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ABSTRACT

Encoding images as a series of high-level constructs, such as brush strokes or dis-
crete shapes, can often be key to both human and machine understanding. In many
cases, however, data is only available in pixel form. We present a method for gen-
erating images directly in a high-level domain (e.g. brush strokes), without the
need for real pairwise data. Specifically, we train a ”canvas” network to imitate
the mapping of high-level constructs to pixels, followed by a high-level ”draw-
ing” network which is optimized through this mapping towards solving a desired
image recreation or translation task. We successfully discover sequential vector
representations of symbols, large sketches, and 3D objects, utilizing only pixel
data. We display applications of our method in image segmentation, and present
several ablation studies comparing various configurations.

1 INTRODUCTION

When an architect reviews a design file, his eyes witness raw image data. But in his head, he is
quickly converting these color values into the lines and shapes they represent. Recent works in
image classification (Krizhevsky et al., 2012b; Simonyan & Zisserman, 2014; Szegedy et al., 2016)
have shown that with deep neural networks, computer agents can learn similar recognition behaviors.
The difference appears, however, in how humans and computers produce images. Neural networks
generally output color matrices that fully detail each pixel, leading to artifacts and blurriness which
many recent works have attempted to combat (Goodfellow et al., 2014; Karras et al., 2017). Humans,
on the other hand, draw and design on higher-level domains such as brush strokes or primitive
shapes. In this work, our aim is to develop computer agents that can operate on a similar level,
generating sequences of high-level constructs rather than raw pixels.

While a large amount of past work has been done on reproducing sequences given an observation
(Vinyals et al., 2015; Xu et al., 2015), these methods rely on a pairwise dataset of real images and
their corresponding sequences, which can be expensive to produce. We focus on the case where
such a dataset is not available, and real images are represented only as pixels. Instead, we define
a correct sequence as one that recreates a desired image when passed through a given rendering
program, such a digital painting software or 3D engine. We present an end-to-end system for training
high-level, sequence-based drawing networks without paired data, by optimizing through a learned
approximation of such rendering programs.

Our contributions are as follows:

• We establish a simple domain-agnostic method for imitating the behavior of a non-
differentiable renderer as a differentiable canvas network.

• We propose a framework for training sequence-based drawing networks for translation be-
tween a low-level and high-level domain (e.g. pixels and brush strokes), without the need
for a paired dataset. The main novelty is in utilizing the canvas network to calculate a
tractable loss function between generated sequences and real pixel images.

• We develop a method of efficiently extending the canvas-drawer framework to cases where
the desired output is a much higher resolution (e.g. 512x512 sketches) and consists of
hundreds of sequences, through the introduction of sliding and hierarchical architectures.
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We validate our method on a wide range of tasks, including translation of Omniglot symbols
and large sketches into sequences of bezier curves, segmentation of architectural floorplans into
parametrized bounding boxes, and recreating 3D scenes from a series of 2D viewpoints. We qualita-
tively show that trained drawer networks easily extend to out-of-distribution examples unseen during
training, and we conduct a series of ablation studies on variations such as number of drawing steps,
overlap in sliding drawer networks, and the inclusion of a two-layer hierarchy.

2 RELATED WORK

Previous works have attempted to learn a mapping between images and their corresponding stroke
sequences. (Simhon & Dudek, 2004) learns to refine coarse human sketches by training Hidden
Markov Models. (Graves, 2013) presents a general scheme for producing sequences with recurrent
neural networks, and (Ha & Eck, 2017) builds on this specifically in the case of producing sketches
from a latent space. These methods all depend on a dataset of sketches represented in vector form,
whereas our work deals with the case where such a dataset is not available.

Other works have approached the sketch generation problem from a reinforcement learning perspec-
tive. (Xie et al., 2013) models a drawing agent to manipulate a digital brush and recreate oriential
paintings. (Ganin et al., 2018) considers an end-to-end reinforcement learning agent, and proposes
the use of a discriminator as a more accurate reward function. In general, reinforcement learn-
ing methods can be unstable and often depend on large amounts of training samples. Our work
details a supervised approach where we directly calculate a gradient estimate by modeling a non-
differentiable drawing program as a differentiable canvas network.

3 FORMULATION

3.1 PROBLEM STATEMENT

In our problem, we have a set of pixel imagesX , and we wish to produce the corresponding sequence
of high-level constructs Y . We will refer to this sequence Y as a sequence of actions. While we
do not have a dataset of X and Y pairs, we can infer that the correct Y for a given X is one that
recreates X when passed through a renderer R(Y ). We assume we have access to such a program
R(Y ), but it is non-differentiable. Instead, we train a canvas network C(Y ) such that C(y) ≈ R(y)
for y ∼ Y . We can than train a drawer network D(X) to minimize the pixel distance between
C(D(X)) and X .

Note that the above description is for image recreation. In translation tasks, our data instead consists
of X,X ′ pairs where X is a given hint image and X ′ is a target image we would like to produce as
a sequence of actions. Our objective is then to minimize the pixel distance between C(D(X) and
X ′.

Figure 1: Overall canvas-drawer architecture.
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Figure 2: Canvas network architecture and training setup.

3.2 CANVAS

In the proposed framework, we view the renderer as a non-differentiable program that maps from a
state xn and action yn to the next state xn+1. We assume there is some starting state x0, and that
states are Markovian and contain all past information. We also assume we know the distribution of
possible actions. As gradients cannot be passed through the rendering program, we train a differen-
tiable canvas network to act as an approximator by imitating the rendering program for any possible
state-action pair. We achieve this by sampling rollouts of (xn, yn, xn+1) from the renderer, selecting
actions yn randomly and periodically resetting xn to the initial state x0. We then train our canvas
network to recreate xn+1, given xn and yn.

3.3 DRAWER

Figure 3: Drawer network expanded for n=3 timesteps.

We define the drawer as a conditional recurrent network that runs forN timesteps. At every timestep
n, the drawer D(X,xn) witnesses original image X and the state xn, and selects an action yn+1.
This state-action pair is given to the renderer R(x, y), which then outputs the next state xn+1 which
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is given back to the drawer. The true objective of the drawer is to minimize the pixelwise distance
between the final state of the renderer Rfinal(xN−1, yN ) and the target image X ′. However, as
R(x, y) is not differentiable, we instead approximate it with canvas network C(x, y). As each
action yn+1 and state xn+1 depends only on the hint image and previous state, the entire graph
Cfinal(xN−1, yN ) can be viewed as a function of X and x0.

When training the drawer, we sample X,X ′ pairs from a dataset of pixel images and optimize
towards minimizing pixel distance between Cfinal(xN−1, yN ) and X ′. x0 is fixed and is generally
a blank image. It is important that we train only the parameters of the drawer network, as the canvas
network must be frozen to retain its imitation of the rendering program.

In practice, we augment the image inputs with a coordinate layer (Liu et al., 2018), and utilize an
LSTM layer (Hochreiter & Schmidhuber, 1997) to capture time-dependencies in the drawer. To
assist gradient flow and increase imitation accuracy, we found it useful to define xn+1 as a pixelwise
maximum between C(xn, yn+1) and xn.

3.4 SLIDING

Figure 4: A sliding drawer net-
work slides its receptive field
across small sections of a larger
image, producing action se-
quences for each section inde-
pendently.

For many real-world cases, image data is large and contains
many complex structures. Naive recurrent networks become in-
tractable to train past a few dozen timesteps, and higher resolu-
tion images require networks with an increasingly larger amount
of parameters.

To mitigate this issue, we extend our method with the idea of
a sliding drawer network. Specifically in the case of images,
convolutional kernels (Krizhevsky et al., 2012a) have proven to
be useful as features in pixel space are generally translation in-
variant. We take this notion one step further, and assume that
drawing behaviors are also translation invariant.

We follow this logic and structure a drawing network that slides
across the X and Y axes of an image. For every small section of
the larger image, our drawer network predicts a short sequence
of actions to perform. To prevent artifacts along the borders of
sections, we found it useful to slide our drawing network such
that overlap occured within neighboring sections. More details
on the sliding architecture, as well as the hierarchical variant, are
provided in the experiments section below.

4 EXPERIMENTS

Figure 5: Structure of a single
bezier curve.

In the following section, we validate our claims through a range
of qualitative results and quantitative ablation studies. It is im-
portant to note while pixelwise distance is a helpful directional
benchmark, our true goal is to produce accurate high-level ac-
tions (e.g. brush strokes, rectangles), which are evaluated quali-
tatively.

4.1 CAN CANVAS-DRAWER PAIRS BE USED
TO VECTORIZE SYMBOLS IN AN UNSUPERVISED MANNER?

In a motivating example, we attempt to recreate MNIST digits
(LeCun, 1998) and Omniglot symbols (Lake et al., 2015) in a
sequence of four bezier curves, akin to physical brush strokes.
Each high-level action represents a single curve, defined by two
endpoints and a control point. Our state consists of a 64x64
black-and-white image matrix. Since our task is to recreate the symbol provided, both the hint
image and the target image are the same.
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(a) MNIST Recreation with
four-timestep drawer.

(b) Sequence behavior with four-
step LSTM drawer.

(c) Sequence behavior with four-
step non-LSTM drawer.

(d) MNIST Recreation with
twenty-timestep drawer.

(e) Sequence behavior with
twenty-step LSTM drawer.

(f) Left to right: Canvas-drawer,
DRAW, SPIRAL, GAN1

(g) Omniglot Recreation with ten-step drawer. (h) Sequence behavior with ten-step drawer.

Figure 6: MNIST and Omniglot symbol recreation with bezier curve draw-
ing networks. Black-background images refer to pixel outputs, while white-
background images showcase parametrized bezier curves rendered in red.

Table 1: MNIST drawer comparison

Network Structure Average Pixelwise Loss (L2)

Canvas-Drawer, Four timesteps, LSTM layer 0.0175
Canvas-Drawer, Four timesteps, no LSTM layer 0.0198
Canvas-Drawer, Twenty timesteps, LSTM layer 0.0080
RL Agent (PPO), Four timesteps 0.0873

A drawer networks lasting four timesteps can accurately produce sequential bezier curves repre-
senting distinct segments of the MNIST digits. While non-LSTM drawers achieve roughly equal
pixelwise loss, LSTM drawers are more consistent in segmenting digits into concrete curves. In a
drawer lasting twenty timesteps, there is a noticeable increase in pixelwise performance, however
the curves produced are bended, akin to sketching with tiny strokes rather than smooth motions. We

1Gregor et al. (2015); Ganin et al. (2018); He (2016)
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Figure 7: Training curves of various Canvas-Drawer settings. Canvas-Drawer regularly outperforms
a typical RL agent in sample efficiency and accuracy, even when accounting for the training time of
the canvas network.

Table 2: Sketch Recreation drawer comparison

Network Structure Average Pixelwise Loss (L2)

Ten timestep sliding drawer, LSTM layer 0.0530
Four timestep sliding drawer, LSTM layer 0.0569
Ten timestep sliding drawer, no LSTM layer 0.0810
Ten timestep sliding drawer, LSTM layer, no overlapping sections 0.0737
Ten timestep sliding drawer, LSTM layer, fixed curve thickness 0.137

predict this is due to a mismatch in curve thickness, and in later experiments we consider bezier
curves with variable thickness to address this issue.

When trained on recreating Omniglot symbols, the drawer network learns a robust mapping that is
capable of also recreating symbols that were out of distribution, such as MNIST digits or hand-drawn
examples (Figure 6g, right column).

4.2 WHAT TECHNIQUES ARE REQUIRED TO SCALE THE CANVAS-DRAWER FRAMEWORK TO
LARGE, COMPLEX IMAGES?

Our motivating problem in this section is to recreate a set of 512x512 black-and-white sketches
as a sequence of bezier curves. The dataset of sketches was obtained by searching the image host
Safebooru for tags ”1girl”, ”solo”, and ”white background”. These images were then passed through
a trained SketchKeras (Illyasveil, 2017) network to produce black-and-white line sketches. This
recreation problem is challenging as an order of hundreds of curves are required to accurately pro-
duce the high-detail sketches.

We made use of a sliding drawer network with a receptive field of 64x64. This drawer is slid across
the 512x512 image 32 pixels at a time, resulting in 15∗15 overall passes. In each section, our drawer
network predicts 10 bezier curves, which are defined as two endpoints, a control point, and a line
thickness parameter. To stabilize training, our drawer network skips any small section containing
less than 2% white pixels.

The ten-timestep drawer slightly outperforms the four-timestep drawer, in terms of pixelwise loss.
However, the curves produced by the four-timestep drawer appear more continuous and follow a
smoother outline (Figure 8).

A drawer network without an LSTM layer is still able to reproduce general outlines of the sketch,
but misses out on the finer details. Running the drawer with a flood-fill sliding order rather than
an increasing X,Y order resulted in nearly identical outputs, which leads us to believe the sliding
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(a) Left: Ground truth original sketches. Middle: Recreation using ten timestep drawer. Left:
Recreation using four timestep drawer.

(b) From left to right: Ground truth original sketches. Recreation with non-LSTM drawer. Recre-
ation with flood-fill sliding behavior. Recreation without overlap in sections.

Figure 8: High-resolution sketch recreation using sliding drawer. Black backgrounds represent
pixel output, and white backgrounds showcase produced bezier curves in red. Examples from
AO (2018); Kushidama Minaka (2017)

(a) Hierarchical drawer results.
Left: 128x128 drawing pass. Mid-
dle: 64x64 drawing pass. Right:
Final images.

(b) Magnified comparison between non-
hierarchical drawer (top) and small hier-
archical module (bottom).

Figure 9: Hierarchical drawers learn smoother, more connected drawing
behaviors than non-hierarchical variants.
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drawer network is generally order-agnostic. Additionally, sliding drawing networks that do not
overlap neighboring sections produce curves that fail to intersect properly, leaving artifacts in a grid
pattern throughout the produced images.

We also consider hierarchical sliding drawers, in which a large drawing module first performs a pass
in 128x128 sections, followed by a small module operating in 64x64 sections. Qualitatively, the
curves produced by the larger hierarchical module are messy and inconsistent (Figure 9. However,
the small hierarchical module displays an extremely smooth drawing behavior. We believe the larger
module may act as a form of regularizer, as it fills in dense areas and allows the smaller module to
focus on details.

Figure 10: Out-of-distribution test cases on a drawer network trained on the sketches dataset.
Bottom-right: The drawer performs different styles of ”hatching” to achieve various degrees of
shading, similar to traditional pencil sketching techniques.

4.3 CAN HIGH-LEVEL DRAWER NETWORKS PERFORM IMAGE TRANSLATION IN COLOR
SPACE, AND HOW CAN THIS BE USED AS A FORM OF SEGMENTATION?

(a) Left: Ground truth. Middle: Pixel hint of a
grayscale MNIST digit. Right: Drawer network
output. of colored bezier curves.

(b) Left: Pixel hint. Middle: Drawer net-
work output of rectangles. Right: Ground
truth.

Figure 11: Canvas-drawer pairs are able to translate between grayscale
MNIST pixels and colored bezier curves, and between architectural floor-
plans and bounding-box room segmentations.

In this section, we examine translation problems where the hint image and target image are different.
In Colored MNIST, we train a canvas network on bezier curves with a LAB color component. While
the hint image is a grayscale rendering of an MNIST digit, the target image is a colored version with
a distinct color for each digit type. To solve this task, a drawer network must not only understand the
shape of digits to reproduce them, but also to classify the digits in order to produce the right colored
curves.
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For the floorplan task, we create a dataset of architectural floorplans (Madori Databank, 2018) and
their corresponding room-type segmentations, both in pixel form. The high-level actions are to
place rectangles parametrized by two corner points and an LAB color value. By performing this
translation in a high-level rectangle space rather than pixel space, we can easily interpret the pro-
duced rectangles to form discrete, bounding-box segmentations of various room types. This format
is commonly used in design programs and is easily interpretable in comparison to a pixel rendering.

4.4 HOW CAN CANVAS-DRAWER PAIRS BE APPLIED TO 3D DOMAINS?

Figure 12: Drawer networks can recreate rectangular prisms in 3D space from a set of 2D observa-
tions, without paired data.

Finally, we consider an experiment where high-level actions correspond to corners of a rectangular
prism in 3D space. We project these prisms into a set of three orthogonal viewpoints in 2D. Without
any paired training data, our drawer is able to accurately reproduce the coordinates and colors of
rectangular prisms. This result shows that canvas-drawer pairs can accurately learn behaviors in
higher-dimensional space, and future extensions in modeling 3D domains could eliminate the need
for expensive paired datasets.

5 DISCUSSION

In this work, we presented a general framework for learning low-level to high-level translations
without a paired dataset. We approximate the behavior of a rendering program as a differentiable
canvas network, and use this network to train a high-level drawer network on recreating symbols
and high-resolution sketches, along with translating in colored and 3D domains.

A comparison can be drawn between our method and works in the model-based reinforcement learn-
ing and control domain. If the rendering program is viewed as an environment, then the canvas net-
work is similar to a model-based approximation of environment dynamics, and the drawer network
is an agent attempting to minimize some image-based cost function.

In addition, our method is similar to an encoder-decoder framework, in the sense that we encode our
pixel images into a high-level sequence of actions. However, while most methods learn encoder and
decoder networks simultaneously, in our work the decoder is held fixed as we want our encoding
space (e.g. action sequence) to be interpretable by humans and arbitrary computer programs.

Finally, a connection can be made with the generative-adversarial network (Goodfellow et al., 2014).
An adversarial loss can be seen as a soft constraint for generated images to be close to some desired
distribution. This desired distribution often contains useful properties such as resembling natural
photographs. In our case, we impose a hard constraint for images to be inside the distribution of
a rendering program. Optimizing for recreation through an interpretable constraint is a promising
avenue for many unsupervised methods (Zhu et al., 2017; Polyak et al., 2018; Chen et al., 2016).
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6 LIMITATIONS AND FUTURE WORK

While our method can achieve substantial results on many tasks, we are still far from a universal
drawer. The sequential drawer can only handle fixed length sequences. Hierarchical drawers are
unable to take full advantage of the larger drawing module, and sketches are still generally drawn in
shorter strokes. In addition, certain rendering functions such as hollow rectangles result in unstable
behavior of the drawer networks. Due to the differentiable nature of our method, non-continuous
action spaces and off-policy exploration strategies would require algorithmic modifications to sup-
port.

We believe our work is a stepping stone in achieving unsupervised translation through learned mod-
els, and future work could include architectures such as dynamic sequence length or a parameterized
receptive field (Gregor et al., 2015). In addition, adjustments like discriminator-based loss or an iter-
atively updating canvas network would likely improve image quality. If well-behaved parameteriza-
tions for complex domains such as 3D modeling, music, or program synthesis are employed, similar
canvas-drawer frameworks to could be used to generate interpretable creations while eliminating the
roadblock of expensive pairwise data.
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7 APPENDIX

7.1 DETAILED EXPERIMENTAL SETUP

The canvas network is defined as a set of residual layers as shown in 2. Every convolutional and
feed-forward layer is followed by a rectified linear activation, with a leak factor of 0.2. During
training, we sample pairs of images consisting of a state, an action, and the corresponding next state
from a painting program. We train our canvas network with Adam and a step size of 0.001. No batch
normalization layers are utilized. As our example images are constrained between pixel values of
[0, 1], we do not use any form of regularization. In the experiments shown, we train our canvas
network for a total of 30,000 updates, each with a batch size of 64.

The drawer network similarly contains rectified linear activations and no batch norm layers or regu-
larization, and is trained with Adam and a step size of 0.001. In addition, we make use of a penalty
of max(0, (y− 0.5)2 − 0.25) ∗ 30 on the generated action vector, to discourage the drawer network
from producing actions outside the [0, 1] domain. We initialize the final layer of the drawer with a
bias of 0.5, so that actions begin in the center of the canvas.

In the color-based tasks, taking the pixel-wise maximum between the current and next state does not
work, as newer strokes should take precedence over older ones. Instead, we parametrize our canvas
network to produce a tensor of [width, height,LAB+α]. The final dimension contains three color
channels, as well as an alpha channel to indicate transparency. When training the drawer, rather than
taking a pixel-wise maximum, we instead take a pixel-wise weighted average of xn ∗ (1 − α) +
xn+1 ∗ α.

In all reported experiments, results are shown on a test set that is separate from the training data.
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