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ABSTRACT

Despite recent progress, Generative Adversarial Networks (GANs) still suffer
from training instability, requiring careful consideration of architecture design
choices and hyper-parameter tuning. The reason for this fragile training behaviour
is partially due to the discriminator performing well very quickly; its loss con-
verges to zero, providing no reliable backpropagation signal to the generator. In
this work we introduce a new technique - progressive augmentation of GANs (PA-
GAN) - that helps to overcome this fundamental limitation and improve the overall
stability of GAN training. The key idea is to gradually increase the task difficulty
of the discriminator by progressively augmenting its input space, thus enabling
continuous learning of the generator. We show that the proposed progressive aug-
mentation preserves the original GAN objective, does not bias the optimality of
the discriminator and encourages the healthy competition between the generator
and discriminator, leading to a better-performing generator. We experimentally
demonstrate the effectiveness of the proposed approach on multiple benchmarks
(MNIST, Fashion-MNIST, CIFAR10, CELEBA) for the image generation task.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a recent development in
the field of deep learning, that have attracted a lot of attention in the research community (Radford
et al., 2016; Salimans et al., 2016; Arjovsky et al., 2017; Karras et al., 2018). GANs fall into the
category of generative models, i.e. models that allow sampling of new data points from encoded
high-dimensional data distributions, such as images. The GAN framework can be formulated as
a competing game between the generator and the discriminator. Mathematically, training GANs
requires solving a min-max problem. Since both the generator and the discriminator are typically
parameterized as deep convolutional neural networks with millions of parameters, optimization is
notoriously difficult in practice (Arjovsky et al., 2017; Gulrajani et al., 2017; Miyato et al., 2018).

The difficulty lies in maintaining the healthy competition between the generator and discriminator.
A commonly occurring problem arises when the discriminator overshoots, leading to escalated gra-
dients and oscillatory GAN behaviour (Mescheder et al., 2018). As a result the generator fails to
learn the multimodal structure of the true distribution. Moreover, the supports of the data and model
distributions typically lie on low dimensional manifolds and are often disjoint (Arjovsky & Bottou,
2017). Consequently, there exists a nearly trivial discriminator that can perfectly distinguish real
data samples from synthetic ones. Once such a discriminator is produced, its loss quickly converges
to zero and the gradients used for updating parameters of the generator become useless.

In this work we introduce a new technique to overcome this problem - progressive augmentation
of GANs (PA-GAN) - that helps to control the behaviour of the discriminator and thus improve the
overall training stability. The key idea is to progressively augment the input of the discriminator
network with auxiliary random variables, enlarging the sample space dimensionality, in order to
gradually increase the discrimination task difficulty (see Figure 1). In doing so, the discriminator
can be prevented from becoming over-confident, enabling continuous learning of the generator. As
opposed to standard data augmentation techniques (e.g. rotation, cropping, resizing), the proposed
progressive augmentation does not directly modify the data samples, but rather is structurally ap-
pended to them. In particular, for the single level augmentation along with the data sample x the
discriminator takes also as input the binary random variable s ∈ {0, 1}. The class of the augmented
sample (x, s) is then set based on the combination x with s, resulting in real and synthetic samples
contained in both true and fake classes. This presents a more challenging task for the discriminator,
as it needs to tell the real and synthetic samples apart and additionally understand the association
rule. We can further increase the task difficulty of the discriminator by progressively augmenting its
input space and enlarging the dimensionality of s during the course of training.
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Figure 1: Visualization of progressive augmentation. With each extra augmentation level (L →
L + 1) the dimensionality of the discriminator input space is increased and the discrimination task
gradually becomes harder. This strategy prevents the discriminator from easily finding a decision
boundary between two classes and thus leads to meaningful gradients for the generator updates.

We show that the proposed PA-GAN preserves the original GAN objective and is an outcome of a
systematic derivation. In contrast to prior work (Salimans et al., 2016; Sønderby et al., 2017; Ar-
jovsky & Bottou, 2017), it does not bias the optimality of the discriminator (see Sec. 4). Structurally
augmenting the input sample space and mapping it to higher dimensions not only challenges the dis-
crimination task, but, in addition, encourages the generator to explore various paths towards the data
distribution, leading to improved variation of the generated samples (see Sec. 5).

Our technique is orthogonal to existing work, it can be successfully employed with other regular-
izations strategies (Miyato et al., 2018; Gulrajani et al., 2017) and different network architectures
(Chen et al., 2016; Radford et al., 2016), which we demonstrate in Sec. 5. We experimentally
show the effectiveness of the progressive augmentation of GANs for image generation tasks on
multiple benchmarks (MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), CIFAR10
(Krizhevsky, 2009), CELEBA (Liu et al., 2015)) across different evaluation metrics (IS (Theis et al.,
2016), FID (Huszár, 2015), KID (Bińkowski et al., 2018)).

2 RELATED WORK

Many recent works have focused on improving the stability of GAN training and the overall visual
quality of generated samples (Radford et al., 2016; Roth et al., 2017; Karras et al., 2018; Gulrajani
et al., 2017; Miyato et al., 2018). As reported by Arjovsky & Bottou (2017), the reason for the
unstable behaviour of GANs is partly due to a dimensional mismatch or non-overlapping support
between the real data and the generative model distributions, resulting in an almost trivial task for the
discriminator. Once the performance of the discriminator is maxed out, it provides a non-informative
signal to train the generator. To avoid vanishing gradients, the original GAN paper (Goodfellow
et al., 2014) proposed to modify the min-max based GAN objective (MM GAN) to a non-saturating
loss (NS GAN). However, even with such a re-formulation the generator updates tend to get worse
over the course of training and optimization becomes massively unstable (Arjovsky & Bottou, 2017).

Prior approaches tried to mitigate this issue by using heuristics to weaken the discriminator, such as
decreasing its learning rate, adding label or input noise. Salimans et al. (2016) proposed a one-sided
label smoothing technique to smoothen the classification boundary of the discriminator, thereby
preventing it from being overly confident, but at the same time biasing its optimality. The works
of Arjovsky & Bottou (2017) and Sønderby et al. (2017) made the job of the discriminator harder
by adding Gaussian noise to both generated and real samples. Moving the manifolds of the data
and model distributions closer to each other by adding the input noise ensures a meaningful overlap
between their supports, which is desired in order for the generator to eventually approach the data
distribution. However, adding high-dimensional noise introduces significant variance in the parame-
ter estimation, which slows down the training and requires multiple samples for counteraction (Roth
et al., 2017). Similarly, Sajjadi et al. (2018) proposed to blur the input samples and gradually remove
the blurring effect during the course of training. Instead of adding noise to the input, Zhang et al.
(2018b) created mixup samples by interpolating between synthetic and real ones, which leads to a
more stable behaviour of GANs. These techniques, i.e., additive noise, blurring and sample mixup,
perform direct modifications on the data samples.

Another line of work resorts to cost function reformulation to improve the stability of GAN training,
e.g. by using the Pearson χ2 divergence for least square GANs (LS GANs) (Mao et al., 2016), ker-
nel maximum mean discrepancy (MMD) for MMD-GANs (Li et al., 2017; Dziugaite et al., 2015),
or f-divergence for f-GANs (Nowozin et al., 2016). Arjovsky et al. (2017) proposed the Wasser-
stein GAN (WGAN) with the training objective derived from the Wasserstein distance, aiming to
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mitigate the vanishing gradient problem. The drawback of this approach is the weight clipping
of the discriminator employed to enforce smoothness, which adversely reduces the capacity of the
discriminator. Alternative to weight clipping, Gulrajani et al. (2017) added a soft penalty on the
gradient norm which ensures a 1-Lipschitz discriminator. The gradient norm penalty can be seen as
a weight regularization technique for the discriminator and was shown to improve the performance
with other losses as well (Fedus et al., 2018). Similarly, Roth et al. (2017) proposed to add a penalty
on the weighted gradient-norm of the discriminator in the context of f-divergences, showing its
equivalence to adding input noise. On the downside, regularizing the discriminator with the gradient
penalty depends on the model distribution which changes during training and results in increased
runtime due to additional gradient norm computation. Miyato et al. (2018) proposed another way to
stabilize the discriminator by normalizing its weights and limiting the spectral norm of each layer
to constrain the Lipschitz constant. This normalization technique does not require intensive tuning
of hyper-parameters and is computationally light. Most recently, Zhang et al. (2018a) showed that
spectral normalization is also beneficial for the generator by preventing the escalation of parameter
magnitudes and avoiding unusual gradients.

Several methods have proposed to modify the training methodology of GANs in order to further
improve stability, e.g. by considering multiple discriminators with different roles (Durugkar et al.,
2017) or growing both the generator and discriminator networks progressively (Karras et al., 2018).

In this work we introduce an orthogonal way to stabilize the GAN training by progressively increas-
ing the discrimination task difficulty. To this end, a novel and structured way of augmenting the
discriminator input space is proposed. In contrast to other techniques, our method does not bias the
optimality of the discriminator or alter the training samples. Furthermore, the proposed augmenta-
tion is complementary to prior work. It can be employed with different GAN architectures, adapted
to various divergence measures and combined with other regularization techniques (see Sec. 5).

3 THEORETICAL BACKGROUND

For generative modeling, one common approach is to adopt divergence measures as loss functions
for the generator. Our method belongs to this line of work. In contrast to prior work, our primary
focus is not on explicitly minimizing the divergence between the data and model distributions de-
fined on the sample space X . Alternatively, we first structurally augment the training samples (both
real and synthetic ones) and then minimize the divergence between distributions defined on the aug-
mented sample space. For computing the divergence, we adopt the adversary process introduced by
(Goodfellow et al., 2014) (Sec. 3.1), while the proposed augmentation is inspired by the information
theory view of Jensen-Shannon (JS) divergence (Sec. 3.2). Both of them are briefly reviewed in this
section to lay the theoretical groundwork for our method, which we then discuss in Sec. 4.

3.1 ADVERSARY PROCESS OF GANS

Let X denote a compact metric space such as the image space [0, 1]d of dimension d. The data
distribution Pd and the model distribution Pg are both probability measures defined on X . In the
context of GANs, Pg is commonly induced by a function G that maps a random noise vector z,
following a given prior distribution Pz, to a synthetic data sample, i.e. xg = G(z) ∈ X .

The core idea behind GAN training is to set up a competing game between two players, commonly
termed the discriminator D and generator G. Mathematically, their objective can be formulated as

min
G

max
D

L(D,G)
∆
= Ex ∼ Pd

{log [D(x)]}+ Ex ∼ Pg
{log [1−D(x)]} , (1)

with D : X 7→ [0, 1]. The optimal D∗ respectively classifies x ∼ Pd and x ∼ Pg as TRUE and
FAKE, i.e. binary classification. Its achieved maximum equals the JS divergence between Pd and
Pg, which is then used as the loss function by the generator to optimize G (Goodfellow et al., 2014).

3.2 INFORMATION THEORY VIEWPOINT

Apart from quantifying distributions’ similarity, the JS divergence has an information theory inter-
pretation that inspires our approach presented in Sec. 4. In accordance with the binary classification
task of the discriminator, we introduce a binary random variable s with a uniform distribution Ps.
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Figure 2: Overview of the proposed PA-GANs training. With each level of progressive augmenta-
tion L the dimensionality of s is enlarged from 1 to N , s = {s1, s2, . . . , sN}. The task difficulty of
the discriminator, checksum computation of (x, s), increases as the length of s grows.

Associating s = 0 and s = 1 respectively with x ∼ Pd and x ∼ Pg, we obtain a joint distribution

P(x, s) = Ps(s)P(x|s) with P(x|s) ∆
=

{
Pd(x) if s = 0
Pg(x) if s = 1

. (2)

The marginal distribution with respect to x (a.k.a. the mixture distribution) is equal to

Pm
∆
=

Pd + Pg

2
. (3)

Computing the mutual information of the two random variables s and x based on P(x, s), we have

I(x; s) = H(x)−H(x|s) (a)
= 0.5

∫
pd(x) log pd(x)dPm(x) + 0.5

∫
pg(x) log pg(x)dPm(x)

= DJS (Pd‖Pg) , (4)
where the equality (a) is the outcome of computing the two entropy terms based on the refer-
ence measure Pm. The minimum of the JS divergence DJS (Pd‖Pg) equal to zero is attainable
iff Pd = Pg. This condition makes the joint distribution function P(x, s) factorizable, indicating the
independence between x and s, and thereby yielding zero mutual information.

4 PROGRESSIVELY AUGMENTED GAN TRAINING

Relying on the information theory view of the JS divergence given in the previous section, we can
cast the optimization objective of the generator as mutual information minimization

min
G

DJS (Pd‖Pg) ≡ min
G

I(x; s). (5)

Based on (5), in Sec. 4.1 we will first present an equivalent problem to (5), particularly showing
how the auxiliary random bit s leads us to a novel and structured way to augment the sample x ∈ X
for training the discriminator. By further identifying a common principle behind the equivalent
problems, in Sec. 4.2 we extend the single level augmentation based on one bit s to progressive
multi-level augmentation with an arbitrarily long random bit sequence. Progressively increasing the
number of augmentation levels equips us with a new mechanism to balance the two-player compet-
ing game. In Sec. 4.3 we describe the integration of the proposed augmentation into neural networks
and present how to schedule the augmentation progression during training.

4.1 SINGLE LEVEL AUGMENTATION

Starting from the case of single level augmentation with one bit s, we first note that the following
two minimization problems are equivalent

min
G

DJS (Pd‖Pg) ≡ min
G

DJS (P(x, s)‖Q(x, s)) (6)

where P(x, s) has been defined in (2) and Q(x, s) is constructed as

Q(x, s) = Ps(s)Q(x|s) with Q(x|s) ∆
=

{
Pd(x) if s = 1
Pg(x) if s = 0

. (7)

The two joint distribution functions P(x, s) and Q(x, s) differ from each other by the association
of the bit s ∈ {0, 1} with the data and synthetic samples, respectively. Their marginals with respect
to x are neither the data nor the generative model distribution, but by construction are identical and
equal to Pm(x) as given in (3). It is worth noting that the equivalence holds even if the feasible
solution set of Pg determined by G does not include the data distribution Pd. This is of practical
interest as it is often difficult to guarantee the fulfillment of such premise when modelling G. For
the detailed proof of the equivalence in 6 we refer the reader to App. A.1.
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Next, we attempt to solve the equivalent problem given in (6), following the adversary learning
process behind GANs. Specifically, the objective of the discriminator D converges to estimation of
the JS divergence between P(x, s) and Q(x, s)

max
D

E
(x, s) ∼ P {log [D(x, s)]}+ E

(x, s) ∼ Q {log [1−D(x, s)]} . (8)

Comparing with the original discrimination task in GANs, i.e. (1), two differences are worth noting.
First, the above discriminator takes s in addition to the sample x ∈ X as the input. We, therefore,
view s as a single level of augmentation to the sample x. Second, the distributions that form the two
classes (i.e. TRUE vs. FAKE) become P(x, s) and Q(x, s), instead of the original data and model
distributions. Based on the definitions in (2) and (7), we identify (xd, s = 0) and (xg, s = 1) as
belonging to the TRUE class, whereas (xd, s = 1) and (xg, s = 0) to the FAKE class. Thus, the
real samples are no longer always in the TRUE class, and the synthetic samples are no longer always
in the FAKE class. TRUE and FAKE now depend on the combination of x with s (see Figure 1).

Here, we introduce a simple trick to easily detect the class of a given pair. Namely, let the data
and synthetic samples respectively convey one bit of information, with xd encoding bit zero and
xg encoding bit one from now on. Then, the checksum of the pair (x, s) determines the respective
class, i.e. checksum zero for TRUE and one for FAKE. 1 The checksum computation poses a more
challenging task for the discriminator, as it needs to tell the real and synthetic samples apart and
additionally understand the checksum rule. Therefore, such augmentation is usable for preventing
early maxing-out of the discriminator. More importantly, it does not compromise the core role of
the discriminator in GAN training: informing the generator about the difference between the data
and generative model distribution. This statement is confirmed by the equivalence at (6).

4.2 PROGRESSIVE MULTI-LEVEL AUGMENTATION

We further extend the single level augmentation with one bit s to multi-level augmentation with an
arbitrarily long random bit sequence s. Note that the two optimization problems on both sides of (6)
rely on the JS divergence to quantify the difference of two distributions. Let us replace the data and
generative distributions, i.e. Pd and Pg, respectively with P(x, s) and Q(x, s). Following the same
line of argumentation, we can systematically add a new bit. Repeating this procedure L times will
give us a bit sequence s with length L plus a series of equivalent problems with the same structure

min
G

DJS (Pd‖Pg) ≡ min
G

DJS (P(x, s1)‖Q(x, s1)) ≡ min
G

DJS (P(x, s1, s2)‖Q(x, s1, s2))

· · · ≡ min
G

DJS (P(x, s)‖Q(x, s)) . (9)

To estimate the JS divergence in (9), the augmented discriminator as defined in (8) now takes a bit
sequence s instead of the single bit s, in addition to x. The combination of the sample x and s
yields a multi-level augmentation. Following the analysis of the single bit case, it is not difficult to
notice that the checksum mechanism remains. Namely, the discriminator needs to retrieve the one
bit information carried by x and then perform a checksum together with the bit sequence s. The task
difficulty increases as the length of s grows (see Figure 1). Therefore it makes sense to increase the
augmentation level by adding more bits, whenever the discriminator becomes too powerful. More
importantly, the consistency of the checksum mechanism across different augmentation levels per-
mits progressive augmentation. The same discriminator can be trained from a lower augmentation
level and gradually take more bits into consideration (see Figure 2).

4.3 IMPLEMENTATION

Network architecture. In this work, we aim to maximally reuse existing neural network architec-
tures tailored for GANs, such as DCGAN with spectral normalization (SN DCGAN) (Miyato et al.,
2018) and InfoGAN (Chen et al., 2016). According to the above-introduced approach (and Figure
2), the generator architecture can remain unchanged, while the discriminator network requires an
alteration to incorporate the augmentation s. To this end, we only modify the input layer of the
discriminator network, yielding minimal changes.

First, the bit sequence s is preprocessed into a form compatible with x. Consider an image sample
x with three coordinates, i.e. height, width and color channel (RGB). Each entry of s creates one
extra augmentation channel, whereas the bit value is replicated to match the height and width of x.

1By checksum, we mean to conduct the XOR operation over a bit sequence.
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It is worth noting that we let each bit take on values {0, 1} as input to the network. This choice of
values is mainly due to the progressive augmentation during the course of training. When increasing
the augmentation level, the additional bit 0 does not change the checksum and thus the output of
D. On the contrary, the additional bit 1 flips the even(odd) checksum to odd(even). An effective
change at the discriminator output is necessary to match the discrimination goal, thereby requiring
a non-zero input in the first place. Using {0, 1} rather than other pairs of values, e.g. {−1, 1}, helps
the discriminator to timely catch the change when progression takes place. Second, we keep the
input layer in the network to process x and copy its configuration for processing the reformed s. Its
kernel size, stride and padding type remain, but the input channel size is changed to L to process
each entry of s. When a new augmentation level is reached, one extra input channel is instantiated
to process the bit L+ 1. All the following layers of the discriminator remain unchanged.

Minibatch discrimination. The gradients for updating D are computed from the loss function
given in (8), where the augmentation bit s is replaced by the bit sequence s of length L depending
on the current augmentation level. The two expectations are approximated by using minibatches.
Each minibatch is constructed with the same number of real data samples, synthetic samples and bit
sequences. Each bit sequence is randomly sampled and associated with one real and one synthetic
sample. By computing the checksums of the formed pairs, we can decide the correct class of each
pair (x, s) in the minibatch and feed it into the discriminator to compute the cross-entropy loss. This
way of generating (x, s) guarantees a balanced number of TRUE/FAKE samples.

Non-saturating loss (NS). When employing non-saturating loss for G in the experiments, we
follow the reformulation introduced by (Goodfellow et al., 2014). Since the two expectation terms
in (8) depend on G, this reformulation is applied for both of them, namely

min
G
−E

(x, s) ∼ P {log [1−D(x, s)]} − E
(x, s) ∼ Q {log [D(x, s)]} . (10)

Progression scheduling. Bińkowski et al. (2018) introduced the kernel inception distance (KID)
to quantify the quality of the synthetic samples and proposed to reduce the learning rate by tracking
the reduction of KID over iterations. Here we use KID to decide if the performance of G at the
current augmentation level saturates or even starts degrading (typically happens when D starts over-
fitting or becomes too powerful). Specifically, after t discriminator iterations 2 , we compute the
KID between synthetic samples and data samples drawn from the training set. If the current KID
score is less than 5% of the average of the two previous ones attained at the same augmentation
level, the augmentation is leveled up, i.e. L is increased by one.

Once reaching a new augmentation level, we introduce the following mechanisms to assist the dis-
criminator in quickly picking up the change in the input space. First, the new augmentation bit is
generated from a non-uniform distribution, i.e. P(s = 1) = p and P(s = 0) = 1− p with p < 0.5.
As mentioned before, critical changes on the discriminator side are required for bit 1. For it to grad-
ually comprehend the new bit, we on purpose create more 0s than 1s and gradually increase p up to
0.5 (the uniform case) after a certain number of iterations. A simple linear model is adopted

p = min{0.5 ∗ (t− tst)/tr, 0.5} (11)
where t and tst are the current iteration index and the iteration index when the current augmenta-
tion level is started, respectively; and tr controls the rate of increase. It is important to note that
p 6= 0.5 does not cause unbalanced TRUE and FAKE classes in the constructed minibatches. It only
introduces some bias in the generation of the new augmentation bit.

Finally, it is advisable to slow down the learning rate ofGwhen a new augmentation level is reached.
WhenD is not properly adjusted to the new level, its feedback toG can be noisy. For instance, when
using the Adam optimizer (Kingma & Ba, 2015), we reset the time step recorded by theG optimizer.

5 EXPERIMENTS

Datasets. In our experiments we consider MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao
et al., 2017), CIFAR10 (Krizhevsky, 2009) and CELEBA (Liu et al., 2015) datasets, with the training
set sizes equal to 60k, 60k, 50k and 162k respectively.

2Each update of D parameters counts as one discriminator iteration. We assume that the update frequency
for D can be as or more frequent than that of G, but not the opposite.
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Figure 3: Mean FID values attained over iterations with
different NS GAN variants across five runs on CIFAR10. The
maximal number of achieved PA levels is 7.

200k 300k
NS GAN (Kurach et al., 2018) 26.7 −
NS GAN (ours) 26.3 25.7

NS GAN - GP (Kurach et al., 2018) 26.2 −
PAL=0 - NS GAN 25.7 24.6

PAL=2 - NS GAN 24.5 23.8

PAL=2 - NS GAN - GP 23.2 22.5

Table 1: Median FID values attained
with different NS GAN variants on CI-
FAR10. Applying PA and GP on top
of NS GAN reduces FID by ∼ 12.5%.

Network architectures. We employ two well established deep convolutional GAN architectures,
SN-DCGAN (Miyato et al., 2018) and InfoGAN (Chen et al., 2016) (see Appendix A.2 for detailed
configurations). As they respectively employ spectral normalization (SN) and batch normalization
(BN), our aim is to explore the compatibility of PA-GAN with these normalization techniques.

Evaluation metrics. We use Fréchet inception distance (FID) (Huszár, 2015) as the primary per-
formance evaluation metric.3 Additionally, we also report inception score (IS) (Theis et al., 2016)
and kernel inception distance (KID) (Bińkowski et al., 2018) in Appendix A.4. For quantifying the
quality of synthetic samples, all measures are computed based on 10k test data and 10k synthetic
samples, following the evaluation framework of Luc̆ić et al. (2018) and Kurach et al. (2018).4

Training details. We use the minibatch size of 64 and the Adam optimizer (Kingma & Ba, 2015)
with the default setting: β1 = 0.5, β2 = 0.999 and learning rate 2×10−4 for both the generator and
discriminator, which have an equal update rate. The dimension of z is set to 64 and 128 respectively
for InfoGAN and SN-DCGAN. The prior distribution Pz is uniform. For scheduling progressive
augmentation KID is evaluated every 104 discriminator iterations, using 10k generated samples and
10k samples randomly drawn from the training set, and tr in (11) is set to 5× 103.

5.1 CIFAR10 WITH SN-DCGAN

In this experiment, we evaluate the progressive augmentation (PA) with NS GAN (GAN with the
non-saturating loss) using the SN-DCGAN architecture on CIFAR10. We analyze the benefits of
applying PA on top of NS GAN, experiment with starting PA from different augmentation levels and
investigate the complementarity of using both PA and the gradient penalty regularization (GP) (Gul-
rajani et al., 2017). For fair comparison, we follow the experimental setup of (Kurach et al., 2018).

NS GAN with PA. Figure 3 and Table 1 compare NS GAN results with and without applying PA.
We are able to closely reproduce the NS GAN results reported in (Kurach et al., 2018, Table 6), after
200k iterations we obtain the median FID value of 26.3 vs. original 26.7. By applying PA on top
of NS GAN and starting from the augmentation level 0 (PAL=0 - NS GAN), we achieve superior perfor-
mance, with the median FID of 25.7 vs. 26.3 of NS GAN. Training for extra 100k iterations boosts
the performance of PAL=0 - NS GAN (25.7 vs. 24.6). Starting PA from the level 2 (PAL=2 - NS GAN)
further improves the median FID (23.8 vs. 25.7); as CIFAR10 contains diverse images a start from
a higher augmentation level is recommended. It is worth noting that at early iterations (up to 50k)
PAL=2 - NS GAN has worse performance than NS GAN. Starting at the augmentation level 2 imposes
a more challenging task for the discriminator, thereby showing slower improvement at initial itera-
tions but being beneficial in the longer term. The FID value of PAL=2 - NS GAN saturates at a slower
pace than NS GAN leading to better overall results.

NS GAN with PA and GP. For GP the interpolates are created analogously to (Gulrajani et al.,
2017), i.e. [x̃, s̃] = α[x, s]TRUE + (1 − α)[x, s]FAKE with α ∼ U(0, 1). Note that interpolation
takes place in the augmented space [x, s], yielding s̃ ∈ [0, 1]L.

In (Kurach et al., 2018), when GP is applied on top of NS GAN a marginal improvement is observed
(26.2 vs. 26.7). However, employing PA results in a more noticeable gain for GP (22.5 vs. 23.8).
Furthermore, GP helps to accelerate the learning speed of PAL=2 - NS GAN at the initial iterations.

3How to precisely evaluate the performance of GANs is an open question in itself. From the comparison
conducted in (Borji, 2018), FID is considered to be the most informative of the measures.

4https://github.com/google/compare_gan
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MNIST Fashion-MNIST CIFAR10 CELEBA
MM GAN (Goodfellow et al., 2014) 9.8± 0.9 29.6± 1.6 72.7± 3.6 65.6± 4.2

LS GAN (Mao et al., 2016) 7.8± 0.6 30.7± 2.2 87.1± 0.9 53.9± 2.8

WGAN (Arjovsky et al., 2017) 6.7± 0.4 21.5± 1.6 55.2± 2.3 41.3± 2.0

DRAGAN (Kodali et al., 2017) 7.6± 0.4 27.7± 1.2 69.8± 2.0 42.3± 3.0

NS GAN (Goodfellow et al., 2014) 6.8± 0.5 26.5± 1.6 58.5± 1.9 55.0± 3.3

PA - NS GAN 8.8± 1.1 18.4 ± 1.5 44.6 ± 1.9 46.9 ± 3.3

PA - NS GAN (*) 6.6± 0.8 15.8± 1.1 43.1± 1.6 46.8 ± 3.2

WGAN - GP (Gulrajani et al., 2017) 20.3± 5.0 24.5± 2.1 55.8± 0.9 30.0± 1.0

PA - WGAN - GP 13.9 ± 1.5 26.4± 2.8 - 29.2 ± 1.7

PA - WGAN - GP (*) 8.6 ± 1.1 20.7 ± 2.1 - 29.1± 1.7

Table 2: FID values achieved by the listed algorithms with the InfoGAN architecture. The numbers
except for PA are taken from (Luc̆ić et al., 2018). All numbers are based on 50 independent runs.
Outliers are not removed for PA, see A.7 for further discussion. For the four datasets (from left to
right), the results are attained after 20, 20, 100 and 40 epochs, respectively, except for the PA results
marked with (*). For (*) the training time is not constrained by the previously specified number of
epochs, see A.5 for details.

As indicated in Figure 1, in the augmented space (e.g., L ∈ {1, 2}), more paths are created for the
generative model to approach the data distribution. GP can help to smoothen the decision boundaries
along these paths. As a result, GP and PA jointly improve the performance of NS GAN, being mutually
beneficial (22.5 vs. 26.3). In A.3, we additionally report results on CELEBA-HQ (Karras et al.,
2018). The enlarged performance gain (18.1 vs. 28.5) reveals a great potential of employing PA for
high resolution datasets.

5.2 COMPARISONS AMONG DATASETS AND GAN-TYPE ALGORITHMS

Luc̆ić et al. (2018) compared various GAN-type algorithms under the InfoGAN architecture and
reported their FID scores after a wide range of hyper-parameter searching. Following their experi-
mental setup, we select hyper-parameters within the candidate set considered by Luc̆ić et al. (2018)
(see Appendix A.5 for details) and evaluate PA with NS GAN as well as Wasserstein GAN with GP
(WGAN - GP). The maximal number of augmentation levels achieved by PA corresponds to seven. The
results are reported in Table 2. Overall, we observe significant gains of employing PA with NS GAN
and WGAN - GP across different datasets. Note that the numbers provided by Luc̆ić et al. (2018) are
outcomes of removing outliers up to 20% among the fifty independent runs. Since the outlier re-
moving ratio is not specified for individual cases in (Luc̆ić et al., 2018), in Table 2 we report the PA
results without removing outliers, see A.7 for further discussion.

As shown in Table 2, the NS GAN performance is quite stable across the datasets. By applying PA with
NS GAN, we achieve a pronounced improvement, particularly when the dataset (and hence the image
generation task) becomes more complicated. Note that the PA - NS GAN performance on MNIST is
worse than NS GAN. This is mainly because NS GAN already performs very well on such a simple
dataset and PA requires additional iterations to reach similar results or further improve them as in
PA - NS GAN (*). In contrast to NS GAN, WGAN - GP is sensitive to the dataset as shown in Table 2
and reported by Mescheder et al. (2018). However, applying PA helps to stabilize the WGAN - GP
performance across different benchmarks. Similarly to NS GAN, longer training leads to better results
for PA with WGAN - GP. The results in Table 2 indicate that PA generalizes well across different
distance measures and is not limited to the JS divergence.

Besides the experiments in Sec. 5.1 and 5.2, we provide a careful investigation of PA itself in Ap-
pendix. Ablation studies on the effect of the progression scheduling and the linear model 11 are
given in A.6, followed by the analysis of PA training stability in A.7. The increase of the task diffi-
culty of the discriminator with PA is examined in A.8. In addition to GP, we also compare PA with
the dropout regularization in A.9.

6 CONCLUSION

In this work we have proposed a novel method - progressive augmentation (PA) - to improve the
stability of GAN training, and showed a way to integrate it into existing GAN architectures with
minimal changes. Different to standard data augmentation our approach does not modify the train-
ing samples, instead it progressively increases the dimension of the discriminator input space by

8
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augmenting it with auxiliary random variables. Higher sample space dimensionality helps to entan-
gle the discriminator and thus to avoid its early performance saturation. Moreover, in the augmented
space the generator can explore more paths to approach the data distribution, improving variation
of the generated samples. We experimentally have shown pronounced performance improvements
of employing the proposed PA with state-of-the-art GAN methods across multiple benchmarks. We
demonstrated that PA generalizes well across different network architectures and loss functions and
is complementary to other regularization techniques. For future work, we find a joint optimization
of PA with neural architectures an interesting direction, for instance, combining it with progressive
growing of GANs (Karras et al., 2018). Apart from generative modeling, our approach can also be
exploited for semi-supervised learning, generative latent modeling and transfer learning.

9
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Mikołaj Bińkowski, Dougal J. Sutherland, Michael N. Arbel, and Athur Gretton. Demystifying
MMD GANs. In International Conference on Learning Representations (ICLR), 2018.

Ali Borji. Pros and cons of GAN evaluation measures. arXiv:1802.03446, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. InfoGAN:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in Neural Information Processing Systems (NIPS), 2016.

Ishan P. Durugkar, Ian Gemp, and Sridhar Mahadevan. Generative multi-adversarial networks. In
International Conference on Learning Representations (ICLR), 2017.

Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. Training generative neural
networks via maximum mean discrepancy optimization. In UAI, 2015.

William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, and
Ian J. Goodfellow. Many paths to equilibrium: GANs do not need to decrease a divergence at
every step. In International Conference on Learning Representations (ICLR), 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of Wasserstein GANs. In Advances in Neural Information Processing Systems
(NIPS), 2017.

Ferenc Huszár. How (not) to train your generative model: Scheduled sampling, likelihood, adver-
sary? arXiv: 1511.05101, 2015.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for im-
proved quality, stability, and variation. In International Conference on Learning Representations
(ICLR), 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Naveen Kodali, James Hays, Jacob Abernethy, and Zsolt Kira. On convergence and stability of
GANs. arXiv:1705.07215, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
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A APPENDIX

A.1 PROOF OF THE EQUIVALENCE IN (6)

In Sec. 3.2, we have provided the connection of the JS divergence to the mutual information between
the auxiliary random bit s and the sample x following the joint distribution P(x, s) as given in (2)

DJS (Pd‖Pg) = I(x; s). (12)
Interchanging the position of Pd and Pg in constructing P(x, s), we obtain the joint distribution
Q(x; s) as given in (7). With respect to Q(x; s), we further compute and denote the mutual infor-
mation between x and s as Ĩ(x; s). Analogous to 4 in Sec. 3.2, we can show

DJS (Pd‖Pg) = Ĩ(x; s). (13)

The equality (12) and (13) jointly yield

DJS (Pd‖Pg) =
1

2
I(x; s) +

1

2
Ĩ(x; s) (14)

followed by rewriting mutual information as KL divergence

DJS (Pd‖Pg) =
1

2
DKL (P(x, s)‖Pm(x)Ps(s)) +

1

2
DKL (Q(x, s)‖Pm(x)Ps(s)) . (15)

It is noted that the marginals of P(x, s) and Q(x, s) with respect to x are identical and equal to
Pm(x) as given in (3), whereas Ps(s) is their marginal with respect to s.

With the identification of

Pm(x)Ps(s) =
P(x, s) +Q(x, s)

2
(16)

we reach to

DJS (Pd‖Pg) =
1

2
DKL (P(x, s)‖0.5P(x, s) + 0.5Q(x, s))

+
1

2
DKL (Q(x, s)‖0.5P(x, s) + 0.5Q(x, s)) . (17)

The right-hand side term of the above equality is simply the JS divergence between P(x, s) and
Q(x, s). Since the two JS divergences are completely identical, we can use them interchangeably
as the objective function while optimizing Pg. With that we conclude the equivalence proof for the
two optimization problems in (6).

A.2 NEURAL NETWORK ARCHITECTURES

Following Kurach et al. (2018) for SN-DCGAN we employed the same architecture as in (Miyato
et al., 2018), which we present in Table A1. For the InfoGAN architecture we followed Luc̆ić et al.
(2018) and used the network structure of (Chen et al., 2016), which is described in Table A2. For
both experiments with SN-DCGAN and InfoGAN we exploited the implementation provided in
https://github.com/google/compare_gan.

Table A1: SN-DCGAN architecture.

(a) Discriminator

Layer Kernel Output shape

Conv, lReLU [3, 3, 1] h× w × 64

Conv, lReLU [4, 4, 2] h
2 ×

w
2 × 128

Conv, lReLU [3, 3, 1] h
2 ×

w
2 × 128

Conv, lReLU [4, 4, 2] h
4 ×

w
4 × 256

Conv, lReLU [3, 3, 1] h
4 ×

w
4 × 256

Conv, lReLU [4, 4, 2] h
8 ×

w
8 × 512

Conv, lReLU [3, 3, 1] h
8 ×

w
8 × 512

Linear − 1

(b) Generator

Layer Kernel Output shape

z − 128

Linear, BN, ReLU − h
8 ×

w
8 × 512

DeConv, BN, ReLU [4, 4, 2] h
4 ×

w
4 × 256

DeConv, BN, ReLU [4, 4, 2] h
2 ×

w
2 × 128

DeConv, BN, ReLU [4, 4, 2] h× w × 64

DeConv, Tanh [3, 3, 1] h× w × 3

12
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Table A2: InfoGAN architecture.

(a) Discriminator

Configuration per Layer

4× 4 conv. 64 lReLU, stride 2

4× 4 conv. 128 lReLU, stride 2, BN

Linear, 1024 lReLU, BN

Linear, 1 output

(b) Generator

Configuration per Layer

Linear, 1024 ReLU, BN

Linear, 7× 7× 128 ReLU, BN

4× 4 DeConv, 64 ReLu, stride 2, BN

4× 4 Deconv, 1 or 3 channels
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Figure A1: Mean FID values attained over iterations across five independent runs with different
NS GAN variants on CELEBA-HQ (128 × 128), using the SN-DCGAN architecture. The maximal
number of achieved augmentation levels is 10.

200k 300k
Median Best Median Best

NS GAN (Kurach et al., 2018) 31.1 29.1 − −
NS GAN (ours) 27.4 26.4 27.4 26.2
NS GAN - GP (ours) 27.5 26.8 27.2 26.8

PAL=2 - NS GAN 23.9 22.2 23.1 21.8

PAL=2 - NS GAN - GP 19.7 19.4 18.8 18.1

Table A3: Median and best FID values attained with different NS GAN variants on CELEBA-HQ
(128 × 128), using the SN-DCGAN architecture. Applying PA and GP on top of NS GAN reduces
FID by ∼ 32%.

A.3 CELEBA-HQ WITH SN-DCGAN

Figure A1 and Table A3 report additional results (FID scores) on CELEBA-HQ (128×128) (Karras
et al., 2018) using the SN-DCGAN network architecture, following the same experimental setup
as in Sec. 5.1. The results on CELEBA-HQ (128 × 128) are consistent with our observations
in Sec. 5.1. By applying PA on top of NS GAN - GP and starting from the augmentation level 2
(PAL=2 - NS GAN - GP), we achieve superior performance, with the median FID of 18.8 vs. 27.3 of
NS GAN - GP. Without PA, NS GAN and NS GAN - GP have almost no FID reduction (or very minor) in
the last 100k iterations, whereas PA enables further improvement. The achieved best FID value by
PAL=2 - NS GAN - GP is even 36% smaller than the best FID score achieved by NS GAN with ResNet19
reported by (Kurach et al., 2018) (18.1 vs. 28.5).

A.4 CIFAR10 WITH SN-DCGAN

Figure A2 and A3 together with Table A4 and Table A5 report the inception scores and KID values
that are attained following the same experimental setup as in Sec. 5.1 on CIFAR10. The results
on both measures are consistent with our observation drawn from the FID values. In the recent
work (Arbel et al., 2018), the reported best KID value for CIFAR10 with SN-DCGAN is 0.015,
whereas PAL=2 - NS GAN - GP reduces it to 0.013.

13
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Figure A2: Inception scores (IS) attained over iterations
with different NS GAN variants averaged across five inde-
pendent runs on CIFAR10.

200k 300k

NS GAN (ours) 7.54 7.58

PAL=0 - NS GAN 7.63 7.64

PAL=2 - NS GAN 7.64 7.72

PAL=2 - NS GAN - GP 7.59 7.76

Table A4: Median inception scores
(IS) attained with different NS GAN
variants on CIFAR10.
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Figure A3: KID values attained over iterations with dif-
ferent NS GAN variants averaged across five independent
runs on CIFAR10.

200k 300k

NS GAN (ours) 0.0168 0.0164

PAL=0 - NS GAN 0.0165 0.0153

PAL=2 - NS GAN 0.0149 0.0139

PAL=2 - NS GAN - GP 0.0140 0.0133

Table A5: Median KID values at-
tained with different NS GAN vari-
ants on CIFAR10.

Next we present some further remarks on the implementation side. First, to explicitly investigate the
combination of GP and PA, we add the GP as an extra regularizer to the discriminator loss function
only when the augmentation takes place, and GP is computed with respect to the augmented sample
after interpolation, i.e. [x̃, s̃]. Figures A4 - A6 together with Tables A6 - A8 report results evaluated
with the FID, IS and KID metrics. With the use of GP, the starting level of the augmentation has
negligible influence on the performance after a sufficient number of iterations.

Second, the chosen hyper-parameters are not optimized for PA. In fact, they are dedicatedly chosen
by (Kurach et al., 2018) for NS GAN, i.e. β1 = 0.5, β2 = 0.999, λ = 1 (weighting factor for GP) and
the learning rate 2 × 10−4. We adopt them for PA for the purpose of fair comparison. Therefore,
further optimization on the hyper-parameters for PA may potentially yield better results than the
reported ones.

Third, in our implementation all of progressively added augmentation channels take on the values
{0, 1} to ease the progression, as described in Sec. 4.3. For those augmentation channels that are
present from the start of training and if the pixel values of the image are normalized to [−1, 1], we ac-
cordingly experimented with the values {±1}. As a result, in the current experiment (i.e., CIFAR10
with SN-DCGAN), we used {±1} and switch to {0, 1} for subsequent InfoGAN experiment. In
general, it is not a critical choice to the performance from our observation.

At last, a set of synthetic images generated by PAL=2 - NS GAN - GP with the FID value of 22.5 on
CIFAR10 is shown in Figure A7.

A.5 COMPARISONS AMONG DATASETS AND GAN-TYPE ALGORITHMS

In Sec. 5.2, we apply PA with NS GAN and WGAN - GP and report the achieved FID values in Table 2.

For PA - NS GAN and PA - NS GAN (*) across all datasets we start augmentation with level two, i.e.
L = 2. The other adopted hyper-parameters for PA - NS GAN are listed in Table A9. It is impor-
tant to note that they are selected considering the limit on the training epochs specified by Luc̆ić
et al. (2018). Allowing more iterations, the performance can be further improved. For instance,
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Figure A4: FID attained over iterations with different
progression starting levels averaged across five indepen-
dent runs on CIFAR10.

200k 300k

NS GAN (ours) 26.3 25.7

PAL=0 - NS GAN - GP 23.2 22.8

PAL=1 - NS GAN - GP 23.9 23.0

PAL=2 - NS GAN - GP 23.2 22.5

Table A6: FID values attained with
different progression starting levels
on CIFAR10.
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Figure A5: IS attained over iterations with different pro-
gression starting levels averaged across five independent
runs on CIFAR10.

200k 300k

NS GAN (ours) 7.54 7.58

PAL=0 - NS GAN - GP 7.63 7.67

PAL=1 - NS GAN - GP 7.64 7.77

PAL=2 - NS GAN - GP 7.59 7.76

Table A7: Median IS attained with
different progression starting levels
on CIFAR10.
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Figure A6: KID values attained over iterations with dif-
ferent progression starting levels averaged across five in-
dependent runs on CIFAR10.

200k 300k

NS GAN (ours) 0.0168 0.0164

PAL=0 - NS GAN - GP 0.0141 0.0141

PAL=1 - NS GAN - GP 0.0144 0.0141

PAL=2 - NS GAN - GP 0.0140 0.0133

Table A8: Median KID values
attained with different progression
starting levels on CIFAR10.

PA - NS GAN (*) in Table 2 shows the achieved performance if we run 40k iterations for MNIST
and Fashion-MNIST, and run 140k iterations for CIFAR10 and CELEBA. The gains can be further
enlarged if the hyper-parameters are adjusted towards the longer training time. For instance, by re-
ducing the learning rate from 10−3 to 2× 10−4 and performing 140k iterations for MNIST, we can
achieve the FID of 4.5± 0.35.

Proceeding to the case PA - WGAN - GP, the hyper-parameters are listed in Table A10, the batch nor-
malization for the discriminator is disabled. For both MNIST and Fashion-MNIST, the augmentation
level starts from one to ensure that it is in place within the 20 epoch training time. For CELEBA,
we start from the augmentation level zero and will reach the level one augmentation within the 40
training epochs. Analogous to the previous case, better performance is achievable by PA with the
number of iterations increased beyond the original limit, i.e. 40k for MNIST and Fashion-MNIST
and 140k for CELEBA.
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Figure A7: Synthetic images generated by PAL=2 - NS GAN - GP with the FID 22.5 on CIFAR10.

Finally, we note that to stabilize progression in WGAN - GP the weighting factor λ for GP requires
a careful adjustment. In this experiment, we relax λ following the idea behind (11), namely by
linearly increasing λ from zero to its original value within tr iterations (in this case tr = 5× 103).
Interestingly, we did not find such adaptation necessary when using GP with NS GAN. One possible
reason is that GP is critical to WGAN due to the Lipschitz constraint, but optional to NS GAN. Augmen-
tation changes the input space of the discriminator, and the number of terms involved in the GP also
increases with the number of augmentation channels. Further investigation on the weighting factor
adjustment to fully exploit the benefit of combining PA with WGAN - GP is a part of our future work.
The results reported in this work have confirmed that PA is not limited to the JS divergence.

MNIST Fashion-MNIST CIFAR10 CELEBA

β1 0.5 0 0.5 0.5

β2 0.999 0.999 0.999 0.999

Learning rate 10−3 4× 10−4 4× 10−4 2× 10−4

Table A9: Hyper-parameters for generating our numbers associated to PA - NS GAN in Table 2.

MNIST Fashion-MNIST CIFAR10 CELEBA

β1 0 0 - 0

β2 0.999 0.999 - 0.999

λ 0.1 0.1 - 0.1

Learning rate 10−3 10−3 - 4× 10−4

Table A10: Hyper-parameters for generating our numbers associated to PA - WGAN - GP in Table 2.

A.6 ABLATION STUDIES

Effect of the Progression Scheduling. Here we experiment with InfoGAN on CELEBA, as one
of the most challenging cases considered in Table 2, to study the effect of the progression scheduling
described in Sec. 4.2 and 4.3. Originally, Luc̆ić et al. (2018) suggested 40 epoches (approximately
100k iterations) for the NS GAN training. As we can observe from Figure A8, further training can
only degrade the performance. One important reason for such behaviour is that the discriminator
architecture design of InfoGAN (see Table A2) might be suboptimal for CELEBA (e.g., a fully
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Figure A8: FID values with InfoGAN on CELEBA, the results are attained after 40 epochs (about
100k iterations). We remove outliers that are outside 4 standard deviation. In all cases, the number
of outliers is less than 5% among 50 independent runs. The maximal number of achieved PA levels
is 7.
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Figure A9: FID mean and standard deviation values across 50 independent runs with InfoGAN on
CELEBA, dependent on the number of removed outliers.

connected rather than a convolutional layer at the end plus batch normalization conducting minibatch
discrimination).5 By applying the proposed augmentation strategy, even with one augmentation level
and no progression, we can achieve much better FID values at much earlier iterations. Moreover,
with the progression scheduling of augmentation (from level 2 to 7) we can dramatically slow down
the degradation process for this challenging case. We additionally observe that the standard deviation
of FID values across 50 runs is much smaller with PA than without it and the gain of the PA remains
consistent, independent of the number of outliers removed, see Figure A9.6 This showcases the
positive effect of the proposed PA on the training stability of GANs. Nevertheless, it remains difficult
to fully counteract the degradation process caused by the suboptimal network architecture design for
the task at hand.

Role of the Linear Model (11) in PA. Here we analyse the role of the linear model 11 in pro-
gression scheduling described in Sec. 4.3. Figure A10 depicts D Loss and G Loss over training
iterations on CIFAR10 using SN-DCGAN.

Performing PA with a newly augmented bit may lead to the confusion of the discriminator, as EVEN
inputs can immediately become ODD ones and vice versa. Empirically, we observe that the loss of
the discriminator (i.e., D Loss) may stuck at values close to 1.38 for a considerable number of
iterations, because the discriminator is confused about the abrupt change. This is particularly true
for regularized networks. Whenever such situation takes place, it is harmful for the generator as
well. A confused discriminator can no longer guide it towards the data distribution.

Figure A10 depicts the above mentioned confusions after a new augmentation level is introduced. In
this case, there are two plateaus of D Loss for brown curves which do not employ the linear model
11 in PA, occurring between 70k and 120k iterations. Employing the linear model 11 in PA helps to
avoid such long lasting plateaus. The blue curves (with 11 in PA) exhibit smooth transitions when

5In fact, this architecture was initially selected by Chen et al. (2016) for MNIST (28× 28). In the released
code of (Luc̆ić et al., 2018), such InfoGAN architecture was adopted not only for MNIST and Fashion-MNIST,
but also CIFAR10 and CELEBA with higher resolutions.

6We follow (Luc̆ić et al., 2018), which excludes outliers while reporting the FID values.
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Figure A10: The behaviour of D Loss and G Loss over iterations on CIFAR10 using SN-DCGAN,
with and without the linear model 11 in progression scheduling.
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Figure A11: The behaviour of D Loss and G Loss of NS GAN and NS GAN - GP with and without PA
during the training on CIFAR10 using the SN-DCGAN architecture.

the augmentation level increases. Overall, the linear model 11 in PA helps to speed up the learning
process. The main motivation of having it is to take precautions against potential ill adaptation to
new augmentation levels.

A.7 EFFECT OF PA ON THE TRAINING STABILITY

Figure A11 compares D Loss and G Loss of NS GAN and NS GAN - GP with and without PA during the
training on CIFAR10 using the SN-DCGAN architecture. Without PA the training becomes unstable
over time independent of using GP (red curves), while employing PA helps to maintain a healthy
competition between the discriminator and the generator. Observing the behaviour of D Loss and
G Loss, we conclude that PA can effectively prevent the discriminator from overfitting, alleviating
the vanishing gradient issue and thus enabling continuous learning of the generator.

In Table A11 we present mean and standard deviation values of FID across 50 independent runs on
four datasets. We follow the work of (Luc̆ić et al., 2018) reporting the numbers while excluding
significant outlier runs. Excluding outlier runs mostly influences the standard deviation of the FID
values. Table A11 shows that in the same setting as (Luc̆ić et al., 2018) PA not only improves the
FID values, but also reduces their standard deviations across multiple runs. This highlights that
the training becomes more stable with PA. The improvement of using PA is consistent across four
datasets, although the value of the mean FID heavily fluctuates dependent on the dataset.

A.8 ANALYSIS OF THE TASK DIFFICULTY OF THE DISCRIMINATOR WITH PA

With PA we have casted the discrimination task into a checksum operation, involving two steps. The
data and synthetic samples are combined with the augmentation bit sequence, resulting in data and
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Outliers
removed

MNIST Fashion-MNIST CIFAR10 CELEBA

NS GAN (Goodfellow et al., 2014) X 6.8± 0.5 26.5± 1.6 58.5± 1.9 55.0± 3.3

PA - NS GAN X 8.4± 0.6 18.1± 1.1 44.3± 1.3 45.4± 2.1

PA - NS GAN (*) X 6.5± 0.4 15.8± 0.7 42.8± 1.3 45.4± 2.1

PA - NS GAN × 8.8± 1.1 18.4± 1.5 44.6± 1.9 46.9± 3.3

PA - NS GAN (*) × 6.6± 0.8 15.8± 1.1 43.1± 1.6 46.8± 3.2

Table A11: Mean and standard deviation of FID values before and after excluding 15% of outliers
across 50 independent runs. For the four datasets (from left to right), the results are attained after 20,
20, 100 and 40 epochs, respectively, except for the PA results marked with (*). For (*) the training
time is not constrained by the previously specified number of epochs, see A.5 for details.

synthetic samples contained in both true and fake classes. So, first the discriminator needs to recover
the original sample and the augmentation bit sequence, and to decide if the original sample is the data
or synthetic sample (this task is essentially identical to the original discrimination task). Second, the
discriminator needs to learn that the recovered sample and the augmentation bit sequence jointly
follow the checksum principle.

The difficulties of these two problems strongly depend on the way of feeding the augmentation bit
sequence into the discriminator network. Providing the augmentation bit sequence to the input layer
or lower layers generally makes the checksum operation more difficult than providing it to the upper
layers. As the former has more difficulties decoupling the two tasks and trying to solve them jointly,
while the latter can solve them sequentially. One naive design is to combine the bit sequence with the
original output of the discriminator. In this case the checksum operation becomes nearly trivial and
does not have a major influence on the training. The other way is to concatenate the augmentation
bit sequence directly with the data and synthetic samples, ensuring that the task remains non-trivial
for the discriminator.

Toy Example: Binary Classification with PA. For an illustration purpose, here we design a
simple experiment. We employ discriminator for the classification task, omitting the use of the
generator. Namely, two classes of CIFAR10 (cats and dogs) are extracted, conveying the bit 0 and 1.
Together with the augmentation bit sequences, they are provided as input to the discriminator, which
task is to perform binary classification. Using the SN-DCGAN architecture, we directly concatenate
the augmentation bit sequences with the cat and dog images.

Figure A12 depicts the variation of the discriminator loss (D Loss) over the periodic progressive
augmentation (every 2k iterations). It is evident that whenever a new augmentation level is reached
an abrupt increase of D Loss is observed, showing that the task of the discriminator becomes harder
with each level of PA.
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Figure A12: Binary classification on CIFAR10
with the presence of PA, using the SN-DCGAN
architecture. The augmentation level is increased
every 2k iterations.
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Figure A13: Binary classification on CIFAR10
with the presence of PA, using the ResNet archi-
tecture (Kurach et al., 2018). The augmentation
level is increased every 8k iterations.

Employing Residual/Skip Connections with PA. With the presence of skip connections, the
augmentation bit sequence that is concatenated with the inputs will also be directly wired to the
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Figure A14: The behaviour of D Loss and G Loss of PAL=2 - NS GAN and PAL=2 - NS GAN - GP dur-
ing the training on CIFAR10 using the SN-DCGAN architecture with and without skip connections.
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Figure A15: Mean FID values attained over iterations
across five independent runs on CIFAR10 using the SN-
DCGAN architecture with and without skip connections.

200k 300k

NS GAN (Kurach et al., 2018) 26.7 −
NS GAN (ours) 26.3 25.7

PAL=2 - NS GAN 24.5 23.8

PAL=2 - NS GAN - Skip 24.1 23.7

NS GAN - GP (Kurach et al., 2018) 26.2 −
PAL=2 - NS GAN - GP 23.2 22.5

PAL=2 - NS GAN - GP - Skip 23.8 23.0

Table A12: Median FID values at-
tained on CIFAR10 using the SN-
DCGAN architecture with and without
skip connections.

network output. In the next two examples, we examine the task difficulty under such situation.
First, we switch to using ResNet CIFAR10 (Kurach et al., 2018) for the toy example of binary
classification of cats and dogs, while concatenating the augmentation bits with the inputs of the last
residual block. By doing so, the skip connection will directly deliver this information to the network
final layer. As we can see from Figure A13, the task remains difficult and PA persistently increases
the task difficulty.

Next, we switch to the GAN setting and repeat the experiment of SN-DCGAN CIFAR10 in Sec. 5.1.
Instead of only concatenating the augmentation bits with the input images, we also insert a skip
connection, additionally concatenating them with the input to the last convolutional layer.7 Depict-
ing the D Loss and G Loss during the course of training, Figure A14 confirms that PA remains
effective with the skip connection. As a result, a similar performance is reported in Figure A15
and Table A12. This showcases that the proposed PA generalizes well across different GAN design
choices (including networks with residual or skip connections).

A.9 COMPARISON WITH THE DROPOUT REGULARIZATION

In this section we compare the proposed PA with another regularization technique which also aims
to weaken the discriminator, such as adding dropout at the first layer of the discriminator. Our

7XOR operation is a non-linear function. Therefore, we do not take the last linear layer.
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Figure A16: Mean FID values attained over iterations
across five independent runs on CIFAR10 using SN-
DCGAN with and without dropout.

200k 300k

NS GAN (Kurach et al., 2018) 26.7 −
NS GAN (ours) 26.3 25.7

NS GAN - GP (Kurach et al., 2018) 26.2 −
NS GAN - Dropout(D) 27.0 26.8

NS GAN - Dropout(A) 27.4 27.0

PAL=2 - NS GAN 24.5 23.8

PAL=2 - NS GAN - Dropout(D) 24.6 23.7

PAL=2 - NS GAN - Dropout(A) 24.4 23.6

Table A13: Median FID values attained
on CIFAR10 using SN-DCGAN with and
without dropout.

proposed augmentation scheme is orthogonal to it and thus can be applied along with the dropout
regularization.

We adopt dropout at the output of the first convolutional layer of SN-DCGAN and experiment with
two configurations. In the first configuration the dropout rate is linearly increased from zero to 0.7,
we call it an ascending mode (A). In the second the dropout rate starts from 0.7 and linearly descends
to zero during the training, we call it a descending mode (D). From Figure A16 and Table A13
we observe that neither of the two dropout modes improves the performance of NS GAN, whereas
PA shows to be more effective and preserves the performance gain even in combination with the
dropout.
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