
LEARNING TO SCREEN FOR FAST SOFTMAX INFER-
ENCE ON LARGE VOCABULARY NEURAL NETWORKS

Pei-Hung (Patrick) Chen1∗, Si Si2, Sanjiv Kumar2, Yang Li2, Cho-Jui Hsieh12

1Department of Computer Science, University of California, Los Angeles
2Google Research
patrickchen@g.ucla.edu, {sisidaisy,sanjivk,liyang}@google.com,
chohsieh@cs.ucla.edu

ABSTRACT

Neural language models have been widely used in various NLP tasks, including
machine translation, next word prediction and conversational agents. However, it
is challenging to deploy these models on mobile devices due to their slow pre-
diction speed, where the bottleneck is to compute top candidates in the softmax
layer. In this paper, we introduce a novel softmax layer approximation algorithm
by exploiting the clustering structure of context vectors. Our algorithm uses a
light-weight screening model to predict a much smaller set of candidate words
based on the given context, and then conducts an exact softmax only within that
subset. Training such a procedure end-to-end is challenging as traditional cluster-
ing methods are discrete and non-differentiable, and thus unable to be used with
back-propagation in the training process. Using the Gumbel softmax, we are able
to train the screening model end-to-end on the training set to exploit data distri-
bution. The algorithm achieves an order of magnitude faster inference than the
original softmax layer for predicting top-k words in various tasks such as beam
search in machine translation or next words prediction. For example, for ma-
chine translation task on German to English dataset with around 25K vocabulary,
we can achieve 20.4 times speed up with 98.9% precision@1 and 99.3% preci-
sion@5 with the original softmax layer prediction, while state-of-the-art (Zhang
et al., 2018) only achieves 6.7x speedup with 98.7% precision@1 and 98.1% pre-
cision@5 for the same task.

1 INTRODUCTION

Neural networks have been widely used in many natural language processing (NLP) tasks, includ-
ing neural machine translation (Sutskever et al., 2014), text summarization (Rush et al., 2015) and
dialogue systems (Li et al., 2016). In these applications, a neural network (e.g. LSTM) summarizes
current state by a context vector, and a softmax layer is used to predict the next output word based
on this context vector. The softmax layer first computes the “logit” of each word in the vocabulary,
defined by the inner product of context vector and weight vector, and then a softmax function is
used to transform logits into probabilities. For most applications, only top-k candidates are needed,
for example in neural machine translation where k corresponds to the search beam size. In this
procedure, the computational complexity of softmax layer is linear in the vocabulary size, which
can easily go beyond 10K. Therefore, the softmax layer has become the computational bottleneck
in many NLP applications at inference time.

Our goal is to speed up the prediction time of softmax layer. In fact, computing top-k predictions in
softmax layer is equivalent to the classical Maximum Inner Product Search (MIPS) problem—given
a query, finding k vectors in a database that have the largest inner product values with the query. In
neural language model prediction, context vectors are equivalent to queries, and weight vectors are
equivalent to the database. MIPS is an important operation in the prediction phase of many machine
learning models, and many algorithms have been developed (Bachrach et al., 2014; Shrivastava &
Li, 2014; Neyshabur & Srebro, 2015; Yu et al., 2017; Guo et al., 2016). Surprisingly, when we apply

∗This work is conducted during Pei-Hung Chen’s internship in Google Research.

1

The dog is ?

LSTM LSTM LSTM

Learning to Screen
(L2S)

{cute, quiet, big}

x

argmax

Screening
Model

Softmax
on the subset

Predict subset of
words

Figure 1: Illustration of the proposed algorithm.

recent MIPS algorithms to LSTM language model prediction, there’s not much speedup if we need
to achieve > 98% precision (see experimental section for more details). This motivates our work to
develop a new algorithm for fast neural language model prediction.

In natural language, some combinations of words appear very frequently, and when some specific
combination appears, it is almost-sure that the prediction should only be within a small subset of
vocabulary. This observation leads to the following question: Can we learn a faster “screening”
model that identifies a smaller subset of potential predictions based on a query vector? In order
to achieve this goal, we need to design a learning algorithm to exploit the distribution of context
vectors (queries). This is quite unique compared with previous MIPS algorithms, where most of
them only exploit the structure of database (e.g., KD-tree, PCA-tree, or small world graph) instead
of utilizing the query distribution.

We propose a novel algorithm (L2S: learning to screen) to exploit the distribution of both context
embeddings (queries) and word embeddings (database) to speed up the inference time in softmax
layer. To narrow down the search space, we first develop a light-weight screening model to predict
the subset of words that are more likely to belong to top-k candidates, and then conduct an exact
softmax only within the subset. The algorithm can be illustrated in Figure 1. Our contribution is
four folds:

• We propose a screening model to exploit the clustering structure of context features. All the
previous neural language models only consider partitioning the embedding matrix to exploit the
clustering structure of the word embedding to achieve prediction speedup.

• To make prediction for a context embedding, after obtaining cluster assignment from screening
model, L2S only needs to evaluate a small set of vocabulary in that cluster. Therefore, L2S can
significantly reduce the inference time complexity from O(Ld) to O((r + L̄)d) with L̄� L and
r � L where d is the context vector’ dimension; L is the vocabulary size, r is the number of
clusters, and L̄ is the average word/candidate size inside clusters.

• We propose to form a joint optimization problem to learn both screening model for clustering as
well as the candidate label set inside each cluster simultaneously. Using the Gumbel trick (Jang
et al., 2017), we are able to train the screening network end-to-end on the training data.

• We show in our experiment that L2S can quickly identify the top-k prediction words in the vocab-
ulary an order of magnitude faster than original softmax layer inference for machine translation
and next words prediction tasks.

2 RELATED WORK

We summarize previous works on speeding up the softmax layer computation.

Algorithms for speeding up softmax in the training phase. Many approaches have been proposed
for speeding up softmax training. Jean et al. (2014); Mnih & Teh (2012) proposed importance
sampling techniques to select only a small subset as “hard negative samples” to conduct the updates.
The hierarchical softmax-based methods (Morin & Bengio, 2005; Grave et al., 2017) use the tree

2

structure for decomposition of the conditional probabilities, constructed based on external word
semantic hierarchy or by word frequency. Most hierarchical softmax methods cannot be used to
speed up inference time since they only provide a faster way to compute probability for a target
word, but not for choosing top-k predictions as they still need to compute the logits for all the words
for inference. One exception is the recent work by Grave et al. (2017), which constructs the tree
structure by putting frequent words in the first layer—so in the prediction phase, if top-k words are
found in the first layer, they do not need to go down the tree. We provide comparison with this
approach in our experiments.

Algorithms for Maximum Inner Product Search (MIPS). Given a query vector and a database
with n candidate vectors, MIPS aims to identify a subset of vectors in the database that have top-k
inner product values with the query. Top-k softmax can be naturally approximated by conducting
MIPS. Here we summarize existing MIPS algorithms:

• Hashing: (Shrivastava & Li, 2014; Neyshabur & Srebro, 2015) proposed to reduce MIPS to near-
est neighbor search (NNS) and then solve NNS by Locality Sensitive Hashing (LSH) (Indyk &
Motwani, 1998).

• Database partitioning: PCA tree (Sproull, 1991) partitions the space according to the directions
of principal components and shows better performance in practice. Bachrach et al. (2014) shows
tree-based approaches can be used for solving MIPS but the performance is poor for high dimen-
sional data.

• Graph-based algorithm: Malkov et al. (2014); Malkov & Yashunin (2016a) recently developed
an NNS algorithm based on small world graph. The main idea is to form a graph with candidate
vectors as nodes and edges are formed between nearby candidate vectors. The query stage can
then done by navigating in this graph. Zhang et al. (2018) applies the MIPS-to-NNS reduction
and shows graph-based approach performs well on neural language model prediction.

• Direct solvers for MIPS: Some algorithms are proposed to directly tackle MIPS problem instead
of transforming to NNS. Guo et al. (2016); Wu et al. (2017) use quantization-based approach to
approximate candidate set. Another Greedy MIPS algorithm is recently proposed in (Yu et al.,
2017), showing significant improvement over LSH and tree-based approaches.

Algorithms for speeding up softmax in inference time. MIPS algorithms can be used to speed
up the prediction phase of softmax layer, since we can view context vectors as query vectors and
weight vectors as database. In the experiments, we also include the comparisons with hashing-based
approach (LSH) (Indyk & Motwani, 1998), partition-based approach (PCA-tree (Sproull, 1991))
and Greedy approach (Yu et al., 2017). The results show that they perform worse than graph-based
approach (Zhang et al., 2018) and are not efficient if we want to keep a high precision.

For NLP tasks, there are two previous attempts to speed up softmax layer prediction time. (Shim
et al., 2017) proposed to approximate the weight matrix in the softmax layer with singular value
decomposition, find a smaller candidate set based on the approximate logits, and then do a fine-
grained search within the subset. (Zhang et al., 2018) transformed MIPS to NNS and applied graph-
based NNS algorithm to speed up softmax. In the experiments, we show our algorithm is faster and
more accurate than all these previous algorithms. Although they also have a screening component
to select an important subset, our algorithm is able to learn the screening component using training
data in an end-to-end manner to achieve better performance.

3 ALGORITHM

Softmax layer is the main bottleneck when making prediction in neural language models. We assume
L is the number of output tokens, W ∈ Rd×L is the weight matrix of the softmax layer, and b ∈ RL

is the bias vector. For a given context vector h ∈ Rd (such as output of LSTM), softmax layer first
computes the logits

xs = wT
s h + bs for s = 1, · · · , L (1)

where ws is the s-th column of W and bs is the s-th entry of b, and then transform logits into
probabilities ps = exs∑L

l=1 exl
for s = 1, · · · , L. Finally it outputs the top-k candidate set by sorting

the probabilities [p1, · · · , pL], and uses this information to perform beam search in translation or
predict next word in language model.

3

To speedup the computation of top-k candidates, all the previous algorithms try to exploit the struc-
ture of {ws}Ls=1 vectors, such as low-rank, tree partitioning or small world graphs (Zhang et al.,
2018; Shim et al., 2017; Grave et al., 2017). However, in NLP applications, there exists strong
structure of context vectors {h} that has not been exploited in previous work. In natural language,
some combinations of words appear very frequently, and when some specific combinations appear,
the next word should only be within a small subset of vocabulary. Intuitively, if two context vectors
hi and hj are similar, meaning similar context, then their candidate label sets C(hi) and C(hj)
can be shared. In other words, suppose we already know the candidate set of C(hi) for hi, to find
the candidate set for hj , instead of computing the logits for all L tokens in the vocabulary, we can
narrow down the candidate sets to be C(hi), and only compute the logits in C(hi) to find top-k
prediction for hj .

The Prediction Process. Suppose the context vectors are partitioned into r disjoint clusters and
similar ones are grouped in the same partition/cluster, if a vector h falls into one of the cluster,
we will narrow down to that cluster’s label sets and only compute the logits of that label set. This
screening model is parameterized by clustering weights v1, . . . ,vr ∈ Rd and label candidate set
for each cluster c1, . . . , cr ∈ {0, 1}L. To predict a hidden state h, our algorithm first computes the
cluster indicator

z(h) = arg max
t

vT
t h, (2)

and then narrows down the search space to C(h) := {s | cz(h),s = 1}. The exact softmax is then
computed within the subset C(h) to find the top-k predictions (used in language model) or compute
probabilities used for beam search in neural machine translation. As we can see the prediction time
includes two steps. The first step has r inner product operations to find the cluster which takesO(rd)
time. The second step computes softmax over a subset, which takes O(L̄d) time where L̄ (L̄� L)
is the average number of labels in the subsets. Overall the prediction time for a context embedding h
is O((r + L̄)d), which is much smaller than the O(Ld) complexity using the vanilla softmax layer.
Figure 1 illustrates the overall prediction process.

However, how to learn the clustering parameter {vt}rt=1 and the candidate sets {ct}rt=1? We found
that running spherical kmeans on all the context vectors in the training set can lead to reasonable
results (as shown in the appendix), but can we learn even parameters to minimize the prediction
error? In the following, we propose an end-to-end procedure to learn both context clusters and
candidate subsets simultaneously to maximize the performance.

Learning the clustering. Traditional clustering algorithms such as kmeans on Euclidean space or
cosine similarity have two drawbacks. First, they are discrete and non-differentiable, and thus hard to
use with back-propagation in the end-to-end training process. Second, they only consider clustering
on {hi}Ni=1, without taking the predicted label space into account. In this paper, we consider learning
the partition through Gumbel-softmax trick. We will briefly summarize the technique and direct the
reader to (Jang et al., 2017) for further details on these techniques. In Table 5 in the appendix, we
compare our proposed method to traditional spherical-kmeans to show that it can further improve
the performance.

First, we turn the deterministic clustering in Eq(2) into a stochastic process: the probability that h
belongs to cluster t is modeled as

P (t|h) =
exp(vT

t h)∑r
j=1 exp(vT

j h)
, ∀t, and z(h) = arg max

t
P (t|h). (3)

However, since argmax is a discrete operation, we cannot combine this operation with final objective
function to find out better clustering weight vectors. To overcome this, we can re-parameterize Eq(3)
using Gumbel trick. Gumbel trick provides an efficient way to draw samples z from the categorical
distribution calculated in Eq(3):

m(h) = one hot(arg max
j

[gj + logP (j|h)]), (4)

where each gj is an i.i.d sample drawn from Gumbel(0, 1). We then use the Gumbel softmax
with temperature = 1 as a continuous, differentiable approximation to argmax, and generate r-
dimensional sample vectors p = [p1, · · · , pr] which is approximately one-hot m(h) with

pt =
exp(log(P (t|h)) + gt)∑r

j=1 exp(log(P (j|h)) + gj)
,∀t ∈ {1, . . . , r}. (5)

4

Using the Straight-Through (ST) technique proposed in (Jang et al., 2017), we denote p̄ = p +
(one hot(arg maxj pj) − p) as the one-hot representation of p and assume back-propagation only
goes through the first term. This enables end-to-end training with the loss function defined in the
following section. We also use p̄(h) to denote the one-hot entry of p̄ (i.e., the position of the “one”
entry of p̄).

Learning the candidate set for each cluster. For a context vector hi, after getting into the partition
t, we will narrow down the search space of labels to a smaller subset. Let ct be the label vector for
t-th cluster, we define the following loss to penalize the mis-match between correct predictions and
the candidate set:

`(hi,yi) =
∑

s:yis=1

(1− cts)
2 + λ

∑
s:yis=0

(cts)
2, (6)

where yi ∈ {0, 1}L is the ’ground truth’ label vector for hi that is computed from the exact softmax.
We set y to be the label vector from full softmax because our goal is to approximate full softmax
prediction results while having faster inference (same setting with (Shim et al., 2017; Zhang et al.,
2018)). The loss is designed based on the following intuition: when we narrow down the candidate
set, there are two types of loss: 1) When a candidate s (yis = 1) is a correct prediction but not in
the candidate set (cts = 0), then our algorithm will miss this label. 2) When a candidate j (yis = 0)
is not a correct prediction but it’s in the candidate set (cts = 1), then our algorithm will waste the
computation of one vector product. Intuitively, 1) is much worse than 2), so we put a much smaller
weight λ ∈ (0, 1) on the second term.

The choice of true candidate set in y can be set according to the application. Throughout this paper,
we set y to be the correct top-5 prediction (i.e., positions of 5-largest xs in Eq(1). yis = 1 means s
is within the correct top-5 prediction of hi, while yis = 0 means it’s outside the top-5 prediction.

Final objective function: We propose to learn the partition function (parameterized by {vt}rt=1)
and the candidate sets ({ct}rt=1) simultaneously. The joint objective function will be:

minimize
v1,··· ,vr
c1,··· ,cr

N∑
i=1

(
∑

s:yis=1

(1− cp̄(hi),s)
2 + λ

∑
s:yis=0

(cp̄(hi),s)
2) (7)

s.t. ct ∈ {0, 1}L ∀t = 1, . . . , r

L̄ ≤ B ∀i = 1, . . . , N

where N is the number of samples, L̄ is the average label size defined as L̄ =

(
∑N

i=1

∑L
s=1 cp̄(hi),s)/N , p̄(hi) is the index for where p̄t = 1 for t = 1, · · · , r; B is the de-

sired average label/candidate size across different clusters which could be thought as prediction
time budget. Since L̄ is related to the computation time of proposed method, by enforcing L̄ ≤ B
we can make sure label sets won’t grow too large and desired speed-up rate could be achieved. Note
that p̄(hi) is for clustering assignment, and thus a function of clustering parameters v1, · · · ,vr as
shown in Eq(3).

Optimization. To solve the optimization problem in Eq (7), we apply alternating minimization.
First, when fixing the clustering (parameters {vt}) to update the candidate sets (parameters {ct}),
the problem is identical to the classic “Knapsack” problem—each ct,s is an item, with weight pro-
portional to number of samples belonging to this cluster, and value defined by the loss function of
Eq(7), and the goal is to maximize the value within weight capacity B. There is no polynomial
time solution with respect to r, so we apply a greedy approach to solve it. We sort items by the
value-capacity ratio and add them one-by-one until reaching the upper capacity B.

When fixing {ct} and learning {vt}, we convert the cluster size constraint to objective function by
Lagrange-Multiplier:

minimize
v1,··· ,vr

N∑
i=1

(
∑

j:yis=1

(1− cp̄(hi)s)
2 + λ

∑
j:yis=0

(cp̄(hi)s)
2) + γmax(0, L̄−B) (8)

s.t. ct ∈ {0, 1}L ∀t = 1, . . . , r,

and simply use SGD since back-propagation is available after applying Gumbel trick. To deal with
L̄ in the mini-batch setting, we replace it by the moving-average, updated at each iteration when we
go through a batch of samples. The overall learning algorithm is given in Algorithm 1.

5

Algorithm 1: Training Process for Learning to Screen (L2S)

Input: Context vectors {hi}Ni=1 (e.g., from LSTM); trained network’s softmax layer’s weight W
and basis vector b.

Output: Clustering parameters vt and candidate label set ct for each cluster for t = 1, · · · , r.
1 Hyperparameter: Number of clusters r; prediction time budget B; regularization terms λ and γ;

number of iterations T .
2 Compute ground true label vector {yi}Ni=1 with only top-k non-zeros entries. The top-k labels for

each context vector hi are generated by computing and then sorting the values in xi = WThi + b;
3 Initialize cluster weights {vt}rt=1 using spherical kmeans over {hi}Ni=1 ;
4 Initialize the label set for each cluster {ct}rt=1 to be zeros;
5 for j = 1, · · · , T do
6 Fixing {ct}rt=1 and learning the clustering parameters {vt}rt=1 in Eq(8) by SGD with Gumbel

trick;
7 Fixing {vt}rt=1 and learning the labels set ct t = 1, · · · , r by solving the ”Knapsack” problem

using Greedy approach;
8 return ct,vt for all t = 1, · · · , r.

Table 1: The vocabulary sizes and hidden dimension used in each experiment.
Models vocabulary size dimension

PTB-Small 10000 200
PTB-Large 10000 1500

WikiText-103 80000 400
NMT: DE-EN 24725 500
NMT: EN-VE 22749 200

4 EXPERIMENTS

We evaluate our method on two tasks: Language Modeling (LM) and Neural Machine Translation
(NMT). For LM, we use the Penn Treebank Bank (PTB) dataset (Marcus et al., 1993). For NMT,
we use the IWSLT 2014 German-to-English translation task (Cettolo et al., 2014) and IWSLT 2015
English-Vietnamese data (Luong & Manning, 2015). All the models use a 2-layer LSTM neural
network structure. For IWSLT-14 DE-EN task, we use the PyTorch checkpoint provided by Open-
NMT (Klein et al., 2017). For IESLT-15 EN-VE task, we set the dimension of hidden size to be 200,
and the rest follows the default training hyperparameters of OpenNMT. For PTB, we train a 2-layer
LSTM-based language model on PTB from scratch with two setups: PTB-Small and PTB-Large.
The LSTM hidden state sizes are 200 for PTB-Small and 1500 for PTB-Large, so are their embed-
ding sizes. Vocabulary sizes and the hidden dimension used in our experiments are summarized in
Table 1.

We verified that all these models achieved benchmark performance on the corresponding datasets as
reported in the literature. We then apply our method to accelerate the inference of these benchmark
models.

4.1 COMPETING ALGORITHMS

We include the following algorithms in our comparisons:

• L2S (Our proposed algorithm): the proposed learning-to-screen method. Number of clusters and
average label size across clusters will be the main hyperparameters affecting computational time.
We could control the tradeoff of time and accuracy by fixing the number of clusters and varying
the size constraint B. For all the experiments we set parameters λ = 0.0003 and γ = 10. We will
show later that L2S is robust to different numbers of clusters.

• FGD (Zhang et al., 2018): transform the softmax inference problem into nearest neighbor search
(NNS) and solve it by a graph-based NNS algorithm.

6

Table 2: Comparison of softmax prediction results on three datasets. Speedup is based on the
original softmax time. For example, 10x means the method’s prediction time is 10 times faster
than original softmax layer prediction time. Computation of full softmax per step is 4.32 ms for
PTB-Large, 0.32 ms for PTB-Small and 4.83 ms for NMT: DE-EN.

PTB-Small PTB-Large NMT: DE-EN
Speedup P@1 P@5 Speedup P@1 P@5 Speedup P@1 P@5

L2S (Our Method) 10.6x 0.998 0.990 45.3x 0.996 0.982 20.4x 0.989 0.993
FGD 1.3x 0.980 0.989 6.9x 0.975 0.979 6.7x 0.987 0.981

SVD-softmax 0.8x 0.987 0.99 2.3x 0.988 0.981 3.4x 0.98 0.985
Adaptive-softmax 1.9x 0.972 0.981 4.2x 0.974 0.937 3.2x 0.982 0.984

Greedy-MIPS 0.5x 0.998 0.972 1.8x 0.945 0.903 2.6x 0.911 0.887
PCA-MIPS 0.14x 0.322 0.341 0.5x 0.361 0.326 1.3x 0.379 0.320
LSH-MIPS 1.3x 0.165 0.33 2.2x 0.353 0.31 1.6x 0.131 0.137

Figure 2: Precision@1 versus speed-up rate of PTB Large Setup.

• SVD-softmax (Shim et al., 2017): a low-rank approximation approach for fast softmax computa-
tion. We vary the rank of SVD to control the tradeoff between prediction speed and accuracy.

• Adaptive-softmax (Grave et al., 2017): a variant of hierarchical softmax that was mainly devel-
oped for fast training on GPUs. However, this algorithm can also be used to speedup prediction
time (as discussed in Section 2), so we include it in our comparison. The tradeoff is controlled by
varying the number of frequent words in the top level in the algorithm.

• Greedy-MIPS (Yu et al., 2017): the greedy algorithm for solving MIPS problem. The tradeoff is
controlled by varying the budget parameter in the algorithm.

• PCA-MIPS (Bachrach et al., 2014): transform MIPS into Nearest Neighbor Search (NNS) and
then solve NNS by PCA-tree. The tradeoff is controlled by varying the tree depth.

• LSH-MIPS (Neyshabur & Srebro, 2015): transform MIPS into NNS and then solve NNS by
Locality Sensitive Hashing (LSH). The tradeoff is controlled by varying number of hash functions.

We implement L2S, SVD-softmax and Adaptive-softmax in numpy. For FGD, we use the C++
library implemented in (Malkov & Yashunin, 2016b; Boytsov & Naidan, 2013) for the core NNS
operations. The last three algorithms (Greedy-MIPS, PCA-MIPS and LSH-MIPS) have not been
used to speed up softmax prediction in the literature and they do not perform well in these NLP
tasks, but we still include them in the experiments for completeness. We use the C++ code by (Yu
et al., 2017) to run experiments for these three MIPS algorithms.

Since our focus is to speedup the softmax layer which is known to be the bottleneck of NLP tasks
with large vocabulary, we only report the prediction time results for the softmax layer in all the
experiments. To compare under the same amount of hardware resource, all the experiments were
conducted on an Intel Xeon E5-2620 CPU using a single thread.

4.2 PERFORMANCE COMPARISONS

To measure the quality of top-k approximate softmax, we compute Precision@k (P@k) defined by
|Ak ∩ Sk|/k, where Ak is the top-k candidates computed by the approximate algorithm and Sk is

7

Figure 3: Precision@1 versus speed-up rate of PTB Small Setup.

Figure 4: Precision@1 versus speed-up rate of NMT:DE-EN Setup.

the top-k candidates computed by exact softmax. We present the results for k = 1, 5. This measures
the accuracy of next-word-prediction in LM and NMT. To measure the speed of each algorithm, we
report the speedup defined by the ratio of wall clock time of the exact softmax to find top-k words
divided by the wall clock time of the approximate algorithm.

For each algorithm, we show the prediction accuracy vs speedup over the exact softmax in Figure 2,
3, 4, 5, 6, 7 (The last three are in the appendix). We do not show the results for PCA-MIPS and LSH-
MIPS in the figures as their curves run outside the range of the figures. Some represented results
are reported in Table 2. These results indicate that the proposed algorithm significantly outperforms
all the previous algorithms for predicting top-k words/tokens on both language model (next word
prediction) and neural machine translation.

Next, we measure the BLEU score of the NMT tasks when incorporating the proposed algorithm
with beam search. We consider the common settings with beam size = 1 or 5, and report the wall
clock time of each algorithm excluding the LSTM part. We only calculate log-softmax values on
reduced search space and leave probability of other vocabularies not in the reduced search space to
be 0. From the precision comparison, since FGD shows better performance than other completing
methods in Table 2, we only compare our method with state-of-the-art algorithm FGD in Table 3 in
terms of BLEU score. Our method can achieve more than 13 times speed up with only 0.14 loss in
BLEU score in DE-EN task with beam size 5. Similarly, our method can achieve 20 times speed
up in EN-VE task with only 0.08 loss in BLEU score. In comparison, FGD can only achieve less
than 3-6 times speed up over exact softmax to achieve a similar BLEU score. We also compare our
algorithm with other methods using perplexity as a metric in PTB-Small and PTB-Large as shown
in Table 6 in the appendix. We observe more than 5 times speedup over using full softmax without
losing much perplexity (less than 5% difference). More details can be found in the appendix.

In addition, we also show some qualitative results of our proposed method on DE-EN translation
task in Table 8 to demonstrate that our algorithm can provide similar translation results but with
faster inference time.

8

Table 3: Comparison of BLEU score results vs prediction time on DE-EN and EN-VE task. Speedup
is based on the original softmax time.

Model Metric Original FGD Our method
NMT: DE-EN Speedup Rate 1x 2.7x 14.0x

Beam=1 BLEU 29.50 29.43 29.46
NMT: DE-EN Speedup Rate 1x 2.9x 13.4x

Beam=5 BLEU 30.33 30.13 30.19
NMT: EN-VE Speedup Rate 1x 6.4x 12.4x

Beam=1 BLEU 24.58 24.28 24.38
NMT: EN-VE Speedup Rate 1x 4.6x 20x

Beam=5 BLEU 25.35 25.26 25.27

Table 4: L2S with different number of clusters.
Number of Clusters 50 100 200 250

Time in ms 0.12 0.17 0.14 0.12
P@1 0.997 0.998 0.998 0.994
P@5 0.988 0.99 0.99 0.98

4.3 SELECTION OF THE NUMBER OF CLUSTERS

Finally, we show the performance of our method with different number of clusters in Table 4. When
varying number of clusters, we also vary the time budget B so that the prediction time including
finding the correct cluster and computing the softmax in the candidate set are similar. The results
indicate that our method is quite robust to number of clusters. Therefore, in practice we suggest to
just choose the number of clusters to be 100 or 200 and tune the “time budget” in our loss function
to get the desired speed-accuracy tradeoff.

5 CONCLUSION

In this paper, we proposed a new algorithm for fast softmax inference on large vocabulary neural
language models. The main idea is to use a light-weight screening model to predict a smaller subset
of candidates, and then conduct exact search within that subset. By forming a joint optimization
problem, we are able to learn the screening network end-to-end using the Gumbel trick. In the
experiment, we show that the proposed algorithm achieves much better inference speedup than state-
of-the-art algorithms for language model and machine translation tasks.

6 ACKNOWLEDGEMENT

We are grateful to Ciprian Chelba for the fruitful comments, corrections and inspiration. CJH ac-
knowledges the support of NSF via IIS-1719097, Intel faculty award, Google Cloud and Nvidia.

REFERENCES

Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein, Nir
Nice, and Ulrich Paquet. Speeding up the xbox recommender system using a euclidean transfor-
mation for inner-product spaces. In Proceedings of the 8th ACM Conference on Recommender
systems, pp. 257–264. ACM, 2014.

Leonid Boytsov and Bilegsaikhan Naidan. Engineering efficient and effective non-metric space
library. In Similarity Search and Applications - 6th International Conference, SISAP 2013, A
Coruña, Spain, October 2-4, 2013, Proceedings, pp. 280–293, 2013.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report on
the 11th iwslt evaluation campaign, iwslt 2014. In Proceedings of the International Workshop on
Spoken Language Translation, Hanoi, Vietnam, 2014.

9

Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou. Efficient
softmax approximation for gpus. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 1302–1310, 2017.

Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. Quantization based fast
inner product search. In Artificial Intelligence and Statistics, pp. 482–490, 2016.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613. ACM, 1998.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In
International Conference on Learning Representations 2017. OpenReviews. net, 2017.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using very large target
vocabulary for neural machine translation. arXiv preprint arXiv:1412.2007, 2014.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M Rush. Opennmt:
Open-source toolkit for neural machine translation. arXiv preprint arXiv:1701.02810, 2017.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep reinforce-
ment learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.

Minh-Thang Luong and Christopher D. Manning. Stanford neural machine translation systems for
spoken language domain. In International Workshop on Spoken Language Translation, Da Nang,
Vietnam, 2015.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. arXiv preprint arXiv:1603.09320, 2016a.

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approximate near-
est neighbor algorithm based on navigable small world graphs. Information Systems, 45:61–68,
2014.

Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. CoRR, abs/1603.09320, 2016b.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: the penn treebank. Comput. Linguist., 19(2):313–330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic
language models. In ICML, 2012.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In
AISTATS, volume 5, pp. 246–252, 2005.

Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product search.
In ICML, 2015.

Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pp. 379–389, 2015.

Kyuhong Shim, Minjae Lee, Iksoo Choi, Yoonho Boo, and Wonyong Sung. Svd-softmax: Fast
softmax approximation on large vocabulary neural networks. In Advances in Neural Information
Processing Systems 30, pp. 5463–5473. 2017.

Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner prod-
uct search (mips). In Advances in Neural Information Processing Systems, pp. 2321–2329, 2014.

Robert F Sproull. Refinements to nearest-neighbor searching ink-dimensional trees. Algorithmica,
6(1-6):579–589, 1991.

10

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N Holtmann-Rice, David
Simcha, and Felix Yu. Multiscale quantization for fast similarity search. In NIPS, pp. 5745–5755.
2017.

Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, and Inderjit Dhillon. A greedy approach for budgeted maxi-
mum inner product search. In NIPS, 2017.

Minjia Zhang, Xiaodong Liu, Wenhan Wang, Jianfeng Gao, and Yuxiong He. Navigating with graph
representations for fast and scalable decoding of neural language models. In NIPS, 2018.

11

7 APPENDIX

7.1 PRECISION@5 RESULTS

Figure 5: Precision@5 versus speed-up rate of PTB Large Setup.

Figure 6: Precision@5 versus speed-up rate of PTB Small Setup.

Figure 7: Precision@5 versus speed-up rate of NMT:DE-EN Setup.

7.2 COMPARISON TO SPHERICAL-KMEANS INITIALIZATION

Since we firstly initialize parameters in our method by Shperical-KMEANS, we also show in Ta-
ble 5 that L2S can further improve over the baseline clustering methods. Notice that even the basic

12

Table 5: Comparison of L2S to spherical-KMEANS clustering.
PTB-Small PTB-Large NMT: DE-EN

Speedup P@1 P@5 Speedup P@1 P@5 Speedup P@1 P@5
Our Method 10.6x 0.998 0.990 45.3x 0.999 0.82 20.4x 0.989 0.993

Sphereical-kmeans 4x 0.988 0.992 6.9x 0.992 0.971 13.8x 0.991 0.993
FGD 1.3x 0.980 0.989 6.9x 0.975 0.979 6.7x 0.987 0.981

Table 6: Comparison of Perplexity results vs prediction time on PTB dataset.
Model Metric Original SVD-softmax Adaptive-softmax FGD Our method

PTB-Small Speedup Rate 1x 0.84x 1.69x 0.95x 5.69x
PPL 112.28 116.64 121.43 116.49 115.91

PTB-Large Speedup Rate 1x 0.61x 1.76x 2.27x 8.11x
PPL 78.32 80.30 82.59 80.47 80.09

Spherical-KMEANS can outperform state-of-the-art methods. This shows that clustering structure
of context features is a key to perform fast prediction.

7.3 PERPLEXITY RESULTS

Finally, we go beyond top-k prediction and apply our algorithm to speed up the perplexity compu-
tation for language models. To get perplexity, we need to compute the probability of each token
appeared in the dataset, which may not be within top-k softmax predictions. In order to apply a
top-k approximate softmax algorithm for this task, we adopt the low-rank approximation idea pro-
posed in (Shim et al., 2017). For tokens within the candidate set, we compute the logits using exact
inner product computation, while for tokens outside the set we approximate the logits by W̃h where
W̃ is a low-rank approximation of the original weight matrix in the softmax layer. The probability
can then be computed using these logits. For all the algorithms, we set the rank of W̃ to be 20
for PTB-Small and 200 for PTB-Large. The results are presented in Table 6. We observe that our
method outperforms previous fast softmax approximation methods for computing perplexity on both
PTB-small and PTB-large language models.

7.4 RESULTS ON LARGER VOCABULARY SIZE

In this section we validate that proposed L2S method can still work effectively on models with larger
vocabulary sizes. We demonstrate this on Wikitext-103 dataset Merity et al. (2016) by choosing
vocabulary size to be 80k. We follow the model and training procedure as in Merity et al. (2016).
Precision@1 and Prevision@5 results of L2S are shown in Fig 9. We can see that L2S could
speed-up over 15 times without losing much accuracy.

7.5 SPEED-UP RATE VERSES VOCABULARY SIZE.

We conduct experiments on PTB-Small setup to study the effect of vocabulary size to speedup. We
compress the size of PTB dataset by choosing most frequent words and set the rest of other words to
be ”unknown” and follow the same training procedure. The cluster size is set to 200 for all setups,
and the results are shown in Fig 8. Basically, the results show that the compression rate could be
made higher when vocabulary size is larger. This is reasonable as the occurrence of the words follow
zipf’s distribution in natural languages. So when vocabulary size goes large, we could imagine many
words only need to be searched a few times so full softmax computation will not be very efficient.
Thus the speed-up rate could be improved further.

7.6 QUALITATIVE RESULTS ON CLUSTERING

We selected few clusters and show the words contained in that cluster to demonstrate qualitative
results of L2S. Examples are listed in Table 7. Basically, some frequent words will appear in almost
all clusters in order to make sure the predicted accuracy is high. For example, ”the”, ”in”, and ”a”

13

Figure 8: Speed-up rate versus vobcaulary size of PTB-Small Setup. Preci-
sion@1 for each vocabulary size is selected to be around 0.99. Precise values are
0.993(2000),0.989(4000),0.988(6000),0.987(8000),0.987(9000),0.998(10000). Values in the paren-
theses are vocabulary sizes.

Figure 9: Precision@1 and Precision@5 versus Speed-up rate of L2S on Wikitext-103 dataset with
80k vocabulary size.

those tokens appear in all clusters shown in the table. On the other hand, each cluster might contain
some

In the cluster 1, we can observe that all words related to timing is included. In the second cluster,
some terms related to financial investment are included. More interestingly, from the term ”over-
the-counter” in third cluster we know that it’s about finance. And we also observe that important
cities of finance world such as Tokyo, ”Hong” Kong and London are included. Since these trading
trend might be seasonal, we also see that many monthes are included in this cluster.

7.7 QUALITATIVE RESULTS ON NEURAL MACHINE TRANSLATION

We select some translated sentences of DE-EN task shown in Table 8 to demonstrate that our algo-
rithm can provide similar translations but with faster inference time.

14

Table 7: Qualitative results of clustering. We select few clusters to show what might be learned in
the clustering.

Cluster No. Words
1 the, <unk>, <eos>, N, of, to, a, in, and,

”s”, that, for, is, it, said, on, by, at, as, from,
million, with, mr., was, are, he, but, has,
will, have, or, they, year, which, would,
about, says, were, had, up, than, also, if,
when, shares, years, because, after, could,
sales, while, months, through, before, an-
alysts, days, according, although, com-
pared, times, states, april, bankruptcy, per,
totaled, p.m., classes

2 the, <unk>, a, in, and, that, for, it, on,
at, mr., he, but, they, one, some, we,
if, when, i, there, you, investors, these,
stocks, traders, futures, ual

3 the, <unk>, N, a, that, mr., its, an, new,
this, his, one, some, other, may, many,
any, american, national, recent, her, part,
japan, early, late, september, august, lon-
don, composite, addition, terms, october,
july, tokyo, fact, hong, response, january,
over-the-counter

15

Table 8: Qualitative comparison of our method to full softmax computation. The accelerated model
used is the same as reported in Table 3.

Full-softmax Our method
you know , one of the great <unk> at
travel and one of the pleasures at the
<unk> research is to live with the people
who remember the old days , who still feel
their past in the wind , touch them on the
rain of<unk> rocks , taste them in the bit-
ter sheets of plants .

you know, one of the great<unk> at travel
and one of the joy of the <unk> research
is to live together with the people who re-
member the old days , who still feel their
past in the wind , touch them on the rain
of <unk> rocks , taste them in the bitter
sheets of plants.

it s the symbol of all that we are , and what
were capable of as astonishingly <unk>
species .

its the symbol of all of what we are ,
and what were capable of as astonishingly
<unk> species .

when any of you were born in this room
, there were 6,000 languages talking on
earth .

when everybody was born in this room
, there were 6,000 languages spoken on
earth .

a continent is always going to leave out ,
because the idea was that in sub-saharan
africa there was no religious faith , and of
course there was a <unk> , and <unk>
is just the remains of these very profound
religious thoughts that<unk> in the tragic
diaspora of the <unk> .

a continent is always going to leave out ,
because the presumption was that in sub-
saharan africa there was no religious faith
, and of course there was a <unk> , and
<unk> is just the cheapest of these very
profound religious thoughts that <unk> in
the tragic diaspora of <unk> <unk> .

so , the fact is that , in the 20th century,
in 300 years , it is not going to be remem-
bered for its wars or technological innova-
tion , but rather than an era where we were
present , and the massive destruction of bi-
ological and cultural diversity on earth ei-
ther on earth is either active or<unk>. so
the problem is not the change .

so , the fact is that , in the 20th century ,
in 300 years , it is not going to be remem-
bered for its wars or technological innova-
tion , but rather than an era where we were
present , and the massive destruction of bi-
ological and cultural diversity on earth ei-
ther on earth is either <unk> or passive.
so the problem is not the change .

and in this song , we’re going to be able
to connect the possibility of what we are
: people with full consciousness , who are
aware of the importance that all people
and gardens have to thrive , and there are
great moments of optimism .

and in this song , we’re going to be able to
rediscover the possibility of what we are :
people with full consciousness that the im-
portance of the importance of being able
to thrive is to be able to thrive , and there
are great moments of optimism .

16

	Introduction
	Related Work
	Algorithm
	Experiments
	Competing Algorithms
	Performance Comparisons
	Selection of the Number of Clusters

	Conclusion
	Acknowledgement
	Appendix
	Precision@5 Results
	Comparison to Spherical-KMEANS initialization
	Perplexity Results
	Results on Larger Vocabulary Size
	Speed-up Rate Verses Vocabulary Size.
	Qualitative Results on Clustering
	Qualitative Results on Neural Machine Translation

