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Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganés (Madrid). Spain
icenamorg@gmail.com, apozanco@pa.inf.uc3m.es

Abstract

The International Planning Competition (IPC) empiri-
cally evaluates state-of-the-art planning systems on a
set of benchmark problems. The selection of this bench-
marks plays an important role in the competition, since
they can significantly affect competition results.
In this paper we analyze the diversity of the benchmarks
employed in the last IPC through extracting some fea-
tures from the domains and problems of the optimal
track. Finally, we provide some insights from the col-
lected data and propose to use a similar method to select
the benchmarks of future competitions.

Introduction
In Artificial Intelligence, it is common to have competitions
associated with each particular research area. These com-
petitions aim to bring together different state-of-the-art sys-
tems, evaluating them on a set of benchmarks. Just like in
Satisfiability Testing (Järvisalo et al. 2012), or in Answer
Set Programming (Gebser, Maratea, and Ricca 2017), the
Automated Planning community promotes the development
of innovative planning techniques since 1998 through the In-
ternational Planning Competition (IPC).

In the IPC, participating planning systems are tested in
several benchmark problems. The selection of these bench-
mark domains and problems instances plays an important
role in the competition, since they can significantly affect
competition results (Howe and Dahlman 2002). This task is
non-trivial, and it has given a lot of headaches to the or-
ganizers of previous competitions (Linares López, Celor-
rio, and Olaya 2015; Vallati, Chrpa, and McCluskey 2018).
One of the main consensuses among the different post-
competition discussions, is that benchmark domains and
problems should be as diverse as possible (Vallati and Va-
quero 2015), in order to (1) enrich the competition, and (2)
not bias the results in favour of any planner.

In this paper, we analyze the diversity of benchmarks em-
ployed in the IPC 2018. We do that by extracting some fea-
tures from the domains and problem instances of the optimal
tracks. Features from domains and problems have been suc-
cessfully used to predict planner’s coverage (Roberts et al.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2008; Roberts and Howe 2009) or run time (Fawcett et al.
2014); and also to generate state-of-the-art planning portfo-
lios (Cenamor, de la Rosa, and Fernández 2016). Here we
use these features to evaluate and analyze the diversity of
the competition benchmarks.

In the rest of the paper we introduce the feature extrac-
tion process, including a brief description of the features.
Then, we detail how we process the raw data and intro-
duce our different analyses, in which we also include the
IPC 2014 for comparison purposes. Firstly, we perform an
intra-domain analysis to test how diverse are the problem
instances within the same planning domain. Secondly, we
perform an inter-domain analysis to test how diverse are the
domains and problems among them. Finally, we merge the
data from IPC 2014 and IPC 2018 to group the domains and
problems based on their similarity. We conclude our analysis
by providing some insights from the results, and outlining
a procedure similar to the one we carried out to select the
benchmarks of future IPCs.

Planning Features
We use the same features extracted by the IBaCoP family of
portfolios (de la Rosa, Cenamor, and Fernández 2017). The
extraction process collects data from different steps of the
Fast Downward system (Helmert 2006), in the version that
was available before the IPC 2014. We briefly describe the
set of 114 real-valued features we will use throughout our
analysis by classifying them into the following categories:

• PDDL. These features are extracted from the original do-
main and problem definition in the PDDL files. If the
domain contains conditional effects, we parse them us-
ing ADL2STRIPS (Hoffmann et al. 2006). Specifically,
we have implemented the compilation that creates artifi-
cial actions for effect’s evaluation (Nebel 2000). Some of
these features are: number of actions, number of objects
or number of goals.

• Fast Downward Instantiation. The pre-processor of Fast
Downward instantiates and translates the planning tasks
into a finite domain representation (Helmert 2009). Some
of these features are: number of mutex groups, memory
used for the translation process or whether action costs
are used or not.



• SAS+. These features are based on the causal
graph (Helmert 2004) and domain transition graphs (Jon-
sson and Bäckström 1998) associated to the finite domain
representation. Some of these features are: number of
variables and edges of the causal graph, ratio of variables
involved in the goal, or sum of the number of nodes of all
domain transition graphs.

• Heuristics. These features represent different heuristic
values of the initial state of the search. Some of these fea-
tures are: the FF heuristic (Hoffmann and Nebel 2001),
the landmark-cut heuristic (Helmert and Domshlak 2009)
or the red-black heuristic (Katz, Hoffmann, and Domsh-
lak 2013).

• Fact Balance. These features are extracted from the re-
laxed plan of the initial state when the FF heuristic is com-
puted.

• Landmarks. These features are extracted from the land-
mark graph computed by Fast Downward (see details
in (Cenamor, de la Rosa, and Fernández 2016)). Some of
these features are the number of landmarks, the number
of edges in the landmark graph or the number of interme-
diate nodes in the graph.

Through extracting these features, we aim to characterize
each problem instance to later compare them.

Data Extraction
We extract the IBaCoP features of the domains and prob-
lems of the IPC 2018 optimal track1. We decided to per-
form our analysis on that track given that we were able to
successfully extract most of the features for all the problem
instances, while the extraction results were worse in the sat-
isficing track due to time and memory issues. We also ex-
tracted the features of the IPC 2014 optimal track2 so we
can compare them properly. The feature extraction process
was run on an Intel Core i5-2410M CPU @ 2.30GHz and
4GB of RAM. We apply a time limit of 1800 seconds to the
extraction of the features of each problem3.

#Features Success
PDDL 8 100%
FD 16 100%
SAS+ 50 100%
Heuristic 16 82%
FB 10 76%
Landmarks 14 100%
Total 114

Table 1: Feature type, number of features per type, and ex-
traction success.

1https://bitbucket.org/ipc2018-classical/
domains/src

2https://helios.hud.ac.uk/scommv/IPC-14/
benchmark.html

3The extracted data is available at https://github.com/
apozanco/wipc-icaps2019 for IPC 2014 and 2018

Name Min Max Mean Std Median
agricola 32.0 164.0 87.9 36.2 80.0
caldera 97.0 382.0 319.8 76.6 339.0
caldera-split 64.0 280.0 135.3 50.0 124.0
data-network 2.0 6.0 3.6 0.9 3.0
nurikabe 61.0 634.0 311.1 169.1 324.5
organic-synthesis-split 80.0 844.0 257.8 230.8 133.0
organic-synthesis - - - - -
settlers 100.0 283.0 177.6 52.1 167.5
snake 12.0 53.0 29.5 13.1 26.0
spider 167.0 671.0 383.6 137.3 408.0
termes 2.0 3.0 2.2 0.4 2.0
petri-net 7.0 30.0 18.4 6.8 17.5

Table 2: Minimum, maximum, average, standard deviation
and median time to extract features for each domain in the
IPC 2018 optimal track. In bold the higher values per col-
umn.

Table 1 shows the extraction success for each feature type
in the IPC 2018. As we can see, most of the features are
extracted correctly. Table 2 shows different metrics related
to the time needed to extract the features in each domain
of the IPC 2018. While it is easy to extract the features in
some domains such as termes and data-network, there are
other domains like spider or organic-synthesis-split in which
this process may take up to two more orders of magnitude.
This is because these domains present ADL, action costs,
and negative preconditions, which need a special PDDL
pre-process. We discarded organic-synthesis, since we only
could extract the features of 5 problem instances within the
time limit.

Data Pre-processing
After extracting the features, we have a features matrixM.
Each row in the matrix represents a problem instance pk, and
each column represents a feature fi. Each cell contains the
numeric value of a feature for that problem, fi(pk). As we
showed in Table 1, we do not have all the features’ values
for all the problems. So first of all, we have to deal with the
missing values.

Here we have two main options: (1) discard those features
with any missing value for any problem; or (2) substitute the
missing values by actual values. Discarding features implies
losing information. If the system is not able to extract a fea-
ture in a problem, it means that this instance is different from
others in which it can be extracted. Moreover, we have high
extraction success in almost all the features, so we opted for
the second alternative, substituting the missing values. These
values can be replaced in many ways. We chose to replace
them by either:

• Setting the feature value to 0, if there is no problem in
the domain in which the feature has been successfully ex-
tracted.

• Setting the feature value to the average of that feature val-
ues in the domain, if there exist at least one problem in
the domain in which the feature has been successfully ex-
tracted.



Then, we cleaned the data by removing the features
that were not sufficiently informative. For this purpose, we
deleted the set of features which have the same value for all
the problem instances of the competition. This make our set
of features to reduce from 114 to 107. We deleted 3 features
from the PDDL description, 3 from the SAS+ representa-
tion, and 1 from the heuristic values.

Finally, we normalized the features matrix by applying
the following equation to every remaining feature fi ∈M,

f ′
i(pk) =

fi(pk)− fmin

fmax − fmin

where fi(pk) is the current value of the feature fi in the
problem instance pk; fmin and fmax are the minimum and
maximum values of the feature fi for all the problem in-
stances pk ∈M; and f ′

i(pk) is the new normalized value of
the feature fi in the instance pk. After this process, the fea-
tures matrixM is normalized, with all the features’ values
within the [0, 1] range.

If we take a look to these features’ values, there are some
that have similar values for all problem instances, while
others are very different. As instance, in the IPC 2018, all
the problem instances have a similar ratio between the to-
tal number of variables and the total number of edges in the
causal graph. On the other hand, the most different features
correspond with the number of predicates and types in the
problem instances.

In the following experiments, we will refer as problem
features’ vector Vpk

to the list of values that describe the
features of a problem instance pk.

Intra-domain Analysis
Our first analysis aim to test how diverse are the problem in-
stances within the same planning domain. For each planning
domain, we compute a matrix with the columns and rows
being the problem instances pk of that domain. Each cell
of the matrix denotes the difference between two problem
features’ vectors Vx and Vy . This difference is computed as
follows:

Vx − Vy =

i=107∑
i=1

|fi(px)− fi(py)|

This value can range from 0 to 107. Values closer to
0 mean that the two problem instances are similar, while
higher values mean diverse problem instances.

To test how diverse the problems of a domain are, we then
sum all the rows (or columns) in the matrix and divide that
number by n2, where n is the number of problems in the
domain. This number reflects how different/similar is an av-
erage problem with the rest of problem instances of its do-
main. This number can range from 0 to 37.5 in the case of
domains with 20 problems. Table 3 show the results of our
intra-domain analysis for both IPC 2014 and 2018.

As we can see, there is a lot of variation in the results.
Domains like parking and visitall in 2014, and spider or
organic-synthesis in 2018 have very diverse problems, while
all the instances in data-network or barman seem to be sim-
ilar. The IPC 2018 has more diverse problems within the

Domain 2014 Difference Domain 2018 Difference
parking 9.5 spider 12.5
tetris 8.5 organic-synth 10.5
visitall 7.4 nurikabe 9.9
transport 6.7 caldera 7.5
tidybot 4.9 caldera-split 4.4
openstacks 4.8 petri-net 4.1
citycar 4.1 agricola 4.1
cave-diving 4.1 snake 3.8
hiking 3.6 settlers 2.2
GED 3.5 termes 1.5
child-snack 2.2 data-network 0.9
floortile 1.4
maintenance 1.1
barman 0.9

Table 3: Intra-domain Analysis.

same domain, with an average difference of 5.6 against the
average difference of 4.5 in the case of the IPC 2014.

To better illustrate how diverse the problems within a do-
main are, we plotted together all the problem features’ vec-
tor of each domain. The results for the domains with most
and least similar problems in the IPC 2018 are shown in Fig-
ure 1.

We also ran a small experiment to see if these results
correlate with the planners’ performance. We hypothesized
that in domains with similar problems such as data-network,
planners would perform similarly, i.e., they would solve
most or almost none of the problems in the domain. On the
other hand, in domains with different instances such as spi-
der, planners would solve the problems in a more different
way. To check this, we computed the standard deviation of
each planner solving the problems of each domain (1 if a
problem is solved, 0 otherwise). Lower values for a planner
imply that it has been able to solve most or almost none of
the instances in the domain. Then we compute the average
of each planner for each domain.

However, our hypothesis is not met. As instance, spider
which is the domain with most different instances, has a
standard deviation of 0.47, while data-network which is the
domain with most similar problems, has a standard deviation
of 0.49. Some of the possible reasons why these results do
not correlate are: (1) the competitor planners are very differ-
ent from each other, and hence some domains and problems
could be more suitable for one or other planner; and (2), the
fact that a domain has similar problems does not necessarily
imply that they can be solved in the same way. This little
differences may come from increasing the number of ob-
jects, and therefore planners will only solve a small subset
of them.

Inter-domain Analysis
Our second analysis aim to test how diverse are the domains
among them. For each planning domain, we compute a do-
main features’ vector VDk

which is a problem features’ vec-
tor representative of the domain Dk. We do that by assigning
to each feature the average of the values of that feature in all
the problem instances of the domain.



Figure 1: Domains with most similar (top) and least simi-
lar (bottom) problems. Each color represent one of the 20
different problem features’ vector of each domain.

∀fi ∈M, fi(VDk
) =

∑
pk∈Dk

fi(pk)

|Dk|

By doing this, we are capturing all the information of a
domain within just one features’ vector. However, we may
lose some information, mostly in those domains with diverse
problem instances.

After that, we compute a matrix that in this case will have
domain features’ vectors both in the rows and columns. Each
cell of this matrix denotes the difference between two do-
main features’ vectors. This value can range from 0 to 107.
If we sum each row (column) in the matrix and divide that
number by k, the number of domains in the competition, we
get how different is on average a domain with respect to the
other domains. Table 4 shows the results of our inter-domain
analysis of the IPC 2018.

As we can see, petri-net-alignment is the domain that
keeps more differences with respect to the rest of domains,
with an average value of 27.2. Moreover along with agri-
cola, they are the most different pair of domains. On the
other hand, caldera is the domain which is more similar to
the others in the competition, with an average value of 12.0.
Caldera and caldera-split is the most similar pair of domains
in the IPC. This make sense, since both domains only differ
in the problems’ grounding. To better illustrate how diverse
are the domains among them, we plotted together some do-
main features’ vectors together in Figure 2.

We performed the same inter-domain analysis for the IPC

Figure 2: Similar domains (top) and different domains (bot-
tom) in the IPC 2018.

2014. In this case, the most different domain is tidybot, with
an average value of 21.4. On the other hand, barman is the
domain which is more similar to the others in the competi-
tion, with an average value of 9.2.

These maximum and minimum values are less distanced
than the values of the IPC 2018. In fact, while the average
of the domains’ differences in the IPC 2018 is 15.6, this av-
erage is 12.0 in the case of the IPC 2014. This means that
the set of domains and problem instances in the IPC 2018 is
more diverse that the one of the IPC 2014.

We also ran a small experiment to see if these results cor-
relate with the planners’ performance. We hypothesized that
planners would perform akin in similar domains and dif-
ferent in domains with different features. To check this, we
computed for every planner the difference in absolute value
of the number of problems solved in each pair of domains.
Then we sum the results of each planner for each combina-
tion of domains and divide it by the number of planners.
Lower values imply that the planners of the competition
solve a similar number of problems in the given domains.

In this case, our hypothesis is met in most cases. As in-
stance, if we take termes and data-network (the most simi-
lar domains except for the two versions of caldera), we get
a value of 0.16, while in the case of agricola and petri-net
(the most different domains), we get a value of 0.29. This
is a common trend across domains, although there are some
cases in which it is not fulfilled. As instance, the value ob-
tained when comparing nurikabe and organic-synthesis is
0.13, which is lower than in the case of termes and data-
network. Again, this can happen for the same reasons de-



organic-synths agricola caldera-split spider termes data-network snake nurikabe caldera petri-net settlers
organic-synth 0.0 19.4 14.2 20.4 17.6 15.6 16.9 15.3 13.0 33.3 11.9

agricola 19.4 0.0 16.7 22.9 18.1 13.8 17.2 15.5 14.4 33.5 15.3
caldera-split 14.2 16.7 0.0 16.8 10.3 10.7 13.4 12.9 7.7 26.9 8.3

spider 20.4 22.9 16.8 0.0 20.7 22.1 16.2 19.3 15.7 33.2 18.3
termes 17.6 18.1 10.3 20.7 0.0 8.3 11.1 14.0 11.5 25.0 12.4

data-network 15.6 13.8 10.7 22.1 8.3 0.0 13.9 13.1 10.6 25.8 10.2
snake 16.9 17.2 13.4 16.2 11.1 13.9 0.0 13.1 10.4 31.7 13.7

nurikabe 15.3 15.5 12.9 19.3 14.0 13.1 13.1 0.0 10.7 31.3 10.8
caldera 13.0 14.4 7.7 15.7 11.5 10.6 10.4 10.7 0.0 29.2 8.9

petri-net 33.3 33.5 26.9 33.2 25.0 25.8 31.7 31.3 29.2 0.0 28.9
settlers 11.9 15.3 8.3 18.3 12.4 10.2 13.7 10.8 8.9 28.9 0.0
Average 16.1 17.0 12.5 18.7 13.5 13.1 14.3 14.2 12.0 27.2 12.6

Table 4: Differences among domains from the IPC 2018. Green cells identify diverse domains, while purple cells identify
similar domains. Bold numbers represent the most diverse and similar domains in the competition.

scribed in the intra-domain analysis.

Clustering Domains
Our last analysis aim to group the benchmarks of the IPCs
2014 and 2018 based on their similarity. For this purpose,
we merge the raw data of the extracted feaures of both com-
petitions, and follow the same pre-processing step as before.
We compute a features’ vector for each domain, as we did in
our inter-domain analysis.

Now we perform a hierarchical clustering to the 25 do-
main features’ vectors (11 from the IPC 2018 and 14 from
the IPC 2014). We do that to test (1) if there exist similar do-
mains across different competitions, hence being part of the
same cluster; and (2) which domains are the most different
from the rest, hence conforming they own cluster.

Figure 3 shows the result of our hierarchical clustering in
the shape of a dendrogram. As we can see, domains like bar-
man, child-snack or hiking are grouped together first. This
means that they are the most similar ones within both com-
petitions. The most diverse domains are shown at the bottom
of the y axis. They correspond to spider, settlers, visitall,
agricola, parking, tidybot, organic-synthesis and petri-net-
alignment, which is the most different domain across com-
petitions.

Discussion
The selection of the benchmark domains and problem in-
stances plays an important role in the IPC. A desirable prop-
erty of these benchmarks is that they should be as diverse
as possible, in order to enrich the competition and not bias
the results in favor of any planner. In this paper we have pre-
sented a study of the diversity of the benchmarks of the IPCs
2018 and 2014. We carried out three different analyses: an
intra-domain analysis, to test how diverse are the problem
instances within the same planning domain; an inter-domain
analysis, to test how diverse are the domains and problems
among them; and a clustering procedure to group the do-
mains of both IPCs based on their similarity.

Our analyses suggest that the IPC 2018 employed more
diverse domains and problem instances than the IPC 2014.
From the results, we can also conclude that in both compe-
titions there are domains which are not similar to any other,

not only within the same competition but also if we take
other IPCs into account. We think these different domains
such as spider, agricola or parking really enrich the IPC.

However, our results should be read carefully, and more
like a photograph of the benchmarks, than a test that deter-
mines how good or bad a problem/domain/competition is.

The first reason for that is that throughout our analyses,
we measure the similarity or diversity of problems and do-
mains with respect to their set of features. These features,
even though proved useful by other works, may not conform
the best set of features for differentiating problems; also,
some of these features may be too correlated and introduce
noise in the similarity computation. Further work on the set
of features should be done to properly characterize problem
instances. We also want to note that the fact that a domain
has similar problem instances, or a competition similar do-
mains, does not mean anything bad. It may be the case that
all these similar domains are challenging for the planners.
Moreover, the low intra-domain differences in domains like
barman may be related to having problems with increasing
number of objects or goals. These type of domains are useful
to test planners’ scalability and should be present at future
competitions.

The second reason is that a competition comprises both
benchmarks and planners. Although other works has fo-
cused on that relationship (Cenamor, de la Rosa, and
Fernández 2016; de la Rosa, Cenamor, and Fernández
2017), here we only focused on the benchmarks, leaving
the planners’ performance over these benchmarks out of the
scope of this paper. This work should be extended to take
diverse planners into account, characterizing them and ana-
lyzing how they solve each kind of domain and/or problem
instances. By doing this, it would be possible to know which
set of features make the problem instances hard to solve by
each kind of planner. This information would be very useful
when selecting the domains and problems of a competition.

We believe that by improving this work in the outlined
directions, we may have some of the key ingredients to select
(or even generate) diverse benchmarks for future IPCs.



Figure 3: Hierarchical clustering of domains. The domains are represented in the y axis, while the x axis represents a measure
of error. Domains grouped first are the most similar. Domains grouped last, depicted at the bottom of the y axis, are the most
different.
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