Published as a conference paper at ICLR 2020

LITE TRANSFORMER WITH
LONG-SHORT RANGE ATTENTION

Zhanghao Wu*''2 Zhijian Liu*! JiLin' YujunLin' Song Han'
'Massachusetts Institute of Technology ~ 2Shanghai Jiao Tong University
{zhwu, zhijian, songhan}@mit.edu

ABSTRACT

Transformer has become ubiquitous in natural language processing (e.g., machine
translation, question answering); however, it requires enormous amount of com-
putations to achieve high performance, which makes it not suitable for mobile
applications that are tightly constrained by the hardware resources and battery. In
this paper, we present an efficient mobile NLP architecture, Lite Transformer to
facilitate deploying mobile NLP applications on edge devices. The key primitive is
the Long-Short Range Attention (LSRA), where one group of heads specializes in
the local context modeling (by convolution) while another group specializes in the
long-distance relationship modeling (by attention). Such specialization brings con-
sistent improvement over the vanilla transformer on three well-established language
tasks: machine translation, abstractive summarization, and language modeling.
Under constrained resources (S00M/100M MAC:s), Lite Transformer outperforms
transformer on WMT’ 14 English-French by 1.2/1.7 BLEU, respectively. Lite
Transformer reduces the computation of transformer base model by 2.5x with 0.3
BLEU score degradation. Combining with pruning and quantization, we further
compressed the model size of Lite Transformer by 18.2x. For language modeling,
Lite Transformer achieves 1.8 lower perplexity than the transformer at around
500M MAC:s. Notably, Lite Transformer outperforms the AutoML-based Evolved
Transformer by 0.5 higher BLEU for the mobile NLP setting without the costly
architecture search that requires more than 250 GPU years. Code has been made
available at https://github.com/mit-han-lab/lite-transformer.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) is widely used in natural language processing due to its high
training efficiency and superior capability in capturing long-distance dependencies. Building on
top of them, modern state-of-the-art models, such as BERT (Devlin et al., 2019), are able to learn
powerful language representations from unlabeled text and even surpass the human performance on
the challenging question answering task.

However, the good performance comes at a high computational cost. For example, a single transformer
model requires more than 10G Mult-Adds in order to translate a sentence of only 30 words. Such
extremely high computational resources requirement is beyond the capabilities of many edge devices
such as smartphones and IoTs. Therefore, it is of great importance to design efficient and fast
transformer architecture specialized for real-time NLP applications on the edge. Automatic neural
architecture search (Zoph & Le, 2017; So et al., 2019) is a choice for high accuracy model design,
but the massive search cost (GPU hours and CO, emission) raises severe environmental concerns
(Strubell et al., 2019), shown in Figure 1b.

In this paper, we focus on the efficient inference for mobile devices, where the total number of Mult-
Adds is constrained below S00M. A straightforward way to reduce the computation of the transformer
is to shrink the embedding size directly. Although it can effectively reduce both model size and
computation, it also weakens the model capacity capturing the long and short distance relationship at
the same time. To this end, we systematically studied the computation breakdown of the transformer

* indicates equal contributions.

https://github.com/mit-han-lab/lite-transformer

Published as a conference paper at ICLR 2020

and observed that the computation (Mult-Adds) is dominated by the feed-forward network (FFN). We
discovered that the prevailing bottleneck-structured transformer block is not efficient. We then present
a novel Long-Short Range Attention (LSRA) primitive. LSRA trades off the computation in FFN for
wider attention layers. It stretches the bottleneck to introduce more dependency capturing capability
for the attention layer, and then shrink the embedding size to reduce the total computation amount
while maintaining the same performance. Instead of having one module for “general” information,
LSRA dedicates specialized heads to model long and short distance contexts. Inspired by Wu et al.
(2019b), LSRA introduces convolution in a parallel branch to capture local dependencies so that
the attention branch can focus on global context capture. By stacking this primitive, we build Lite
Transformer for mobile NLP applications.

Extensive experiments demonstrate that our Lite Transformer model offers significant improvements
over the transformer on three language tasks: machine translation, abstractive summarization, and
language modeling. For machine translation, on IWSLT 2014 German-English, it outperforms the
transformer by 3.1 BLEU under 100M Mult-Adds; on WMT 2014 English-German, it surpasses the
transformer by 0.4 BLEU under 500M Mult-Adds and 1.2 BLEU under 100M Mult-Adds; on WMT
2014 English-French, it also achieves consistent improvements over the transformer: 1.2 BLEU under
500M Mult-Adds and 1.7 BLEU under 100M Mult-Adds. Further, combined with general model
compression techniques (pruning and quantization), our Lite Transformer can achieve 18.2x model
size compression. For the summarization task, on CNN-DailyMail, it reduces the computation of the
transformer base model by 2.4 x. For language modeling, it achieves 1.8 lower perplexity than the
transformer around 500M Mult-Adds.

Guided by our design insights, our manually-designed Lite Transformer achieves 0.5 higher BLEU
than the AutoML-based Evolved Transformer (So et al., 2019), which requires more than 250 GPU
years to search, emitting as much carbon as five cars in their lifetimes (see Figure 1b). It indicates
that AutoML is not a panacea: careful analysis and design insights (i.e., removing the bottleneck,
specialized heads) can effectively prune the search space and improve the sample efficiency.

The contribution of this paper has four aspects:

1. We systematically analyze the commonly used computation bottleneck structure in modern neural
networks and find that the bottleneck design is not optimal for 1-D attention if using FLOPs as
figure of merit.

2. We propose a specialized multi-branch feature extractor, Long-Short Range Attention (LSRA), as
the basic building block of our transformer, where convolution helps capture the local context and
attention concentrates on global context.

3. We build Lite Transformer based on our LSRA. Under mobile computation resource constraints
(500M Mult-Adds), our Lite Transformer demonstrates coherent improvement on three widely
used machine translation datasets. With extra experiments on other tasks, Lite Transformer is
efficient for multiple language applications.

4. Even compared to AutoML-searched Evolved Transformer, our Lite Transformer offers 0.5 higher
BLEU score on WMT En-De dataset under the mobile setting, saving the design cost by 20000 x
in CO, emissions. It alerts us to rethink the practicality of AutoML in terms of design cost and
“green AI”.

2 RELATED WORK

RNNs and CNNs. Recurrent neural networks (RNNs) have prevailed various sequence modeling
tasks for a long time (Sutskever et al., 2014; Luong et al., 2015; Bahdanau et al., 2015; Wu et al.,
2016). However, RNNs are not easy to parallelize across the sequence due to its temporal dependency.
Recently, some work has demonstrated that RNN is not an essential component to achieve state-
of-the-art performance. For instance, researchers have proposed highly-efficient convolution-based
models (Kalchbrenner et al., 2016; Gehring et al., 2017; Kaiser et al., 2018; Wu et al., 2019b).
Convolution is an ideal primitive to model the local context information; however, it lacks the ability
to capture the long-distance relationship, which is critical in many sequence modeling tasks.

Transformers. As an alternative, attention is able to capture global-context information by pairwise
correlation. Transformer (Vaswani et al., 2017) has demonstrated that it is possible to stack the

Published as a conference paper at ICLR 2020

GPT-2 1 1,580 Human life 11.023
(avg. 1 year) ’

BERT Large 1 |340 American life 36.156
(avg. 1 year) ’

Transformer :

; 1 176 US car with fuel
Big | (avg. 1 lifetime) 126,000
Transformer Evolved
i 44 volve

Base | Transformer |626’155

Lite Trasformer Mobile Constraints Lite Trasformer |3, 19,567 |

(Ours) ' (Ours) |

10 100 1,000 0 200,000 400,000 600,000
Parameter Numbers (M) CO; Emission (Ibs)
(a) Parameter numbers of modern NLP models. (b) The design cost measured in CO, emission (Ibs).

Figure 1: Left: the size of recent NLP models grows rapidly and exceeds the mobile constraints to a
large extent. Right: the search cost of AutoML-based NLP model is prohibitive, which emits carbon
dioxide nearly 5x the average lifetime emissions of the car.

self-attentions to achieve state-of-the-art performance. Recently, there have been a lot of variants to
the transformer (Ahmed et al., 2017; Ott et al., 2018; Chen et al., 2018; Paulus et al., 2018; Shaw
et al., 2018; Sukhbaatar et al., 2019a;b; Child et al., 2019). Among them, Ott et al. (2018) proposed
to scale up the batch size; Shaw et al. (2018) leverages the relative position representations; Ahmed
et al. (2017) introduces the weighted multi-head attention; Sukhbaatar et al. (2019a) applies adaptive
masks for long-range information on character-level language modeling with very long sequences.
All these attempts are orthogonal to our work, as their methods can also be applied in our architecture.

Automated Model Design. Due to the vast architecture design space, automating the design with
neural architecture search (NAS) becomes popular (Zoph & Le, 2017; Zoph et al., 2018; Pham et al.,
2018; Cai et al., 2019a). To make the design efficient, integrating the hardware resource constraints
into the optimization loop begins to emerge, such as MnasNet (Tan et al., 2019), ProxylessNAS (Cai
et al., 2019b) and FBNet (Wu et al., 2019a). In the NLP community, the evolved transformer (So
et al., 2019) adopts the neural architecture search (Zoph & Le, 2017) to design basic blocks and finds
a better #parameter-BLEU trade-off for the transformer. However, AutoML-based model designs
require significant amount of GPU hours to find the ‘best’ model, which is not affordable for most
researchers.

Model Acceleration. Apart from designing efficient models directly (Liu et al., 2019b; Li et al.,
2020), another approach to achieve efficient inference is to compress and accelerate the existing large
models. For instance, some have proposed to prune the separate neurons (Han et al., 2015b; 2016)
or the entire channels (He et al., 2017; Liu et al., 2017; He et al., 2018); others have proposed to
quantize the network (Courbariaux et al., 2016; Zhu et al., 2017; Krishnamoorthi, 2018; Wang et al.,
2019) to accelerate the model inference. Recently, AutoML has also been used to automate the model
compression and acceleration (He et al., 2018; Yang et al., 2018; Wang et al., 2019; Liu et al., 2019a).
All these techniques are compressing existing models and are therefore orthogonal to our approach.
We aim to explore how to make use of the domain knowledge to design an efficient architecture from
the beginning, rather than compressing an existing model.

3 IS BOTTLENECK EFFECTIVE FOR 1-D ATTENTION?

The attention mechanism has been widely used in various applications, including 1-D (language
processing (Vaswani et al., 2017)), 2-D (image recognition), and 3-D (video recognition (Wang et al.,
2018)). It computes pairwise dot-product between all the input elements to model both short-term
and long-term relationships. Despite its effectiveness, the operation introduces massive computation.
Assume the number of elements (e.g., length of tokens in language processing, number of pixels
in image, efc.) fed to attention layer is IV, and the dimension of features (i.e., channels) is d, the
computation needed for the dot-product is N2d. For images and videos, N is usually very large. For
example, the intermediate feature map in a video network (Wang et al., 2018) has 16 frames, each with
112x 112 resolution, leading to N = 2 x 10°. The computation of convolution and fully-connected
layers grows linearly w.r.t. NV, while the computation of attention layers grows quadratically w.r.t. N.
The computation of attention module will soon overwhelm with a large N.

Published as a conference paper at ICLR 2020

FN Attention FFN
1,500 o
1,336
Base - - . ” T
=) >
I A _\ < 1,000 2.5%
— =
kS
Flattened — g . - - j
- =]
ittt - = 500
s -*H* -
(Ours) 373

L 1 0
E] E] Base Flattened LSRA (Ours)

GLU Conv FC (39.9) (41.0) (39.6)

Figure 2: Flattening the bottleneck of transformer blocks increases the proportion of the attention
versus the FFN, which is good for further optimization for attention in our LSRA.

To address the dilemma, a common practice is first to reduce the number of channels d using a
linear projection layer before applying attention and increase the dimension afterwards (as shown
in Figure 2). In the original design of transformer (Vaswani et al., 2017), the channel dimension
in the attention module is 4 x smaller than that in the FFN layer. Similarly, in the non-local video
network (Wang et al., 2018), the channel number is first reduced by half before applying the non-local
attention module. This practice saves the computation by 16x or 4 x. Nevertheless, it also decreases
the contexts capture ability of attention layers with a smaller feature dimension. The situation could
be even worse for language processing, as attention is the major module for contexts capture (unlike
images and videos where convolutions conduct the major information capture).

For tasks like translation, the length of the input sequence N tends to be small, which is around 20-30
in common cases. A transformer block consists of an attention (or two for decoder), followed by a
feed-forward network (FFN). For the attention layer, the Mult-Adds would be O (4N d? + N2 d); for
FFN, the Mult-Adds is O(2 x 4Nd?). Given a small N, it is doubtful if the bottleneck design is a
good trade-off between computation and accuracy on 1D attention. To verify the idea, we first profile
the computation breakdown in the transformer in Figure 2. Surprisingly, for the original transformer
(denoted as ‘Base’ in the figure), the FFN layer actually consumes much of the computation. This
is not desirable since FFN itself cannot perform any contexts captures. In conclusion, due to the
small N, the bottleneck design cannot significantly reduce the computation in 1D attention, while
the limited benefit for computation reduction is further compromised by the large FFN layer. It
also harms the capacity of attention layer due to the smaller dimension, which is the major contexts
capture unit in the transformer.

Therefore, we argue that the bottleneck design is not optimal for 1-D attention. We instead design a
‘flattened’ version of the transform block that does not reduce and increase the channel dimension.
With the new design, the attention part now takes up the major computation in the flattened transformer
model in Figure 2, leaving a larger space for further optimization. We also test the performance
change of such modification on WMT’ 14 En-Fr dataset. We can achieve comparable performance at
a slightly larger computation, which can be easily reduced with further optimization that is discussed
in the next section.

4 LONG-SHORT RANGE ATTENTION (LSRA)

Researchers have tried to understand the contexts captured by attention. Kovaleva et al. (2019)
and Clark et al. (2020) visualized the attention weights from different layers in BERT. As shown
in Figure 3b, the weights w illustrate the relationships between the words from the source sentence
and the target sentence (the same for self-attention). With a larger weight w;; (darker color), the i-th
word in the source sentence pays more attention to the j-th word in the target sentence. And the
attention maps typically have strong patterns: sparse and diagonal. They represent the relationships
between some particular words: the sparse for the long-term information, and the diagonal for the
correlation in small neighborhoods. We denote the former as “global” relationships and the latter as
“local”.

Published as a conference paper at ICLR 2020

3 4 3 4
geeg £ ¢ gog ¢
A =EE5 5 o _0o =EE£E35 3
¥ 359 o <& 359 o
P TJcELY 5,9’8 TcECY
Embedding 2865688 cER . =2%0sG¢
|t 0.30 |t 0.30
requires 025 requires H B 025
enormous enormous
amount 020 amount 020
of of
resources 01s resources 015
to to
achieve 010 achieve - 010
high high
Extractor scores 005 scores 0.05
Embedding
(b) Conventional Attention. It cap- (c) Attention in LSRA. It is special-

tures local information on the diag- ized for long-term relationships, in-
onal and global context as sparse dicated as points away from the di-
(a) Lite Transformer block points. (Redundant) agonal. (Efficient)

Figure 3: Lite Transformer architecture (a) and the visualization of attention weights. Conventional
attention (b) puts too much emphasis on local relationship modeling (see the diagonal structure). We
specialize the local feature extraction by a convolutional branch which efficiently models the locality
so that the attention branch can specialize in global feature extraction (c). More visualizations are
available in Figure A1l.

For a translation task, the attention modules have to capture both global and local contexts, requiring
a large capacity. That is not optimal compared with a specialized design. Taking the hardware design
as an example, general-purpose hardware like CPUs is less efficient than specialized hardware like
FPGAs. Here, we should specialize global and local contexts capture. When the model capacity is
relatively large, the redundancy can be tolerated and may even provide better performance. However,
when it comes to mobile applications, a model should be more efficient due to the computation and
power constraints. Thus specialized contexts capture is more demanding. To tackle the problem,
instead of having one module for “general” information, we propose a more specialized architecture,
Long-Short Range Attention (LSRA), that captures the global and local contexts separately.

As shown in Figure 3a, our LSRA module follows a two-branch design. The left branch captures
global contexts, while the right branch models local contexts. Instead of feeding the whole input
to both branches, we split it into two parts along the channel dimension, which will be mixed by
the following FFN layer. Such practice reduces the overall computation by 2. The left branch is
a normal attention module as in Vaswani et al. (2017), while the channel dimension is reduced by
half. For the right branch of local relationships, one natural idea is to apply convolution over the
sequence. With a sliding window, the diagonal groups can be easily covered by the module. To
further reduce the computation, we replace the normal convolution with a lighter version (Wu et al.,
2019b) consisting of linear layers and depth-wise convolution. In this manner, we place the attention
and the convolutional module side by side, encouraging them to have a different perspective of the
sentence, globally and locally, so that the architecture can then benefit from the specialization and
achieve better efficiency.

To have a better insight, we visualized the average attention weights of the same layer for a fully
trained basic transformer and our Lite Transformer in Figure 3. It can be easily distinguished that
instead of attempting to model both global and local contexts, the attention module in LSRA only
focuses on the global contexts capture (no diagonal pattern), leaving the local contexts capture to the
convolution branch.

5 EXPERIMENTAL SETUP

5.1 MOBILE SETTINGS

Most of machine translation architectures benefit from the large model size and computational
complexity. However, edge devices, such as mobile phones and IoTs, are highly computationally
limited. Those massive architectures are no more suitable for real-world mobile applications. To
formalize the problem, we define the mobile settings for NLP models in terms of the amount of
computation and the parameter numbers:

Published as a conference paper at ICLR 2020

» The floating-point performance of the ARM Cortex-A72 mobile CPU is about 48G FLOPS (4
cores @1.5GHz). To achieve the peak performance of 50 sentences per second, the model should
be less than 960M FLOPs (480M Mult-Adds). That is a common constraint in the computer
vision community. For example, Liu et al. (2018) also uses 500M Mult-Adds as the constraint
of its mobile setting. Therefore, we define the mobile settings for machine translation tasks: the
computation constraint should be under S00M Mult-Adds (or 1G FLOPs) with a sequence of 30
tokens (general length for machine translation).

» Additionally, we set a limitation for the parameters of the models. The constraint is based on the
download and space limitation. Large mobile apps will take long time to be downloaded and even
cost much money when using cellular networks. The run-time memory and disk size also constrain
the parameter numbers. The parameters in MobileNet 7M parameters, we round it to the nearest
magnitude, 10M parameters, as our mobile constraint.

5.2 DATASETS AND EVALUATION

Machine Translation. The results are based on three machine translation benchmarks: For
IWSLT’ 14 German-English (De-En), we follow the settings in Grave et al. (2017) with 160K
training sentence pairs and 10K joint byte pair encoding (BPE) (Sennrich et al., 2016) vocabulary in
lower case. For WMT English to German (En-De), we train the model on WMT’ 16 training data
with 4.5M sentence pairs, validate on newstest2013, and test on newstest2014, the same as Wu et al.
(2019b). Moreover, the vocabulary used a 32K joint source and target BPE. For WMT English to
Franch (En-Fr), we replicate the setup in Gehring et al. (2017) with 36M training sentence pairs from
WMT’ 14, validate on newstest2012 and 2013, and test on newstest2014. Also, the 40K vocabulary is
based on a joint source and target BPE factorization.

For evaluation, we use the same beam decoding configuration used by Vaswani et al. (2017), where
there is a beam size of 4 and a length penalty of 0.6. All BLEUs are calculated with case-sensitive
tokenization®, but for WMT En-De, we also use the compound splitting BLEU", the same as Vaswani
et al. (2017). When testing, we average the last 10 model checkpoints for IWSLT De-En and take
the model with the lowest perplexity on the validation set for the WMT datasets. We omit the word
embedding lookup table from the model parameters since the number of entries in the table would
highly differ for various tasks using transformer. For the Mult-Adds, we calculate the total number of
multiplication-addition pairs for a model translating a sequence with the length of 30 to a sequence
with the same length, which is the average length for sentence-level machine translation tasks.

Abstractive Summarization. We also evaluate our Lite Transformer on CNN-DailyMail
dataset (Hermann et al., 2015) for abstractive summarization. The dataset contains 280K news
articles paired with multi-sentence summaries. We truncate the articles to 1000 tokens and use a
30K BPE vocabulary. We use F1-Rouge as the metric, including Rouge-1 (R-1), Rouge-2 (R-2) and
Rouge-L (R-L) (Lin, 2004)*. We follow the generation settings in Lewis et al. (2019). We omit the
word embedding lookup table and softmax layer from both the model parameters and #Mult-Adds
calculation. #Mult-Adds is calculated for the documents with the input length of 30, 100, and 1000
and the output length of 60 (the average tokens for the output of CNN-DailyMail dataset).

Language Modeling. We test our Lite Transformer for language modeling task on WIKITEXT-103,
which comprises about 100M tokens and a 260K BPE vocabulary. We evaluate the perplexity on both
the validation set and the training set. The model parameters and #Mult-Adds are also computed for
the input with a length of 30, 100, and 1000.

5.3 ARCHITECTURE

The model architecture is based on the sequence to sequence learning encoder-decoder (Sutskever
et al.,, 2014). For machine translation, our baseline model is based on the one proposed by Vaswani
et al. (2017) for WMT. For IWSLT, we follow the settings in Wu et al. (2019b). We also adopt
the same model as on WMT for summarization task. For language modeling, our model is in line
with Baevski & Auli (2019) but with smaller model dimension dpoqe; = 512 and layer number

“https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
"https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/get_ende_bleu.sh
*https://github.com/pltrdy/files2rouge

Published as a conference paper at ICLR 2020

#Parameters #Mult-Adds BLEU ABLEU

Transformer (Vaswani et al., 2017) 2.8M 63M 27.8 -

LightConv (Wu et al., 2019b) 2.5M 52M 28.5 +0.7
Lite Transformer (Ours) 2.8M 54M 30.9 +3.1
Transformer (Vaswani et al., 2017) 5.7M 139M 31.3 -

LightConv (Wu et al., 2019b) 5.1IM 115M 31.6 +0.3
Lite Transformer (Ours) 5.4M 119M 329 +1.6
Transformer (Vaswani et al., 2017) 8.5M 215M 32.7 -

LightConv (Wu et al., 2019b) 8.4M 204M 329 +0.2
Lite Transformer (Ours) 8.9M 209M 33.6 +0.9

Table 1: Results on IWSLT’ 14 De-En. Our Lite Transformer outperforms the transformer (Vaswani
et al., 2017) and the Lightweight convolution network (Wu et al., 2019b) especially in mobile settings.

WMT’ 14 En-De =~ WMT’ 14 En-Fr
#Parameters #Mult-Adds BLEU ABLEU BLEU ABLEU

Transformer (Vaswani et al., 2017) 2.8M 8™ 21.3 - 33.6 -
Lite Transformer (Ours) 2.9M 90M 22.5 +1.2 353 +1.7
Transformer (Vaswani et al., 2017) 11.1M 338M 25.1 - 37.6 -
Lite Transformer (Ours) 11.7M 360M 25.6 +0.5 39.1 +1.5
Transformer (Vaswani et al., 2017) 17.3M 527M 26.1 - 384 -
Lite Transformer (Ours) 17.3M 527TM 26.5 +0.4 39.6 +1.2

Table 2: Results on WMT’ 14 En-De and WMT’ 14 En-Fr. Our Lite Transformer improves the BLEU
score over the transformer under similar Mult-Adds constraints.

L = 12 for the resource constraint. We use fairseq’s reimplementation (Ott et al., 2019) of the
transformer base model as the backbone.

In our architecture, we first flatten the bottleneck from the transformer base model and then replace
the self-attention with the LSRA. More specifically, we use two specialized modules, an attention
branch and a convolutional branch. Both the input and the output of the convolution are transformed
by fully connected layers (GLU is applied for the input on WMT), and the kernel is dynamically
calculated from the input using a fully connected layer in the WMT models. The kernel sizes are [3,
5, 7, 31 x3] for both the encoder and the decoder (Wu et al., 2019b), and the number of heads for each
module is 4 (half of the heads number in the transformer base model). The model for summarization
is the same as the WMT model. For language modeling, the kernel sizes for the convolution branch
are [15, 15, 31 x4, 63 x6].

5.4 TRAINING SETTINGS

All of our training settings for machine translation are in line with Wu et al. (2019b). We use a
dropout of 0.3 for both the WMT and IWSLT datasets and linearly scale down the dropout ratio
when shrinking the dimension of the embeddings for the WMT datasets. Same as Wu et al. (2019b),
we apply Adam optimizer and a cosine learning rate schedule (Kingma & Ba, 2015; Loshchilov
& Hutter, 2017) for the WMT models, where the learning rate is first linearly warm up from 10~7
to 10~3 followed by a cosine annealing with a single cycle. For INSLT De-En, we use inverse
square root learning rate scheduling (Vaswani et al., 2017) with the linear warm-up. We use the same
training settings for summarization. For the language modeling task, the training settings are in line
with Baevski & Auli (2019). We decrease the dropout ratio for the FFN layer by half in our Lite
Transformer due to the flattened layer.

We train WMT and summarization models on 16 NVIDIA RTX 2080Ti GPUs and IWSLT De-En
on a single GPU for 50K steps. We also accumulate the gradients for 8 batches before each model
update (Ott et al., 2018). The gradients of IWSLT models are not accumulated. The maximum
number of tokens in a batch is 4K for all the models. Label smooth of 0.1 is applied for the prior

Published as a conference paper at ICLR 2020

#Params #Mult-Adds BLEU GPU Hours CO%° Cloud
(Ibs) Computation Cost
Transformer (Vaswani et al., 2017) 2.8M 87M 21.3 8x12 26 $68 - $227
Evolved Transformer (So et al., 2019) 3.0M 94M 22.0 8x274K 626K $1.6M - $5.5M
Lite Transformer (Ours) 2.9M 90M 22.5 8x 14 32 $83 - $278

Transformer (Vaswani et al., 2017) 11.1M 338M 25.1 8x16 36 $93.9 - $315
Evolved Transformer (So et al., 2019) 11.8M 364M 254 8x274K 626K $1.6M - $5.5M
Lite Transformer (Ours) 11.7M 360M 25.6 8x19 43 $112 - $376

Table 3: Performance and training cost of an NMT model in terms of CO, emissions (Ibs) and cloud
compute cost (USD). The training cost estimation is adapted from Strubell et al. (2019). The training
time for transformer and our Lite Transformer is measured on NVIDIA V100 GPU. The cloud
computing cost is priced by AWS (lower price: spot instance; higher price: on-demand instance).

41 : 324 —#— Transformer
204 : —#— Lite Transformer (Ours)
1 -=- Mobile Setting
2 i 30 1
1
o 381 i =]
m ! ! <«
— 374 h 2
- | £ 261
36 1 1
i 2.0%
351 | —— Transformer 241 <
, i —#— Lite Transformer (Ours)
341 : === Mobile Setting 2
! 2
0 200 400 600 800 1000 1200 1400 0 500 1000 1500 2000 2500
Mult-Adds (M) Mult-Adds (M)
(a) BLEU score vs. Mult-Adds (on WMT En-Fr) (b) PPL vs. Mult-Adds (on WIKITEXT-103)

Figure 4: Trade-off curve for machine learning on WMT En-Fr and language modeling on
WIKITEXT-103 dataset. Both curves illustrate that our Lite Transformer outperform the basic
transformer under the mobile settings (blue region).

distribution over the vocabulary (Szegedy et al., 2016; Pereyra et al., 2017). For language modeling,
we train the models on 24 GPUs for 286K steps, the same as the settings in Baevski & Auli (2019).

6 RESULTS

6.1 MACHINE TRANSLATION

Results on IWSLT. We first report the results on IWSLT’ 14 De-En dataset. The baseline model
is in line with Wu et al. (2019b), which provides the best results in the literature with 512 model
dimension, 1024 FFN hidden dimension, and 4 heads for the attentions. Our Lite Transformer
generally outperforms the transformer base under mobile constraints. With tighter computation
limitations, our model achieves more significant improvement. That is because, when the dimension
of the features decreases, it becomes much harder for the “general” attention to extract both the global
and local features from the rather more compact information within the features. On the contrary,
with the specialized LSRA, our model can capture the information from the features more efficiently.

In Table 1, we present the quantitative results of our Lite Transformer on IWSLT’ 14 De-En dataset,
comparing to the transformer baseline as well as the LightConv (Wu et al., 2019b). Around 100M
Mult-Adds, our model even achieves 1.6 BLEU score improvement than the transformer.

Results on WMT. We also show the result on the WMT’ 14 En-De and WMT’ 14 En-Fr dataset. Sim-
ilar to the IWSLT, our Lite Transformer achieves a better trade-off with regard to transformer (Vaswani
et al., 2017) against the total computation and the number of model parameters under mobile settings.
The quantitative results in Table 2 indicates that our specialized Lite Transformer has 1.2 and 1.7
BLEU score improvement under 100M Mult-Adds and 0.5 and 1.5 around 300M Mult-Adds for

Published as a conference paper at ICLR 2020

176
160
)
3 39.9
N
@ 80
=
o
=}
=
0

Transformer Lite Transformer +Quant (8 bits) +Quant (8 bits)
(Ours) +Pruning

Figure 5: The model size and BLEU score on WMT En-Fr dataset with model compression. Our Lite
Transformer can be combined with general compression techniques and achieves 18.2x model size
compression. * ‘Quant’ indicates ‘Quantization’.

#Params #MAdds (30) #MAdds (100) #MAdds (1000) R-1 R-2 R-L

Transformer 44.1M 2.0G 3.6G 29.9G 414 189 383
Lite Transformer 17.3M 0.8G 1.5G 12.5G 41.3 188 38.3

Table 4: Results on CNN-DailyMail dataset for abstractive summarization. Our Lite Transformer
achieves similar F1-Rouge (R-1, R-2 and R-L) to the transformer (Vaswani et al., 2017) with more
than 2.4 less computation and 2.5x less model size. “#MAdds (x)” indicates the #Mult-Adds
required by the model with the input length of x.

#Params #MAdds (100) #MAdds (1000) Speed (tokens/s) Valid ppl. Test ppl.

Adaptive Inputs 37.8M 3.9G 50.3G 7.6K 232 24.0
Lite Transformer 37.2M 3.9G 48.7G 10.2K 214 22.2

Table 5: Results on WIKITEXT-103 dataset for language modeling. We apply our Lite Transformer
architecture on transformer base model with adaptive inputs (Baevski & Auli, 2019) and achieve 1.8
lower test perplexity under similar resource constraint.

WMT En-De dataset and WMT En-Fr dataset respectively. We also provide a tradeoff curve on WMT
En-Fr in Figure 4a, where our Lite Transformer consistently outperforms the original transformer.

Amenable to Compression. As an efficient architecture, our Lite Transformer is orthogonal to
general techniques for model compression (amenable to compression), e.g. pruning, and quantization.
The results on WMT’ 14 En-Fr dataset with those techniques are shown in Figure 5. We quantize
the model weight into 8 bits with K-means (Han et al., 2016) and prune the model according to the
sensitivity of each layer (Han et al., 2015a). With the two model compression techniques, our method
achieves 18.2x model size compression with negligible BLEU score degradation.

6.2 COMPARISON WITH AUTOMATED DESIGN

Comparing with the AutoML-based Evolved Transformer (ET) (So et al., 2019), our Lite Transformer
also shows a significant improvement in mobile settings. Moreover, within mobile settings, the Lite
Transformer outperforms the ET by 0.5 and 0.2 BLEU scores under 100M and 300M Mult-Adds,
respectively, as shown in Table 3. Our architecture design is different from ET’s design: ET stacks
attentions and convolutions sequentially, while our Lite Transformer puts them in parallel; also, ET
does not flatten the FFN.

Though nowadays, neural architecture search has been proved to be very powerful for searching in
a large design space, the huge cost, more than 626155 1bs CO, emissions and more than 250 GPU
years, cannot be ignored. Instead, careful human design with intuitions for specific tasks can also be
a great choice in practice to save a large number of resources for the earth.

Published as a conference paper at ICLR 2020

6.3 ABSTRACTIVE SUMMARIZATION AND LANGUAGE MODELING

We also test our Lite Transformer on longer input. In Table 4, we report results on CNN-DailyMail
dataset for abstractive summarization. Our model achieves a similar F1-Rouge score as the transformer
base model but requires 2.4 x less computation and 2.5 x storage resources. In Table 5, we provides
the results of our Lite Transformer on WIKITTEXT-103 for language modeling task, compared with
the adaptive inputs Baevski & Auli (2019) baseline. Under similar resource constraints, our Lite
Transformer can achieve 3.9 and 1.8 lower perplexity on valid and test set, respectively. In Figure 4b,
we show the tradeoff curve for our model and the baseline transformer model on WIKITEXT-103
between the test perplexity and the #Multi-Adds for input sentence with 30 tokens. It indicates that
our Lite Transformer achieves consistent improvement over the original transformer, especially under
mobile settings. Despite the translation tasks, the specialization design of LSRA is effective for larger
scale language tasks.

7 CONCLUSION

In this paper, we presented Long-Short Range Attention (LSRA), where some heads specialize in the
local context modeling while the others specialize in the long-distance relationship modeling. Based
on this primitive, we design Lite Transformer that is specialized for the mobile setting (under S00M
Mult-Adds) to facilitate the deployment on the edge devices. Our Lite Transformer demonstrates
consistent improvement over the transformer on multiple language applications. It also surpasses the
Evolved Transformer that requires costly architecture search under mobile settings.

Acknowledgements. We sincerely thank MIT-IBM Watson Al Lab, Facebook Faculty Award,
Google-Daydream Research Award, and AWS Machine Learning Research Award for supporting this
research.

REFERENCES

Karim Ahmed, Nitish Shirish Keskar, and Richard Socher. Weighted Transformer Network for Machine
Translation. arXiv, 2017. 3

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In ICLR, 2019.
6,7,8,9, 10

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to
Align and Translate. In /CLR, 2015. 2

Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Kuan Wang, Tianzhe Wang, Ligeng Zhu, and Song Han. Automl for
architecting efficient and specialized neural networks. IEEE Micro, 2019a. 3

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct Neural Architecture Search on Target Task and
Hardware. In ICLR, 2019b. 3

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster, Llion Jones,
Mike Schuster, Noam Shazeer, Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Zhifeng
Chen, Yonghui Wu, and Macduff Hughes. The Best of Both Worlds: Combining Recent Advances in Neural
Machine Translation. In ACL, 2018. 3

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers.
arXiv, 2019. 3

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What Does BERT Look At? An
Analysis of BERT’s Attention. In BlackboxNLP, 2020. 4

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized Neural
Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. arXiv,
2016. 3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In NAACL, 2019. 1

10

Published as a conference paper at ICLR 2020

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann Dauphin. Convolutional Sequence to
Sequence Learning. In ICML, 2017. 2,6

Edouard Grave, Armand Joulin, Moustapha Cissé, Hervé Jégou, et al. Efficient softmax approximation for
GPUs. In ICML, 2017. 6

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural
network. In NeurIPS, 2015a. 9

Song Han, Jeff Pool, John Tran, and William Dally. Learning both Weights and Connections for Efficient Neural
Networks. In NIPS, 2015b. 3

Song Han, Huizi Mao, and William Dally. Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding. In ICLR, 2016. 3, 9

Yihui He, Xiangyu Zhang, and Jian Sun. Channel Pruning for Accelerating Very Deep Neural Networks. In
ICCV,2017. 3

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: AutoML for Model Compression
and Acceleration on Mobile Devices. In ECCV, 2018. 3

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and
Phil Blunsom. Teaching machines to read and comprehend. In NeurIPS, 2015. 6

Lukasz Kaiser, Aidan N Gomez, and Francois Chollet. Depthwise Separable Convolutions for Neural Machine
Translation. In ICLR, 2018. 2

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray Kavukcuoglu.
Neural Machine Translation in Linear Time. arXiv, 2016. 2

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015. 7

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Revealing the Dark Secrets of BERT. In
EMNLP, 2019. 4

Raghuraman Krishnamoorthi. Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper.
arXiv, 2018. 3

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin
Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv, 2019. 6

Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu, and Song Han. Gan compression: Efficient
architectures for interactive conditional gans. In CVPR, 2020. 3

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches
Out. ACL, 2004. 6

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive Neural Architecture Search. In ECCV, 2018. 6

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Tim Kwang-Ting Cheng, and Jian Sun.
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning. arXiv, 2019a. 3

Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel cnn for efficient 3d deep learning. In NeurIPS,
2019b. 3

Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning Efficient
Convolutional Networks through Network Slimming. In /CCV, 2017. 3

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In ICLR, 2017. 7

Minh-Thang Luong, Hieu Pham, and Christopher Manning. Effective Approaches to Attention-based Neural
Machine Translation. In EMNLP, 2015. 2

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling Neural Machine Translation. In WMT,
2018. 3,7

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In NAACL Demo, 2019. 7

11

Published as a conference paper at ICLR 2020

Romain Paulus, Caiming Xiong, and Richard Socher. A Deep Reinforced Model for Abstractive Summarization.
In ICLR, 2018. 3

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey Hinton. Regularizing neural
networks by penalizing confident output distributions. In /CLR Workshop, 2017. 8

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient Neural Architecture Search via
Parameter Sharing. In ICML, 2018. 3

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words with Subword
Units. In ACL, 2016. 6

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with Relative Position Representations. In
NAACL, 2018. 3

David So, Quoc Le, and Chen Liang. The Evolved Transformer. In ICML, 2019. 1, 2,3, 8,9

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy Considerations for Deep Learning
in NLP. In ACL, 2019. 1, 8

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive Attention Span in
Transformers. In ACL, 2019a. 3

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, and Armand Joulin. Augmenting
self-attention with persistent memory. arXiv, 2019b. 3

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural Networks. In
NeurlIPS, 2014. 2, 6

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In CVPR, 2016. 8

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V Le.
MnasNet: Platform-Aware Neural Architecture Search for Mobile. CVPR, 2019. 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is All you Need. In NeurlIPS, 2017. 1,2,3,4,5,6,7,8,9

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: Hardware-Aware Automated Quantization
with Mixed Precision. In CVPR, 2019. 3

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local Neural Networks. In CVPR, 2018.
3,4

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda,
Yangqing Jia, and Kurt Keutzer. FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural
Architecture Search. In CVPR, 2019a. 3

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and Michael Auli. Pay Less Attention with Lightweight
and Dynamic Convolutions. In /CLR, 2019b. 2, 5,6, 7, 8

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil,
Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff
Hughes, and Jeffrey Dean. Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation. arXiv, 2016. 2

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and Hartwig
Adam. NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications. In ECCV, 2018. 3

Chenzhuo Zhu, Song Han, Huizi Mao, and William Dally. Trained Ternary Quantization. In ICLR, 2017. 3
Barret Zoph and Quoc V Le. Neural Architecture Search with Reinforcement Learning. In /CLR, 2017. 1, 3

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning Transferable Architectures for
Scalable Image Recognition. In CVPR, 2018. 3

12

Published as a conference paper at ICLR 2020

A.1 ADDITIONAL VISUALIZATION OF ATTENTION WEIGHTS

In this section, we show 3 more visualization of attention weights from both the base transformer and
our LSRA. We use the smallest configuration in our paper for both models fully trained on WMT
En-Fr translation and the attention weights are averaged among attention heads in the first layer. The
sentences are sampled from this paper and the ICLR conference website.

mobile

phones

are
constrainedH
by A

the
hardware{
resources

3 3
0 n
.% 88 .% 98
n © wn ©
2o 3 z 5 29 5 z 5
Q v T o Q %] T O
0295, 2¢59 cfews5.,e50
Ecocoasc? Eacoaosc?

0.30

0.25

0.20

0.15

0.10

0.05

. 0.30
mobile

phones-
are
constrainedH
by 1

the
hardware
resources

0.25

0.20

0.15

0.10

0.05

(a) Conventional Attention. (b) Attention in LSRA.
95 35
o 58 ¢ 8% §e g
(0] (0] =
L5855 o528 5 53,2
525 5¢8: 58258=c 220
Oc2 0.5 Oc20EE2608552
0.30 | B D 0.30
current current I
fu?ur:'g- 02 futaur;g: | I 02
conference 0.20 conferencer 020
information : information ..
will | 015 will o1
e W m
e e
provided 010 provided- 010
through 005 through 005
this this | | [|
website 1 website 1
(d) Attention in LSRA.
-t
c 3 59 % o
V5., 0% D -« O _ O
ColglR2c 5 92T
, 3XCCHB290 m5>
when 030 when 030
e gt §
appy appy
tha%- 0.20 that L 0.20
the the [|
Iengtig_ 015 IengtirSI | u 0.15
correct- 010 correct- - 0 010
record record{ M
_the1 0.05 the | [| 0.05
video video+ m
(e) Conventional Attention. (f) Attention in LSRA.

Figure Al: Conventional attention puts too much emphasis on local relationship modeling (see
the diagonal structure). We specialize the local feature extraction by a convolutional branch which
efficiently models locality so that the attention branch can specialize in global feature extraction (c).
We provide some more visualizations in Section A.1.

13

	Introduction
	Related Work
	Is Bottleneck Effective for 1-D Attention?
	Long-Short Range Attention (LSRA)
	Experimental Setup
	Mobile Settings
	Datasets and Evaluation
	Architecture
	Training Settings

	Results
	Machine Translation
	Comparison with Automated Design
	Abstractive Summarization and Language Modeling

	Conclusion
	Additional Visualization of Attention Weights

