98. The scatter plots of these data sets are presented
in Figure 4.
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Figure 4: Scatter plots of spurious pairs found in Cause Effect Pairs.

Visual examination of the first three pairs reveals that, although each of these pairs are
correlated, they can be separated into two clusters in which X and Y axes become inde-
pendent. In other words, once the confounding variables governing the cluster affiliations

20



Bayesian Model Selection for Identifying Markov Equivalent Causal Graphs

are decided, then the variables X and Y generated independently, so their correlation is
indeed spurious. As we lack the expertise, we do not know what these confounding vari-
ables correspond in reality, but the existence of such variables is evident from the scatter
plots. The case of the fourth spurious pair is slightly different than other correlated pairs.
The fourth pair consists of the measurements of initial and final speeds of a ball on a ball
track where initial speed is thought as the cause of final speed. However, our variational
algorithm selected the spurious model with a latent variable having cardinality |R1| = 1,
which actually corresponds to the marginal independence of X and Y . Such an explanation
makes sense considering the plot in Figure 4, as the initial speed of the ball does not seem
related to its final speed.

21


	Introduction
	A Mixture of Linear Basis Functions Model
	Mean-Field Variational Bayes
	Experiments
	Finding Causal Direction: The CauseEffectPairs Data Set
	Inferring the Latent Confounder: The Thyroid Data Set

	Conclusion
	Identifiability of Markov Equivalent Graphs
	Identifiable Graphical Models for Bivariate Causality

	Exponential Family
	Basic Distributions
	Gamma Distribution
	Dirichlet Distribution
	Categorical Distribution
	Normal Distribution
	Multivariate Normal Distribution
	Normal-Gamma Distribution
	Multivariate Normal-Gamma Distribution

	Basic Conjugate Models
	Dirichlet-Categorical Model
	Normal-Gamma-Normal Model
	Bayesian Linear Regression


	Variational Bayes
	Evidence Lower Bound

	About Experiments
	Hyperparameter settings
	Synthetic Data Experiments
	Detecting Spurious Relationships in the CEP Data Set


