
Under review as a conference paper at ICLR 2020

SITUATING SENTENCE EMBEDDERS WITH NEAREST
NEIGHBOR OVERLAP

Anonymous authors
Paper under double-blind review

ABSTRACT

As distributed approaches to natural language semantics have developed and di-
versified, embedders for linguistic units larger than words (e.g., sentences) have
come to play an increasingly important role. To date, such embedders have been
evaluated using benchmark tasks (e.g., GLUE) and linguistic probes. We propose
a comparative approach, nearest neighbor overlap (N2O), that quantifies similar-
ity between embedders in a task-agnostic manner. N2O requires only a collection
of examples and is simple to understand: two embedders are more similar if, for
the same set of inputs, there is greater overlap between the inputs’ nearest neigh-
bors. We use N2O to compare 21 sentence embedders and show the effects of
different design choices and architectures.

1 INTRODUCTION

Continuous embeddings—of words and of larger linguistic units—are now ubiquitious in NLP. The
success of self-supervised pretraining methods that deliver embeddings from raw corpora has led to a
proliferation of embedding methods, with an eye toward “universality” across NLP tasks. Our focus
here is on sentence embedders, and specifically their evaluation. As with most NLP components,
intrinsic (e.g., Conneau et al., 2018) and extrinsic (e.g., GLUE; Wang et al., 2019) evaluations have
emerged for sentence embedders.

Our approach, nearest neighbor overlap (N2O), is different: it compares a pair of embedders in a
linguistics- and task-agnostic manner, using only a large unannotated corpus. The central idea is that
two embedders are more similar if, for a fixed query sentence, they tend to find nearest neighbor sets
that overlap to a large degree. By drawing a random sample of queries from the corpus itself, N2O
can be computed on in-domain data without additional annotation, and therefore can help inform
embedder choices in applications such as text clustering (Cutting et al., 1992), information retrieval
(Salton & Buckley, 1988), and open-domain question answering (Seo et al., 2018), among others.

After motivating and explaining the N2O method (§2), we apply it to 21 sentence embedders (§3-4).
Our findings (§5) reveal relatively high functional similarity among averaged static (noncontextual)
word type embeddings, a strong effect of the use of subword information, and that BERT and GPT
are distant outliers. In §6, we demonstrate the robustness of N2O across different query samples and
probe sizes. We also illustrate additional analyses made possible by N2O: identifying embedding-
space neighbors of a query sentence that are stable across embedders, and those that are not (§7); and
probing the abilities of embedders to find a known paraphrase (§8). The latter reveals considerable
variance across embedders’ ability to identify semantically similar sentences from a broader corpus.

2 CORPUS-BASED EMBEDDING COMPARISON

We first motivate and introduce our nearest neighbor overlap (N2O) procedure for comparing em-
bedders (maps from objects to vectors). Although we experiment with sentence embedders in this
paper, we note that this comparison procedure can be applied to other types of embedders (e.g.,
phrase-level or document-level).1

1We also note that nearest neighbor search has been frequently used on word embeddings (e.g., word anal-
ogy tasks).

1



Under review as a conference paper at ICLR 2020

M gave the book to J
J gave the book to M

M gave the dictionary to J

M gave the book to J

J gave the book to M

M gave the dictionary to J

Figure 1: A toy example of two sentence em-
bedders and how they might affect nearest
neighbor sentences.

function N2O(eA, eB , C, k)
for each query qj ∈ {qi}ni=1 do
neighborsA ← nearest(eA,qj , C, k)
neighborsB ← nearest(eB ,qj , C, k)
o[j]← |neighborsA ∩ neighborsB |

end for
return

∑
j o[j]/(k × n)

end function

Figure 2: Computation of N2O for two em-
bedders, eA and eB , using a corpus C; the
number of nearest neighbors is given by k. n
is the number of queries (q1 . . .qn), which
are sampled uniformly from the corpus with-
out replacement. The output is in [0, 1],
where 0 indicates no overlap between near-
est neighbors for all queries, and 1 indicates
perfect overlap.

2.1 DESIDERATA

We would like to quantify the extent to which sentence embedders vary in their treatment of “similar-
ity.” For example, given the sentence Mary gave the book to John, embedders based on bag-of-words
will treat John gave the book to Mary as being maximally similar to the first sentence, whereas other
embedders may treat Mary gave the dictionary to John as more similar; our comparison should re-
flect this intuition. We would also like to focus on using naturally-occuring text for our comparison.
Although there is merit in expert-constructed examples (see linguistic probing tasks referenced in
§9), we have little understanding of how these models will generalize to text from real documents;
many application settings involve computing similarity across texts in a corpus. Finally, we would
like our evaluation to be task-agnostic, since we expect embeddings learned from large unannotated
corpora in a self-supervised (and task-agnostic) manner to continue to play an important role in NLP.

As a result, we base our comparison on nearest neighbors: first, because similarity is often assumed
to correspond to nearness in embedding space (e.g., Figure 1); second, because nearest neighbor
methods are used directly for retrieval and other applications; and finally, because the nearest neigh-
bors of a sentence can be computed for any embedder on any corpus without additional annotation.

2.2 ALGORITHM

Suppose we want to compare two sentence embedders, eA(·) and eB(·), where each embedding
method takes as input a natural language sentence s and outputs a d-dimensional vector. For our
purposes, we consider variants trained on different data or using different hyperparameters, even
with the same parameter estimation procedure, to be different sentence embedders.

Take a corpus C, which is likely to have some semantic overlap in its sentences, and segment it
into sentences s1, . . . , s|C|. Randomly select a small subset of the sentences in C as “queries”
(q1, . . . ,qn). To see how similar eA and eB are, we compute the overlap in nearest neighbor
sentences, averaged across multiple queries; the algorithm is in Figure 2. nearest(ei,qj , C, k)
returns the k nearest neighbor sentences in corpus C to the query sentence qj , where all sentences
are embedded with ei.2 There are different ways to define nearness and distance in embedding
spaces (e.g., using cosine similarity or Euclidean distance); in this paper we use cosine similarity.

We can think about this procedure as randomly probing the sentence vector space (through the n
query sentences) from the larger space of the embedded corpus, under a sentence embedder ei;
in some sense, k controls the depth of the probe. The N2O procedure then compares the sets of
sentences recovered by the probes.

2One of these will be the query sentence itself, since we sampled it from the corpus; we assume nearest
ignores it when computing the k-nearest-neighbor lists.

2



Under review as a conference paper at ICLR 2020

3 SENTENCE EMBEDDING METHODS

In the previous section, we noted that we consider a “sentence embedder” to encompass how it was
trained, which data it was trained on, and any other hyperparameters involved in its creation. In this
section, we first review the broader methods behind these embedders, turning to implementation
decisions in §4.

3.1 TF-IDF

We consider tf-idf, which has been clasically used in information retrieval settings. The tf-idf of a
word token is based off two statistics: term frequency (how often a term appears in a document) and
inverse document frequency (how rare the term is across all documents). The vector representation
of the document is the idf-scaled term frequencies of its words; in this work we treat each sentence
as a “document” and the vocabulary-length tf-idf vector as its embedding.

3.2 WORD EMBEDDINGS

Because sentence embeddings are often built from word embeddings (through initialization when
training or other composition functions), we briefly review notable word embedding methods.

Static embeddings. We define “static embeddings” to be fixed representations of every word type
in the vocabulary, regardless of its context. We consider three popular methods: word2vec (Mikolov
et al., 2013) embeddings optimized to be predictive of a word given its context (continuous bag of
words) or vice versa (skipgram); GloVe (Pennington et al., 2014) embeddings learned based on
global cooccurrence counts; and FastText (Conneau et al., 2017), an extension of word2vec which
includes character n-grams (for computing representations of out-of-vocabulary words).

Contextual embeddings. Contextual word embeddings, where a word token’s representation is
dependent on its context, have become popular due to improvements over state-of-the-art on a wide
variety of tasks. We consider:

• ELMo (Peters et al., 2018) embeddings are generated from a multi-layer, bidirectional
recurrent language model that incorporates character-level information.

• GPT (Radford et al., 2018) embeddings are generated from a unidirectional language
model with multi-layer transformer decoder; subword information is included via byte-pair
encoding (BPE; Sennrich et al., 2016).

• BERT (Devlin et al., 2019) embeddings are generated from a transformer-based model
trained to predict (a) a word given both left and right context, and (b) whether a sentence is
the “next sentence” given a previous sentence. Subword information is incorporated using
the WordPiece model (Schuster & Nakajima, 2012).

Composition of word embeddings. The simplest way to obtain a sentence’s embedding from its
sequence of words is to average the word embeddings.3 Despite the fact that averaging discards
word order, it performs surprisingly well on sentence similarity, NLI, and other downstream tasks
(Wieting et al., 2016; Arora et al., 2017).4

In the case of contextual embeddings, there may be other conventions for obtaining the sentence
embedding, such as using the embedding for a special token or position in the sequence. With
BERT, the [CLS] token representation (normally used as input for classification) is also sometimes
used as a sentence representation; similarly, the last token’s representation may be used for GPT.

3In the case of GPT and BERT, which yield subword embeddings, we treat those as we would standard
word embeddings.

4Arora et al. (2017) also suggest including a PCA-based projection with word embedding averaging to
further improve downstream performance. However, because our focus is on behavior of the embeddings
themselves, we do not apply this projection here.

3



Under review as a conference paper at ICLR 2020

Embed. method Composition Dim. Model/data description
tf-idf n/a |V | tf-idf statistics obtained on Gigaword corpus (2010 slice)
word2vec average 300 Google News (3B tokens)

GloVe average
100 Wikipedia 2014 + Gigaword 5 (6B tokens, uncased)
300 Wikipedia 2014 + Gigaword 5 (6B tokens, uncased)
300 Common Crawl (840B tokens, cased)

FastText average

300 Wikipedia + UMBC + statmt.org (16B tokens)
300 ” + subword information
300 Common Crawl (600B tokens)
300 ” + subword information

ELMo average
256 pretrained small model (1 Billion Word Benchmark)

1024 pretrained original model (1 Billion Word Benchmark)
1024 pretrained original/5.5B model (Wikipedia/news)

BERT

[CLS] 768 pretrained cased/base model (Wikipedia + BooksCorpus)
average 768
[CLS] 768 ” + finetuning on MultiNLI (matched subset)
average 768

GPT last 512 pretrained model (110M parameters) trained on BooksCorpus
average 512

InferSent n/a 4096 V1 (GloVe-based) model, trained on SNLI

USE n/a 512 deep averaging network (DAN) encoder; multitask training
512 transformer encoder; multitask training

Table 1: Details of the pretrained sentence embedders we test in this paper. For methods which
produce word embeddings, “composition” denotes how a single embedding was obtained from the
sentence’s word embeddings. ELMo embeddings are averaged across the three bi-LSTM layers;
BERT and GPT embeddings come from the final hidden layer. All of the models besides tf-idf and
the fine-tuned version of BERT are common pretrained versions; further details are in Appendix A.

3.3 ENCODERS

A more direct way to obtain sentence embeddings is to learn an encoding function that takes in a
sequence of tokens and outputs a single embedding; often this is trained using a relevant supervised
task. We consider two encoder-based methods:

• InferSent (Conneau et al., 2017): supervised training on the Stanford Natural Language
Inference (SNLI; Bowman et al., 2015) dataset; the sentence encoder provides representa-
tions for the premise and hypothesis sentences, which are then fed into a clasifier.

• Universal Sentence Encoder (USE; Cer et al., 2018): supervised, multi-task training on
several semantic tasks (including semantic textual similarity); sentences are encoded either
with a deep averaging network or a transformer.

4 EXPERIMENTAL DETAILS

Our main experiment is a broad comparison, using N2O, of the embedders discussed above and
listed in Table 1. Despite the vast differences in methods, N2O allows us to situate each in terms of
its functional similarity to the others.

N2O computation. We describe a N2O sample as, for a given random sample of n queries, the
computation of N2O(eA, eB , C, k) for every pair of sentence embedders as described in §2, using
cosine similarity to determine nearest neighbors. The results in §5 are with k (the number of sen-
tences retrieved) set to 50, averaged across five samples of n = 100 queries. We illustrate the effects
of different k and N2O samples in §6.

Corpus. For our corpus, we draw from the English Gigaword (Parker et al., 2011), which con-
tains newswire text from seven news sources. For computational feasibility, we use the articles

4



Under review as a conference paper at ICLR 2020

from 2010, for a total of approximately 8 million unique sentences.5 We note preprocessing details
(segmentation, tokenization) in Appendix A.

Queries. For each N2O sample, we randomly select 100 ledes (opening sentences) from the news
articles of our corpus, and use the same ones across all embedders. Because the Gigaword corpus
contains text from multiple news sources covering events over the same time period, it is likely that
the corpus will contain semantically similar sentences for a given lede. The average query length is
30.7 tokens (s.d. 10.2); an example query is: “Sandra Kiriasis and brakewoman Stephanie Schneider
of Germany have won the World Cup bobsled race at Lake Placid.”

Sentence embedders. Table 1 details the sentence embedders we use in our experiments. In gen-
eral, we use popular pretrained versions of the methods described in §3. We also select pretrained
variations of the same method (e.g., FastText embeddings trained from different corpora) to permit
more controlled comparisons. In a couple of cases, we train/finetune models of our own: for tf-idf,
we compute frequency statistics using our corpus, with each sentence as its own “document”; for
BERT, we use the Hugging Face implementation with default hyperparameters,6 and finetune using
the matched subset of MultiNLI (Williams et al., 2018) for three epochs (dev. accuracy 84.1%).

We note that additional embedders are easily situated among the ones tested in this paper by first
computing nearest neighbors of the same query sentences, and then computing overlap with the
nearest neighbors obtained in this paper. To enable this, the code, query sentences, and nearest
neighbors per embedder and query will be publicly available.

5 RESULTS

In this section, we present the results from the experiment described in §4. Fig. 3 shows N2O
between each pair of sentence embedders listed in Table 1; the values range from 0.04 to 0.62.
While even the maximum observed value may not seem large, we reiterate that overlap is computed
over two draws of k = 50 sentences (nearest neighbors) from approximately 8 million sentences,
and even an N2O of 0.04 is unlikely from random chance alone.

Averages of static word embeddings. We first observe that there is generally high N2O among
this set of embedders in comparison to other categories (Fig. 4, left). Some cases where N2O is high
for variations of the same embedder: glove-6b-100d and glove-6b-300d, which have differ-
ent dimensionality but are otherwise trained with the same method and corpus (and to a lesser extent
glove-840b-300d, which retains casing and is trained on a different corpus); fasttext-cc
and fasttext-wiki, which again are trained with the same method, but different corpora.

The use of subword information, unique to fasttext-cc-sub and fasttext-wiki-sub,
has a large effect on N2O; there is a high (0.52) N2O value for these two and much lower N2O
with other embedders, including their analogues without subword information. This effect is also
illustrated by measuring, for a given embedder, the average token overlap between the query and its
neighbors (see Fig. 5 in Appendix B). As we would expect, subword methods find near neighbors
with lower token overlap, because they embed surface-similar strings near to each other.

tf-idf. Unsurprisingly, tf-idf has low N2O with other embedders (even those based on static word
embeddings). Like the subword case, we can also use token overlap to understand why this is the
case: its nearest neighbors have by far the largest token overlap with the query (0.43).

Averages of ELMo embeddings. We test three ELMo pretrained models across different capac-
ities (elmo-small, elmo-orig) but the same training data, and across different training data
but the same model capacity (elmo-orig, elmo-orig-5.5b). These two embedder pairs have
high N2O (0.42 and 0.55 respectively); the mismatched pair, with both different training data and
capacities, has slightly lower N2O (0.38).

5Because many news articles show up multiple times in the corpus, 23% of sentences in the English Giga-
word are exact duplicates of one another; we remove these duplicates.

6https://github.com/huggingface/pytorch-transformers

5

https://github.com/huggingface/pytorch-transformers


Under review as a conference paper at ICLR 2020

tfi
df

w2
v

gl
ov

e-
6b

-1
00

d
gl

ov
e-

6b
-3

00
d

gl
ov

e-
84

0b
-3

00
d

fa
st

te
xt

-c
c

fa
st

te
xt

-w
ik

i
fa

st
te

xt
-c

c-
su

b
fa

st
te

xt
-w

ik
i-s

ub
el

m
o-

sm
al

l
el

m
o-

or
ig

el
m

o-
or

ig
-5

.5
b

be
rt-

ba
se

-c
ls

be
rt-

ba
se

-a
vg

be
rt-

ft-
cls

be
rt-

ft-
av

g
gp

t-l
as

t
gp

t-a
vg

in
fe

rs
en

t
us

e-
da

n
us

e-
trf

tfidf
w2v

glove-6b-100d
glove-6b-300d

glove-840b-300d
fasttext-cc

fasttext-wiki
fasttext-cc-sub

fasttext-wiki-sub
elmo-small

elmo-orig
elmo-orig-5.5b

bert-base-cls
bert-base-avg

bert-ft-cls
bert-ft-avg

gpt-last
gpt-avg

infersent
use-dan

use-trf
0.1

0.2

0.3

0.4

0.5

0.6

Figure 3: Heatmap of N2O for every pair of sentence embedders in Table 1 for k = 50, averaged
across five samples of n = 100 queries; darker colors indicate higher overlap. A larger version of
this plot (annotated with N2O values) is in Appendix B.

BERT and GPT. We first find that specific-token representations for BERT or GPT
(bert-base-cls, gpt-last) are outliers compared to other embedders (i.e., low N2O; see
Fig. 4). This itself is not unexpected, as the training objectives for both of the pretrained mod-
els (without finetuning) are not geared towards semantic similarity the way other embedders are.
What is surprising is that this effect seems to hold even for the MultiNLI-finetuned version of BERT
(bert-ft-cls); if anything, this decreases N2O with other embedders further.7 Notably, taking
averaged BERT and GPT embeddings yields higher N2O with other embedders, especially ELMo-
based ones. Fig. 6 (Appendix B) plots the N2O values for each embedder compared to all others.

Encoder-based embedders. We find that InferSent has highest N2O (∼0.2–0.3) with the embed-
dings based on averaging, despite InferSent being trained using a NLI task; that said, this is not
wholly surprising as the model was initialized using GloVe vectors (glove-840b-300d) during
training. The USE variants (DAN and Transformer) have fairly distinct nearest neighbors compared
to other methods, with highest N2O between each other (0.24).

6 ROBUSTNESS AND RUNTIME CONSIDERATIONS

Varying k. One possible concern is how sensitive our procedure is to k (the number of nearest
neighbors from which overlap is computed): we would not want conflicting judgments of how
similar two sentence embedders are due to different k. To confirm this, we first compute the ranked
lists of N2O output for each k ∈ {5, 10, . . . , 45, 50}, where each list consists of all embedder pairs
ordered by N2O for that k. We then compute Spearman’s rank correlation coefficient (ρ) between
each pair of ranked lists, where 1 indicates perfect positive correlation. We find that the average

7In preliminary experiments, we also saw similar results with BERT finetuned on the Microsoft Research
Paraphrase Corpus (Dolan et al., 2004); that is, the effect does not seem specific to MultiNLI.

6



Under review as a conference paper at ICLR 2020

glo
ve

-6b
-10

0d

glo
ve

-6b
-30

0d

glo
ve

-84
0b

-30
0d

fas
tte

xt-
cc

fas
tte

xt-
wiki

fas
tte

xt-
cc-

sub

glo
ve

-6b
-30

0d

glo
ve

-84
0b

-30
0d

fas
tte

xt-
cc

fas
tte

xt-
wiki

fas
tte

xt-
cc-

sub

fas
tte

xt-
wiki-

sub

0.61
0.46 0.50
0.38 0.46 0.53
0.35 0.42 0.45 0.60
0.25 0.27 0.31 0.34 0.31
0.27 0.30 0.34 0.37 0.37 0.52

elm
o-s

mall

elm
o-o

rig

be
rt-b

ase
-cls

be
rt-b

ase
-av

g

be
rt-f

t-c
ls

gp
t-la

st

elm
o-o

rig

be
rt-b

ase
-cls

be
rt-b

ase
-av

g

be
rt-f

t-c
ls

gp
t-la

st

gp
t-a

vg

0.42
0.10 0.12
0.24 0.31 0.17
0.06 0.07 0.07 0.07
0.12 0.14 0.10 0.14 0.06
0.20 0.22 0.09 0.19 0.06 0.16

Figure 4: N2O values for a subset of embedders (L: static; R: contextual), k = 50.

Spearman’s ρ is very high (0.996; min. 0.986) — i.e., the rankings of embedder similarity by N2O
are reasonably stable across different values of k, even as far as k = 5 and k = 50.

Query sampling. We also examine how the results may vary across different query samples; as
noted previously, the presented results are averaged across five samples of n = 100 queries each.
Standard deviations for N2O values across the five samples range from 0.005 to 0.019 (avg. 0.011).
That is, given the range of N2O values being compared, the differences due to different query sam-
ples is small. We compute Spearman’s ρ across different N2O samples in the same manner as above
(k = 50) and find an average ρ of 0.994 (min. 0.991).

Runtime. A theoretical concern with N2O is that, naively, its computation is linear in the size of
the corpus, and to have reasonable semantic overlap within a diverse set of sentences, the corpus
should be large. While our implementation of exact nearest neighbor search is sufficiently fast in
practice,8 we provide comments on use of approximate nearest neighbor methods in Appendix C.

7 POPULARITY OF NEIGHBORS

In the previous section, we performed a basic comparison between sentence embedders using N2O.
Here, we show one kind of analysis enabled by N2O: given a query, which sentences from the cor-
pus C are consistently its neighbors across different embedders? We might expect, for example,
that a nearly identical paraphrase of the query will be a “popular” neighbor chosen by most em-
bedders. Table 2 shows an example query with a sentence that is in the 5-nearest neighborhood for
all sentence embedders, as well as sentences that are highly ranked for some embedder but not in
the nearest neighbor sets for any other embedder (for larger k = 50). Qualitatively, what we find
with this example’s outlier sentences is that they are often thematically similar in some way (such as
fiscal matters in Table 2), but with different participants. We also observe that extremely “popular”
neighbors tend to have high lexical overlap with the query.

8 QUERY PARAPHRASING

Attempts to derive sentence embeddings that capture semantic similarity are inspired by the phe-
nomenon of paraphrase; in this section, we use nearest neighbors to probe how sentence embedders
capture paraphrase. More specifically, we carry out a “needle-in-a-haystack” experiment using the
Semantic Textual Similarity Benchmark (STS; Cer et al., 2017). STS contains sentence pairs with
human judgments of semantic similarity on a 1–5 continuous scale (least to most similar).

8Given precomputed sentence embeddings, exact nearest neighbor search across the corpus takes 30s.–
1min. (depending on dimensionality) for a batch of n = 100 queries and k = 50, across two 12-core Intel
Xeon CPUs (E5-2960/2.60GHz).

7



Under review as a conference paper at ICLR 2020

Query: Britain’s biggest mortgage lender says that average house prices fell 3.6 percent in September, but
analysts believe the market isn’t that weak.
Embedder Rank Sentence
all embedders ≤ 5 Average house prices in Britain fell 3.6 percent in September from a

month earlier, the country’s biggest mortgage lender said Thursday, al-
though analysts believe the market isn’t that weak.

bert-base-cls 6 Some analysts say that the December data indicate that consumer spend-
ing remains weak, making it harder for the economy to keep a sustained
rebound.

bert-ft-avg 5 An industry group says German machinery orders were down 3 percent
on the year in January but foreign demand is improving.

gpt-last 8 The economy has since rebound and grew 8.9 percent year-on-year in the
second quarter, the central bank said last month, with growth expected to
exceed six percent in the full year.

Table 2: Popular and outlier near neighbors for the given query (top). The first sentence is in
the 5-nearest neighborhood for all embedders; the remaining sentences are highly-ranked by the
given embedder and outside the 50-nearest neighborhood for all other embedders. See Table 3
(Appendix B) for additional examples.

We take 75 pairs in the 4–5 range from the STS development and test sets where the sentence pair has
word-level overlap ratio < 0.6 — i.e., near paraphrases with moderately different surface semantics.
We also constrain the sentence pairs to come from the newstext-based parts of the dataset. The first
sentence in each sentence pair is the “query,” and the second sentence is (temporarily) added to our
Gigaword corpus. An example sentence pair, scored as 4.6, is: (A) Arkansas Supreme Court strikes
down execution law and (B) Arkansas justices strike down death penalty. We then compute the
rank of the sentence added to the corpus (i.e., the value of k such that the added sentence is part
of the query’s nearest neighbors). An embedder that “perfectly” correlates semantic similarity and
distance should yield a rank of 1 for the sentence added to the corpus, since that sentence would be
nearest to the query.

Results. Using mean reciprocal rank (MRR), we find that the larger ELMo models and Infersent
do particularly well at placing paraphrase pairs near each other. We also find that averaged BERT
and GPT embeddings consistently perform better than the [CLS]/final token ones9; this is con-
sistent with our earlier observation (§5) that their training objectives may not yield specific-token
embeddings that directly encode semantic similarity, hence why they are outliers by N2O. The full
table of results is in Table 4 (Appendix B).

9 RELATED WORK

Recent comparisons of sentence embedders have been primarily either (1) linguistic probing tasks
or (2) downstream evaluations. Linguistic probing tasks test whether embeddings can distinguish
surface level properties, like sentence length; syntactic properties, like tree depth; and semantic
properties, like coordination inversion. See Ettinger et al. (2016), Adi et al. (2017), Conneau et al.
(2018), and Zhu et al. (2018), among others. Downstream evaluations are often classification tasks
for which good sentence representations are helpful (e.g., NLI). Evaluations like the RepEval 2017
shared task (Nangia et al., 2017), SentEval toolkit (Conneau & Kiela, 2018), and GLUE benchmark
(Wang et al., 2019) seek to standardize comparisons across sentence embedding methods. N2O is
complementary to these, providing a task-agnostic way to compare embedders’ functionality.

10 CONCLUSION

In this paper, we introduce nearest neighbor overlap (N2O), a comparative approach to quantifying
similarity between sentence embedders. Using N2O, we draw comparisons across 21 embedders.
We also provide additional analyses made possible with N2O, from which we find high variation in
embedders’ treatment of semantic similarity.

9The BERT results with STS are consistent with concurrent work by Riemers & Gurevych (2019).

8



Under review as a conference paper at ICLR 2020

REFERENCES

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. Fine-grained analysis
of sentence embeddings using auxiliary prediction tasks. In Proc. of ICLR, 2017.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
embeddings. In Proc. of ICLR, 2017.

Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. ANN-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. Information Systems, in press, 2019.

Chandra Bhagavatula, Sergey Feldman, Russell Power, and Waleed Ammar. Content-based citation
recommendation. In Proc. of NAACL-HLT, 2018.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large anno-
tated corpus for learning natural language inference. In Proc. of EMNLP, 2015.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. SemEval-2017
Task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proc. of
SemEval, 2017.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Céspedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. Universal sentence encoder. arXiv:1803.11175 [cs.CL], 2018.

Alexis Conneau and Douwe Kiela. SentEval: An evaluation toolkit for universal sentence represen-
tations. In Proc. of LREC, 2018.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. In Proc. of
ACL, 2017.

Alexis Conneau, German Kruszewski, Guillaume Lample, Loı̈c Barrault, and Marco Baroni. What
you can cram into a single vector: Probing sentence embeddings for linguistic properties. In Proc.
of ACL, 2018.

Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W. Tukey. Scatter/Gather: A
cluster-based approach to browsing large document collections. In Proc. of SIGIR, 1992.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proc. of NAACL-HLT, 2019.

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Proc. of COLING, 2004.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik. Probing for semantic evidence of composi-
tion by means of simple classification tasks. In Proc. of RepEval, 2016.

Masajiro Iwasaki and Daisuke Miyazaki. Optimization of indexing based on k-nearest neighbor
graph for proximity search in high-dimensional data. arXiv:1810.07355 [cs.DB], 2018.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffery Dean. Distributed representa-
tions of words and phrases and their compositionality. In Proc. of NeurIPS, 2013.

Nikita Nangia, Adina Williams, Angeliki Lazaridou, and Samuel R. Bowman. The RepEval 2017
shared task: Multi-genre natural language inference with sentence representations. In Proc. of
RepEval, 2017.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English Gigaword Fifth
Edition, LDC2011T07, 2011. Linguistic Data Consortium.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global vectors for word
representation. In Proc. of EMNLP, 2014.

9



Under review as a conference paper at ICLR 2020

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL-HLT, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018. URL https://openai.com/blog/
language-unsupervised/.

Niels Riemers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proc. of EMNLP, 2019.

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 24(5):513–523, 1988.

Mike Schuster and Kaisuke Nakajima. Japanese and Korean voice search. In Proc. of ICASSP,
2012.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proc. of ACL, 2016.

Minjoon Seo, Tom Kwiatkowski, Ankur Parikh, Ali Farhadi, and Hannaneh Hajishirzi. Phrase-
indexed question answering: A new challenge for scalable document comprehension. In Proc. of
EMNLP, 2018.

Kohei Sugawara, Hayato Kobayashi, and Masajiro Iwasaki. On approximately searching for similar
word embeddings. In Proc. of ACL, 2016.

Alex Wang, Amapreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
Proc. of ICLR, 2019.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards universal paraphrastic
sentence embeddings. In Proc. of ICLR, 2016.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proc. of NAACL-HLT, 2018.

Xunjie Zhu, Tingfeng Li, and Gerard de Melo. Exploring semantic properties of sentence embed-
dings. In Proc. of ACL, 2018.

A APPENDIX: IMPLEMENTATION DETAILS

In this section, we include additional implementation details for experiments performed in the paper.
Generally, we use parameters consistent with the original work when possible.

Sentence segmentation. We use the spacy10 library (2.0.16) to perform sentence segmentation;
for word tokenization, we defer to preferences for the original embedder implementations if speci-
fied (see below), or use the spacy tokenizer otherwise.

Tf-idf. We use the gensim library (3.7.3) implementation of tf-idf,11 with frequency statistics
learned on the 2010 section of the Gigaword corpus (i.e., the same corpus used to find nearest
neighbors). For tokenization, we use the Gensim tokenizer and lowercase all word tokens.

Word2vec. We use pretrained 300D Google News embeddings available from Google.12 We use
spacy to perform word tokenization and embedding lookup.

10http://spacy.io
11https://radimrehurek.com/gensim/
12https://code.google.com/archive/p/word2vec/

10

https://openai.com/blog/language-unsupervised/
https://openai.com/blog/language-unsupervised/
http://spacy.io
https://radimrehurek.com/gensim/
https://code.google.com/archive/p/word2vec/


Under review as a conference paper at ICLR 2020

GloVe. We use three sets of standard pretrained GloVe embeddings: 100D and 300D embeddings
trained on Wikipedia and Gigaword (6B tokens), and 300D embeddings trained on Common Crawl
(840B tokens).13 We handle tokenization and embedding lookup identically to word2vec; for the
Wikipedia/Gigaword embeddings, which are uncased, we lower case all tokens as well.

FastText. We use four sets of pretrained FastText embeddings: two trained on Wikipedia and
other news corpora, and two trained on Common Crawl (each with an original version and one
trained on subword information).14 We use the Python port of the FastText implementation to handle
tokenization, embedding lookup, and OOV embedding computation.15

ELMo. We use three pretrained models made available by AllenNLP: small, original, and original
(5.5B).16 We use spacy to perform word tokenization, consistent with the allennlp library; we
also use allennlp (0.7.2) to compute the ELMo embeddings. We average the embeddings over
all three bidirectional LSTM layers.

BERT. We use Hugging Face’s pytorch-transformers (0.6.2) implementation and pre-
trained BERT base cased model.17 To tokenize, we use the provided BertTokenizer, which
handles WordPiece (subword) tokenization, and in general follow the library’s recommendations for
feature extraction.

For finetuning BERT on MultiNLI (matched subset), we generally use the default parameters pro-
vided in the library’s run classifier.py (batch size = 32, learning rate = 5e-5, etc.). We
finetune for three epochs, and obtain 84.1% dev accuracy (reasonably consistent with the original
work).

GPT. We use the same Hugging Face library and associated pretrained model for GPT; we use
their BPE tokenizer and spacy for subword and word tokenization respectively.

InferSent. We use the authors’ implementation of InferSent, as well as their pretrained V1 model
based on GloVe.18 (Unfortunately, the FastText-based V2 model was not available while perform-
ing the experiments in this paper; see issues #108 and #124 in the linked Github.) As per their
README, we use the nltk tokenizer (3.2.5).

Universal Sentence Encoder. We use pretrained models available on TensorFlow Hub for both
the DAN and Transformer variants.19 The modules handle text preprocessing on their own.

COMPUTATIONAL DETAILS

Experiments for ELMo, BERT, GPT, and the Transformer version of USE were run on a NVIDIA
Titan XP GPU with CUDA 9.2. All other experiments were performed on CPUs.

B APPENDIX: ADDITIONAL RESULTS & PLOTS

B.1 ANNOTATED N2O HEATMAP

The heatmap on the next page is a larger version of Fig. 3 that includes the N2O values (k = 50, n =
100, averaged over five runs).

13https://nlp.stanford.edu/projects/glove/
14https://fasttext.cc/docs/en/english-vectors.html
15https://github.com/facebookresearch/fastText/tree/master/python
16https://allennlp.org/elmo
17https://github.com/huggingface/pytorch-transformers
18https://github.com/facebookresearch/InferSent
19DAN: https://tfhub.dev/google/universal-sentence-encoder/2

Transformer: https://tfhub.dev/google/universal-sentence-encoder-large/3

11

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html
https://github.com/facebookresearch/fastText/tree/master/python
https://allennlp.org/elmo
https://github.com/huggingface/pytorch-transformers
https://github.com/facebookresearch/InferSent
https://tfhub.dev/google/universal-sentence-encoder/2
https://tfhub.dev/google/universal-sentence-encoder-large/3


Under review as a conference paper at ICLR 2020

tfidf

w2v

glove-6b-100d

glove-6b-300d

glove-840b-300d

fasttext-cc

fasttext-wiki

fasttext-cc-sub

fasttext-wiki-sub

elmo-small

elmo-orig

elmo-orig-5.5b

bert-base-cls

bert-base-avg

bert-ft-cls

bert-ft-avg

gpt-last

gpt-avg

infersent

use-dan

use-trf

tfi
df

w2
v

gl
ov

e-
6b

-1
00

d

gl
ov

e-
6b

-3
00

d

gl
ov

e-
84

0b
-3

00
d

fa
st

te
xt

-c
c

fa
st

te
xt

-w
ik

i

fa
st

te
xt

-c
c-

su
b

fa
st

te
xt

-w
ik

i-s
ub

el
m

o-
sm

al
l

el
m

o-
or

ig

el
m

o-
or

ig
-5

.5
b

be
rt-

ba
se

-c
ls

be
rt-

ba
se

-a
vg

be
rt-

ft-
cls

be
rt-

ft-
av

g

gp
t-l

as
t

gp
t-a

vg

in
fe

rs
en

t

us
e-

da
n

us
e-

trf

0.
23

0.
13

0.
32

0.
17

0.
41

0.
61

0.
15

0.
40

0.
46

0.
50

0.
20

0.
49

0.
38

0.
46

0.
53

0.
18

0.
43

0.
35

0.
42

0.
45

0.
60

0.
11

0.
24

0.
25

0.
27

0.
31

0.
34

0.
31

0.
12

0.
28

0.
27

0.
30

0.
34

0.
37

0.
37

0.
52

0.
12

0.
25

0.
22

0.
24

0.
24

0.
24

0.
23

0.
17

0.
19

0.
16

0.
31

0.
23

0.
27

0.
26

0.
29

0.
27

0.
18

0.
20

0.
42

0.
16

0.
32

0.
24

0.
27

0.
27

0.
30

0.
28

0.
19

0.
21

0.
39

0.
56

0.
06

0.
09

0.
08

0.
08

0.
08

0.
08

0.
08

0.
07

0.
08

0.
10

0.
12

0.
12

0.
14

0.
25

0.
20

0.
22

0.
22

0.
24

0.
23

0.
16

0.
17

0.
24

0.
31

0.
32

0.
17

0.
05

0.
06

0.
05

0.
06

0.
06

0.
06

0.
06

0.
05

0.
05

0.
06

0.
07

0.
07

0.
07

0.
07

0.
08

0.
12

0.
10

0.
11

0.
11

0.
12

0.
11

0.
09

0.
10

0.
11

0.
13

0.
13

0.
08

0.
16

0.
10

0.
12

0.
14

0.
11

0.
12

0.
12

0.
13

0.
13

0.
09

0.
10

0.
12

0.
14

0.
14

0.
10

0.
14

0.
06

0.
08

0.
14

0.
21

0.
16

0.
19

0.
18

0.
21

0.
20

0.
14

0.
16

0.
20

0.
22

0.
23

0.
09

0.
19

0.
06

0.
10

0.
16

0.
14

0.
26

0.
21

0.
24

0.
27

0.
28

0.
27

0.
20

0.
22

0.
19

0.
23

0.
22

0.
09

0.
19

0.
06

0.
10

0.
11

0.
16

0.
14

0.
21

0.
14

0.
16

0.
16

0.
19

0.
17

0.
11

0.
12

0.
15

0.
19

0.
19

0.
07

0.
16

0.
05

0.
08

0.
11

0.
14

0.
16

0.
13

0.
19

0.
13

0.
15

0.
15

0.
17

0.
16

0.
10

0.
11

0.
15

0.
21

0.
21

0.
09

0.
18

0.
05

0.
08

0.
12

0.
14

0.
15

0.
24

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

12



Under review as a conference paper at ICLR 2020

B.2 TOKEN OVERLAP

In §5, we noted that the FastText subword variants had much lower N2O compared to other em-
bedders (including analogues without subword information). Fig. 5 shows average token overlap
between a query and its nearest neighbors, averaged over all queries. Unsurprisingly, tfidf has by
far the highest overlap, and fasttext-wiki-sub and fasttext-cc-sub the lowest.

tfid
f

w2v

glo
ve

-6b
-10

0d

glo
ve

-6b
-30

0d

glo
ve

-84
0b

-30
0d

fas
tte

xt-
cc

fas
tte

xt-
wiki

fas
tte

xt-
cc-

sub

fas
tte

xt-
wiki-

sub

0.3

0.4
av

g.
 to

ke
n 

ov
er

la
p

Figure 5: Average token overlap between a query and its nearest neighbors (k = 50), averaged over
all queries. Error bars represent 95% confidence intervals.

B.3 N2O RANGES PER EMBEDDER

In §5, we found that the BERT and GPT based embedders had low N2O with all other embedders,
and averaging (rather than taking the [CLS] or last embedding) generally raised N2O. Fig. 6 shows
boxplots of N2O values between each embedder and all other embedders.

tfid
f

w2v

glo
ve

-6b
-10

0d

glo
ve

-6b
-30

0d

glo
ve

-84
0b

-30
0d

fas
tte

xt-
cc

fas
tte

xt-
wiki

fas
tte

xt-
cc-

sub

fas
tte

xt-
wiki-

sub

elm
o-s

mall

elm
o-o

rig

elm
o-o

rig
-5.

5b

be
rt-b

ase
-cls

be
rt-b

ase
-av

g

be
rt-f

t-c
ls

be
rt-f

t-a
vg

gp
t-la

st

gp
t-a

vg

inf
ers

en
t

use
-da

n
use

-trf

0.1

0.2

0.3

0.4

0.5

0.6

N2
O 

w/
ot

he
r e

m
be

dd
er

s

Figure 6: Comparison of N2O distribution between each embedder and all others.

13



Under review as a conference paper at ICLR 2020

B.4 POPULAR & OUTLIER NEAREST NEIGHBORS

Table 3 shows additional outlier nearest neighbors from Table 2.

Query: Britain’s biggest mortgage lender says that average house prices fell 3.6 percent in September, but
analysts believe the market isn’t that weak.
Embedder Rank Sentence
all embedders ≤ 5 Average house prices in Britain fell 3.6 percent in September from a

month earlier, the country’s biggest mortgage lender said Thursday, al-
though analysts believe the market isn’t that weak.

bert-ft-cls 2 Japanese consumer prices fell for 13th straight month in March, though
the GDP data suggests that deflationary pressures are starting to ease.

fasttext-cc-sub 6 It cautioned however that the economic situation abroad could still slow
Sweden’s recovery, and said the country’s gross domestic product (GDP)
would grow just 3.6 percent in 2011, down from its May estimate of 3.7
percent growth.

glove-840b-300d 12 Meanwhile, Australia’s central bank left its key interest rate unchanged at
3.75 percent on Tuesday, surprising investors and analysts who had pre-
dicted the bank would continue raising the rate as the nation’s economy
rebounds.

Table 3: Additional outlier near neighbors for the given query (top; same as Table 2). The first
sentence is in the 5-nearest neighborhood for all embedders; the remaining sentences are highly-
ranked by the given embedder and outside the 50-nearest neighborhood for all other embedders.

B.5 QUERY-PARAPHRASE EXPERIMENT RESULTS

Table 4 shows results for the query-paraphrase experiment in §8: mean reciprocal rank (MRR), the
number of queries for which its paraphrase was its nearest neighbor, and the number of queries for
which the paraphrase was in its 5-nearest neighborhood.

Embedder MRR # top # top-5
elmo-orig-5.5b 0.910 67 70
elmo-orig 0.829 60 65
infersent-v1 0.799 55 64
w2v 0.760 52 64
use-trf 0.759 54 60
fasttext-cc 0.756 52 62
use-dan 0.718 51 55
bert-base-avg 0.674 47 55
glove-6b-300d 0.673 48 52
tfidf 0.672 45 55
fasttext-wiki 0.662 45 54
elmo-small 0.638 44 51
glove-840b-300d 0.601 42 49
gpt-avg 0.600 41 50
fasttext-wiki-sub 0.552 37 47
glove-6b-100d 0.529 37 43
fasttext-cc-sub 0.515 35 41
bert-ft-avg 0.493 31 44
bert-base-cls 0.450 27 42
gpt-last 0.365 24 30
bert-ft-cls 0.302 19 27

Table 4: Results for the query-paraphrase experiment (§8), sorted by decreasing MRR. # top and
# top-5 are the number of queries for which the paraphrase was the nearest neighbor and in the
5-nearest neighborhood (max. 75), respectively.

14



Under review as a conference paper at ICLR 2020

C APPENDIX: APPROXIMATE NEAREST NEIGHBORS

As noted in §6, N2O computation is linear in the size of the corpus, and to have reasonable semantic
overlap within a diverse set of sentences, the corpus should be large. The upfront cost of computing
sentence embeddings across the corpus is unavoidable (and, for many applications, necessary any-
ways); our implementation of exact search is fast enough that repeated queries given precomputed
embeddings is not a concern (see footnote 8).

However, we note that approximate nearest neighbor (ANN) methods are also a viable option, where
computation of building an index of the corpus is front-loaded to ensure sub-linear search time. We
recommend use of a small held-out set of queries to tune the ANN method parameters towards
higher precision/recall (vs. speed).

All of the results in this paper were obtained using exact (linear) search. However, we also performed
preliminary experiments using the NGT (neighborhood graph tree) library, which achieves good
recall in high-dimensional settings (Iwasaki & Miyazaki, 2018; Aumüller et al., 2019).20 We were
able to obtain similar N2O-ranked results (query recall ∼0.96) relatively quickly: 0.25–5 s./query
(depending on embedding dimension).

We note that, in related work, ANN is commonly used in retrieval settings; e.g., Sugawara et al.
(2016) test multiple ANN methods for similar word embedding search, and Bhagavatula et al. (2018)
use an ANN method to index documents for citation recommendation. We believe that approximate
methods can be of use for scalable N2O computation as well.

20https://github.com/yahoojapan/NGT

15

https://github.com/yahoojapan/NGT

	Introduction
	Corpus-Based Embedding Comparison
	Desiderata
	Algorithm

	Sentence Embedding Methods
	tf-idf
	Word Embeddings
	Encoders

	Experimental Details
	Results
	Robustness and Runtime Considerations
	Popularity of Neighbors
	Query Paraphrasing
	Related Work
	Conclusion
	Appendix: Implementation Details
	Appendix: Additional Results & Plots
	Annotated N2O Heatmap
	Token Overlap
	N2O Ranges Per Embedder
	Popular & Outlier Nearest Neighbors
	Query-Paraphrase Experiment Results

	Appendix: Approximate Nearest Neighbors

