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ABSTRACT

Convolutional neural networks (CNNs) were inspired by human vision and, in
some settings, achieve a performance comparable to human object recognition.
This has lead to the speculation that both systems use similar mechanisms to per-
form recognition. In this study, we conducted a series of simulations that indicate
that there is a fundamental difference between human vision and CNNs: while
object recognition in humans relies on analysing shape, CNNs do not have such a
shape-bias. We teased apart the type of features selected by the model by modi-
fying the CIFAR-10 dataset so that, in addition to containing objects with shape,
the images concurrently contained non-shape features, such as a noise-like mask.
When trained on these modified set of images, the model did not show any bias to-
wards selecting shapes as features. Instead it relied on whichever feature allowed
it to perform the best prediction — even when this feature was a noise-like mask or
a single predictive pixel amongst 50176 pixels. We also found that regularisation
methods, such as batch normalisation or Dropout, did not change this behaviour
and neither did past or concurrent experience with images from other datasets.

1 INTRODUCTION

Object recognition in humans is largely a function of analyzing shape (Biederman, 1987; Hummel,
2013). A wealth of data from psychological experiments show that shape plays a privileged role
in object recognition compared to other diagnostic features such as size, colour, luminance or tex-
ture. For example, Biederman & Ju (1988) showed that error rates and reaction times are virtually
identical in a recognition task when full coloured photographs of objects are replaced by their line
drawings even when colour was a diagnostic feature. This indicates that shape-based representations
mediate recognition. Similarly, Mapelli & Behrmann (1997) found that, for patients with an object
recognition deficit (visual agnosia), surface colour played minimal role in aiding object recognition
unless the shape of the object was ambiguous, indicating that shape is instrumental to recognition,
whereas surface characteristics such as colour and texture play only a secondary role. More recently,
Baker & Kellman (2018) have shown that participants extract shape information automatically from
arrays of dot patterns within the first 100ms of stimulus onset, even for tasks where extracting this
information may be detrimental to performance on a task. Experiments from developmental psy-
chology show that this privileged status of shape starts early in life and becomes stronger with age.
For example, Landau et al. (1988) found that 2-3-year-old children as well as adults weight shape
more heavily than size or texture when generalising the name of a learnt object to novel instances.
They also found that the weight placed on shape increases in strength and generality from early
childhood to adulthood. Following Landau et al. (1988), we will call this privileged status of shape
in performing recognition a “shape bias”.

By contrast, it is unclear whether shape plays a privileged role in how convolutional neural networks
(CNNis) categorise objects. It is often claimed that CNNs learn representations of objects that are
similar to the representations that monkeys and humans use when identifying objects (Rajalingham
et al., 2018), and that CNNs largely rely on learning shape representations in order to categorise
objects (Kubilius et al., 2016; Ritter et al., 2017; Jozwik et al., 2017). On the other hand, there
are a growing number of studies that show that CNNs often categorise images on the basis on non-
shape attributes of images. This is demonstrated by the existence of adversarial images that are
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confidently classified as a familiar category despite the lack of any shape information in the input
(Nguyen et al., 2015), adversarial images that contain the correct shape but altered colours that are
confidently misclassified (e.g., categorizing an image of an airplane as a dog when only the colour of
the plane has been manipulated), and large reductions in performance when trained coloured images
are converted to greyscale (Geirhos et al., 2017) or the colours are inverted (Hosseini et al., 2017).
In addition, there are demonstrations that CNNs can easily learn to categorise random patterns of
pixels that have no shape (Zhang et al., 2016). All of these findings suggest that shape may not play
a privileged role in CNN’s object categorisation, or that the relevant role of shape and non-shape
features depends on the specific model or training conditions.

Here we systematically explore the impact of non-shape features in the categorisation performance
of convolutional neural networks on CIFAR-10 images. We introduced non-shape features to images
by adding informative noise-like masks to the training set. We tried several types of masks and
an extreme version where the non-shape feature consisted of just a single pixel with a location
correlated to the image category (see Figure 1 and Appendix B). We show that CNNs often learn
and depend on non-shape features that are highly diagnostic of object categories and often fails
to learn anything about shape under these conditions. This highlights that CNNs simply picks up
whatever statistical structure is most relevant to learning the training set, with shape playing no
special role. Note that this does not imply that CNNs do not encode shape information under any
circumstance, but that shape does not seem to be weighted more than other diagnostic features,
even when these features are noise-like masks or the luminance of a single pixel. Importantly, this
behaviour contrasts with humans, for whom shape plays a privileged role in performing recognition,
even in the presence of much more salient diagnostic features such as size, colour or texture. If
the models are to more closely capture human performance, these results suggest that additional
machinery needs to be added to networks in order to prioritize the role of learning shape-based
representations while performing the object categorisations. This might also reduce the model’s
susceptibility to being fooled by non-shape features of images, and being more robust to various
forms of non-shape noise that currently reduce performance.
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(a) Salt-and-pepper noise (b) Additive noise (c) Single diagnostic pixel

Figure 1: Hidden in plane sight. Images taken from CIFAR-10 dataset and scaled up to 224x224
pixels. (a) Image is converted to greyscale and we add a salt-and-pepper noise-like mask to each
training image; (b) Image is converted to greyscale and we add uniform additive noise mask to
each training image; (c) A single diagnostic pixel is inserted in the image (top-right, though nearly
invisible to the naked eye).

2 EXPERIMENT PREMISE & DESIGN

We modified the CIFAR-10 dataset (see Appendix A) so that each image contained not only features
that pertain to the shape (e.g. object outlines) but also features without any shape information. As
non-shape features we used noise-like masks that were combined with the original image. Two
different types of masks were used: the salt-and-pepper noise mask turned a certain proportion of
image pixels to either black or white, while a additive uniform noise mask added a value sampled
from a uniform distribution to each pixel of an image. We also tested an extreme form of the salt-and-
pepper noise mask where only one pixel was turned to a particular colour. In this case the location
and colour of the pixel were different for different categories but correlated for images within a
category. Masks were independently sampled for each category but were either fixed for all images



Under review as a conference paper at ICLR 2019

in a category (in which case the mask predicted the category) or sampled from a distribution with
category-dependent parameters (in which case these parameters predicted the category). So these
modified images concurrently contained features that were related to shape and features without
shape information. Both types of features were predictive of the category of an image. Examples of
modified images are given in Appendix B.

We trained the model on these modified sets of images and tested it under three conditions. During
the ‘Same’ condition, the test set was modified in exactly the same manner — i.e., either images in
each category were generated by using the same mask as that for the training images of that category
(when the mask was fixed) or they were generated by using the same parameters as the parameters
used to generate noise masks for training images of that category (when the mask was variable). In
contrast, during the ‘Diff’ condition, the noise masks (or their parameters) for each category were
swapped with another category. The premise here was that if the model based it’s decisions on
shape-related features, then it would ignore the noise mask and the performance during ‘Same’ and
‘Diff” condition should be similar. On the other hand, if the model relied on properties of the (non-
shape) mask, then it’s performance would be worse in the ‘Diff” condition compared to the ‘Same’
condition. Finally, we used a third, ‘NoPix’, condition to estimate the extent to which the network
relied on features of the noise mask. In this condition, we presented the network with a version
of the image without any mask, with the premise that the difference between the performance in
‘Same’ and ‘NoPix’ condition should quantify the relative extent to which the network relied on
shape-based and non-shape features. We ran all of the simulations using the well-known VGG-16
network (Simonyan & Zisserman, 2014) and checked that our main results replicate for a deeper
network, ResNet-101 (He et al., 2016). To give the model the best chance to recognise shape-based
features, all simulations were carried out on CNNs that had previously been trained on ImageNet
categories and replaced only the fully-connected layers to perform the new classification task. We
then turned the learning rate to a small value and trained these networks on the new classification
task (see Appendix C for simulations were learning was completely frozen in convolutional layers).

3 RESULTS

In the first set of experiments, all images in a category had the same noise mask. For salt-and-pepper
mask, this meant that noise masks were sampled independently for each category, but the same set of
pixels in each image were modified for all images in a category. Similarly, for the additive uniform
noise mask, the same mask was added to each image in a category. For the single pixel noise,
the location and colour of the added pixel were independently sampled for each category, but kept
constant for all images in a category.
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Figure 2: Accuracy on test images under the three types of noise-like masks shown in Figure 1.
‘Same’: the noise-like mask has same properties for test and training images of each category;
‘Diff’: the properties of the mask during test are swapped with another category from training;
‘NoPix’: No mask is inserted. The dashed (red) line indicates chance performance and error bars
show 95% confidence interval. Light and dark gray bars show accuracies on the VGG-16 and
ResNet-101 convolutional neural networks, respectively.

The results of these experiments are shown in Figure 2. We obtain the same pattern of results for
all three cases: when noise mask in the test images matches the noise mask in training images, the
model classifies images nearly perfectly; when noise masks are swapped, the accuracy drops to zero;
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when the mask is completely removed, the categorisation accuracy is at chance. Furthermore, we
get the same pattern of results on both VGG and ResNet networks. These results clearly indicate
that the model learns to completely rely on features of the noise-like mask, rather than any shape-
related information present in the images. Even in the extreme case, where only one pixel amongst
50176 was diagnostic of the category, the model prefers to classify based on this feature over other
shape-related features present in each image.

One response to this preference for these non-shape, but statistically relevant, features is that it
can be addressed by regularisation methods that prevent overfitting to idiosyncratic features in the
training dataset. The network is simply failing to select the more general feature — shape — choosing
instead to memorise the noise-like mask. If this was the case, then using some of the well-known
regularisation methods, such as Batch Normalization, Weight Decay or Dropout, may diminish this
preference for the non-shape feature. However, we found that regularisation did not make any
significant difference to the results above (Figure 3). Even when a dropout of 50% was added after
every convolution layer, the pattern of results remained the same.

[ VGG ) VGG 100 | £ VGG
3 VGG BN = VGG BN 3 VGG BN
VGG L2 VGG L2 VGG L2
> BN Conv Drop Em Conv Drop %a 75 EEN Conv Drop
o _J ——————— |
g g
=] 3 50
o
&} Q
< <
25
0 - . 0 - . 0 - -
Same Diff NoPix Same Diff NoPix Same Diff NoPix
(a) Salt-and-pepper noise (b) Additive noise (c) Single diagnostic pixel

Figure 3: Effect of regularisation. Graphs show accuracy for Same, Diff and NoPix conditions
using models with four types of regularisations. The base model, VGG—-16, uses dropout in fully-
connected layers but not after convolutional layers; VGG_BN: VGG-16 with Batch Normalisation;
VGG_L2: The 16-layer VGG CNN trained with weight-decay of 1e—3; Conv Drop: A seven-layer
CNN with dropout after every convolution and fully connected layer.

Another possible reason why humans prefer to rely on shape-related features to categorise objects
while CNNs do not is that humans are guided by past experience and bring this past knowledge to
new categorisation tasks. So when a human sees an object with superimposed noise, they generalise
from past experience and look for shape-based information, paying less attention to non-shape re-
lated features such as the noise-like mask in above images. In order to test whether the network will
similarly generalise from experience on other tasks, we conducted two further experiments.

In the first experiment, we divided the training set into two subsets. The first subset (‘with pix’)
contained three randomly chosen categories from CIFAR-10 and, like above, contained a category-
correlated pixel in all images of these categories. The second subset (‘unaltered’) contained the
remaining seven categories from CIFAR-10 and was left unaltered —i.e. we did not add the category-
correlated pixel to images of this subset. The network was then trained on all ten categories at the
same time. We were interested in finding out whether the network generalised from one subset to
another and started using the features used to categorise images in the ‘unaltered’ subset to images
of the ‘with pix’ subset. The results from this experiment are shown in Figure 4a. The model learnt
to predict the images in the ‘unaltered’ subset with nearly 90% accuracy. However the performance
on the ‘with pix’ subset still completely depended on the location and colour of the added pixel:
accuracy was nearly 100% when test images contained the pixel in the same location, but dropped
below chance when this pixel was removed. Thus, the network did not seem to generalise the
features learnt in the ‘unaltered’ categories to the categories containing the diagnostic pixel.

The above experiment required the model to simultaneously learn on categories with and without a
diagnostic pixel. In a second experiment we tested what happens when the network is first trained
on images that did not contain such a pixel (a ‘before’ phase) followed by a second (‘after’) phase in
which such a pixel was inserted in the training set. This setup more closely resembles the situation
faced by humans, where they bring their knowledge from previous categorisation tasks and use this
knowledge to select the shape-based features to a new task.
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Figure 4: Lack of generalisation. Accuracy under Same, Diff and NoPix conditions for (a) two
subsets: an ‘unaltered’ subset where no noise-like mask was inserted in training images and a ‘with
pix’ subset where a single diagnostic pixel was inserted, and (b) for two phases: a ‘before’ phase,
where a pre-trained VGG network was trained on images without any noise masks and tested on
the three conditions, and an ‘after’ phase, where the model from before phase was then trained on
images with a single diagnostic pixel.

In the first phase, a pre-trained VGG network was trained on an unaltered CIFAR-10 training set.
Once the network had learnt this task, we trained it on the modified set of images in a second
phase, introducing a predictive pixel in each category. So all that changes between the ‘before’ and
‘after’ phases is the insertion of a single category-correlated pixel to each image. We observed that
(Figure 4b), instead of relying on past experience with these images, the model learnt to completely
rely on the predictive pixel to perform categorisation — accuracy dropped from nearly 100% to
0% between ‘Same’ and ‘Diff” conditions. Crucially, the model completely forgot about how to
perform categorisation when the predictive pixel was removed — accuracy was close to chance in
the ‘NoPix’ condition during the ‘after’ phase. Thus learning about the diagnostic feature seemed
to be accompanied by unlearning previously learnt representations. This, catastrophic forgetting,
is a well-known problem in neural networks (McCloskey & Cohen, 1989) and contrasts with how
humans transfer their knowledge from one task to another.

3.1 INTRODUCING VARIABILITY

The non-shape features used in the experiments above have all been completely invariant from one
image to another within a category. It can be argued that these features are selected by the model over
other shape-based features because they provide a very strong predictive signal and consequently
suppress the selection of any shape-based features. It is possible that if these features contained
larger variance, the model would be more likely to rely on shape-based features while performing
categorisation. In a series of experiments where we increased the variability of the non-shape (noise-
like) features, we noticed that this was generally not the case — the model still relied a lot more on
these features than on any shape-based features to perform categorisation.

The first type of variability we introduced was to sample the noise mask independently from a dis-
tribution for each training and test image within a category. In order to make these noise masks
diagnostic of an image’s category, a parameter of this distribution correlated with an image’s cate-
gory. For the salt-and-pepper noise, this meant that the probability, p, of changing a pixel to black
or white was different for each category. Thus, the parameter, p, became diagnostic of the cate-
gory. However, the masks now varied from image to image and were independently sampled with
the (category-dependent) probability, p. Similarly, for the additive uniform noise, masks could vary
from one image to other within a category but the mean of the distribution depended on each cate-
gory (see Appendix A for details). For the single diagnostic pixel, the inserted pixel could vary in
location from one image to the other, but was generated from a Gaussian distribution with a mean
determined by the category of the image and a fixed standard deviation. Similarly the colour of
the pixel was sampled from a Gaussian distribution with a mean determined by the category of the
image and a fixed standard deviation.
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Figure 5: Accuracy on test images when the noise mask varies between images of a category. Train-
ing images contain (a) salt-and-pepper noise, or (b) additive uniform noise, or (c) just one diagnostic
pixel. The dashed (red) line indicates chance performance. See Figure 2 for a description of the
‘Same’, ‘Diff” and ‘NoPix’ conditions.

The results of introducing a variable noise mask are shown in Figure 5. Introducing variability in
the location and colour of the single diagnostic pixel brought very little change to the VGG model’s
behaviour (compare Figure 5c with Figure 2c). Performance in the NoPix condition was somewhat
better for ResNet, however the pattern of result remained the same — performance dropped substan-
tially from the Same to NoPix condition. Similarly, introducing variability in the salt-and-pepper
masks lead to only a minor change in behaviour of the model, with accuracy in ‘Diff’ condition
dropping to chance, rather than 0%. The most intriguing change in behaviour occurred when vari-
ability was introduced to the additive uniform noise mask (Figure 5b). While the VGG and ResNet
networks differed quantitatively in these results, the pattern of results remained the same: when the
noise mask was completely removed (NoPix condition) the model performed worse than when the
images contained a noise mask from a different category (Diff condition). In other words, removing
the mask makes the image less informative for the model, not only compared to images with the cor-
rect category-correlated (Same) mask, but also compared to images with the incorrect (Diff) mask —
the model seems to rely on the presence of noise to make an inference.

Next, we examined how the model changes it’s behaviour when only a subset of images contain a
diagnostic non-shape feature. We restricted this experiment to the case of a single diagnostic pixel.
The location and colour of this pixel were fixed across all images of a category, but we introduced
stochasticity in the presence of this pixel within a training image. Figure 6 shows the change in
accuracy for the ‘NoPix’ condition with an decrease in the probability with which a pixel is present
in a training image. We specifically focus on the ‘NoPix’ condition as the accuracy on this condition
is inversely correlated with how much the network relies on this pixel to predict the output category.
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Figure 6: Accuracy of the model on images containing no mask, as a function of the fraction of
training images containing a diagnostic pixel. The solid (blue) and dashed (green) lines plot this
relation for a network trained without and with weight-decay, respectively. Dashed (red) line at the
bottom shows chance performance. Dotted (black )line at the top shows performance of a network
trained on images without any noise mask.
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It can be seen from this figure that accuracy increases smoothly, rising sharply at first and then
slowing down as the probability of the pixel being present in a training image decreases. This
smooth increase is consistent with the hypothesis that the learning algorithm selects the feature
based on the predictive power of the feature; as the single pixel becomes less predictive, the network
starts relying on other features to choose the output category. This smooth increase also indicates
that the model is able to combine information from this diagnostic pixel with other features that
it uses to predict the output category. For example, when the pixel is present in only 90% of the
images, the model is able to correctly categorise an image containing no diagnostic pixel 70% of the
time, indicating that it simultaneously represents both the diagnostic pixel as well as other features
that it uses to perform categorisation.

The figure also shows that a single pixel present in training images adversely affects the performance
of the network even when it is present on only a fraction of the images. When the network is trained
on images from the original CIFAR-10 dataset, it’s accuracy is close to 90% (dotted black line);
inserting a single pixel on 70% of the images meant that the performance decreased by more than
10%. This reduction in performance could be due to one of two reasons: (a) the network mistakes a
pixel value in one of the original images as a predictive pixel and performs an incorrect classification
based on this pixel, or (b) adding a mask to a subset of training images means that the network has to
learn the correct classification function on a fraction of the original dataset. This decrease in the size
of the dataset may be affecting its performance. Further testing will be needed to correctly establish
which of these reasons is responsible for a reduction in performance. Lastly, we also observed
that L2 regularisation made the performance of the network worse on the original images when a
diagnostic pixel was inserted on a fraction of the images. While L2 regularisation should help the
network learn a more general solution, in this case it lead to the opposite effect.

3.2 TRANSLATION INVARIANCE VERSUS PIXEL LOCATION

While conducting the above experiments, we noticed that the model managed to discriminate be-
tween categories based simply on the location of a single pixel —i.e. even when the colour of the
inserted pixel was same for all categories, the network was able to perfectly classify images con-
taining this diagnostic pixel. This implies that the network was able to represent the location of the
inserted pixel, which is surprising considering CNNs are designed to achieve translation invariance
through a combination of convolution and pooling operations. In our final experiment, we wanted
to understand how the network represents the location of the inserted pixel and uses it to perform
categorisation.
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Figure 7: Accuracy during the ‘Same’ condition, when location of the pixel in the test set is shifted
compared to the training set. The amount of shift was varied between 1pixel and 32pixels (shown
on logo scale). Dashed red line shows chance performance and the shaded region shows 95% confi-
dence intervals.

In order to do this, we modified the training dataset so that the colour of the inserted pixel was the
same (black) across all categories, but it’s location depended on the category. Moreover, for the
test images, we inserted the pixel at a location which was shifted between 1 and 32 pixels (along
the x-axis) with respect to the training images. We varied the degree of this shift and observed
how the accuracy of classification changes as a function of this shift. If the network memorises the
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exact location of each pixel, the slightest shift should lead to a catastrophic decay in categorisation
accuracy. In contrast, we noticed that the network was reasonably robust to a shift in the location
of the test pixel and performance only degraded significantly when the location of the test pixel
was shifted by sixteen pixels or more (Figure 7). Across simulations we noticed that this inflection
point depended on the relative location of the diagnostic pixels for different categories; the network
seemed to be dividing the image into different decision regions based on the relative location of the
diagnostic pixel. When the diagnostic pixel was shifted by more than a certain amount, the image
was classified as a different category. These boundaries seemed to be discrete —i.e. the classification
did not gradually change from one category to another as the pixel was varied. Rather, all the images
were classified as one category or the other based on the location of the pixel.

4 RELATED WORK

Su et al. (2017) demonstrated that CNNs trained on CIFAR-10 and ImageNet can be fooled by
introducing a single adversarial pixel, with error rates of 68% and 41%, respectively. Unlike our
approach the model was trained with uncorrupted images and the authors systematically searched
for an adversarial pixel that lead to any sort of error (so-called non-targeted attack). So, in contrast
to our goal, the goal of their study was not to explore whether CNNss systematically learn non-spatial
information. However, the findings are in line with ours — the CNNss trained by them do not seem to
be categorising based on shape. Rather, it must be that there was, by chance, some pixel value that
was highly correlated with a given output category and the model picked up on this idiosyncratic
correspondence. As a consequence, when this pixel was added to another category the model was
fooled.

Geirhos et al. (2017) reported that CNNs are not as robust as humans to different types of noise.
Note that they use the term “noise” differently to us. Our use of the term “noise-like mask™ refers to
non-shape features that are diagnostic of an image’s category, while Geirhos et al. (2017) insert non-
diagnostic noise in their stimuli. They found that training CNNs to become robust to one distribution
of noise did not make the CNNs to be robust to other forms of noise. That is, the models found it
easy to learn about specific forms of noise, just as we observed above. As the authors note, this is
problematic given that the space of possible image distortions is vast and it is not possible to train
CNN s to be robust to all possible forms of noise. We would suggest a key solution to this observation
is to introduce some sort of shape-bias to CNNs that might make networks more robust to a wide
range of noise rather than training on the noise per se.

5 CONCLUSIONS

In a series of simulations we found that the VGG network trained to categorise CIFAR-10 images
that included noise-like masks diagnostic of the output categories often learned to categorise on
the basis of these masks rather than the CIFAR images themselves. Indeed, the models often en-
tirely relied on the masks, and performed at floor when the noise was removed from the images.
Even though we specifically engineered our dataset to contain non-shape features, it is well-known
that popular datasets such as CIFAR and ImageNet contain various biases due to conditions under
which the images were captured as well as the different motivations for construction of the datasets
(Torralba & Efros, 2011). Our results suggest that CNNs may be relying too heavily on non-shape
features when categorising images and therefore may be extremely susceptible to non-shape biases
present within datasets. This, in turn, could be the source of various idiosyncratic behaviours such as
being confounded by fooling images (Nguyen et al., 2015) or being overly sensitive to colour (Hos-
seini et al., 2017), noise (Geirhos et al., 2017) or even single pixels in images (Su et al., 2017). This
contrasts with human visual object recognition that is largely based on shape (Biederman, 1987).
It will be important to introduce shape biases to CNNss if they are to mirror human object recogni-
tion performance more closely. The introduction of shape biases may also prove useful in making
CNNs more robust to various non-shape manipulations of images (e.g., changes in colour or the
introduction of noise) that often impair performance.
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A IMAGE PREPROCESSING & MODEL DESCRIPTION

We used a method similar to Geirhos et al. (2017) to transform images from the CIFAR-
10 dataset (https://www.cs.toronto.edu/~kriz/cifar.html). All transformations
were performed using the Pillow fork of the Python Imaging Library (https://pillow.
readthedocs.io). Each 32x32 pixel image was rescaled to 224x224 pixels using the
PIL.Image.LANCZOS method. For the salt-and-pepper and additive noise masks, each im-
age was transformed from RGB to greyscale using PIL.Image.convert () method. For
the extreme case of single pixel, the images were not colour transformed (we obtained qualita-
tively similar results if images were transformed to greyscale). When images were transformed to
greyscale, their contrast was adjusted to 80% by scaling the value of each pixel using the formula:
0.8 x v+ 1=28 x 128, where v was the original value of the pixel in the range [0, 255].

The salt-and-pepper mask was created by taking the transformed greyscale image and setting each
pixel to either black or white with a probability p. When the mask was fixed for a category, all
images had the exact same set of pixels that were turned either black or white and the p was set
to 0.05. When the mask varied from image to image within a category, the pixels were sampled
independently for each image and the probability p was fixed for each category but varied between
categories in the range [0.03, 0.06].

The additive uniform noise mask was created by taking the transformed greyscale image and adding
a value sampled from the uniform distribution [—w, w] to this image, where 2w was the width of the
uniform distribution and was set to 8. When the noise mask was fixed, this sampling was done only
once per category and the same mask was added to each image. When the mask was variable, it was
sampled independently for each image from a distribution [y — w, u + w], where p was the mean
that depended on the category and varied in the range [—50, 50].

The single pixel mask was created by choosing a random location, (x, y), (sampled from a uniform
distribution on the interval [0, 224]) on the image and changing the colour of the pixel to a value ¢
(sampled from a uniform distribution on the interval [0, 255]). When the mask was fixed for each
category, (z,y, ¢) remained constant for all images in a category, but varied between categories. In
other words, the pixel was inserted at different locations and was of different colours for different
categories, but all images within a category had the pixel at the same location and of same colour.
When the mask was variable, each of =,y and ¢ were sampled independently for each image from
a Gaussian distribution with a constant variance and a mean that depended on the category of the
image. If any value in a sampled set of (z,y, ¢) values fell out of their respective range, that value
was re-sampled.

All simulations reported in this study (except for the Conv Drop simulation in Figure 3) were carried
out using a pre-trained 16-layer VGG network (Simonyan & Zisserman, 2014) provided by the
torchvision package of Pytorch. This network had been pre-trained on the ImageNet dataset.
We replaced the fully-connected layers of this pre-trained model with three fully-connected layers
with Dropout after the first two layers. This model was then trained on the modified training set using
the RMSProp gradient descent optimization algorithm (see Ruder, 2016) with learning rate of 1e —5,
a momentum of 0.9 and a cross-entropy loss function. We also experimented with Adam (Kingma
& Ba, 2014) and results remained qualitatively same. For testing the effect of Dropout in the early
layers, we constructed a six-layer convolutional neural network with three convolutional layers and
three fully connected layers and dropout after every convolutional layer. The same learning rule and
parameters were used as for the VGG network and we experimented with several model architectures
with most architectures giving similar results. This network was able to achieve an accuracy of 70%
on categorising the CIFAR-10 dataset. The input to both types of networks was a 3-channel RGB
image. For greyscale images, all three channels were set to the same value.
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B EXAMPLE IMAGES
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Figure 8: Examples of images used for training and testing. The columns show the condition under
which the image was used and the rows show the type of noise-like mask inserted. These noise
masks are, respectively, (row 1) salt-and-pepper noise with a fixed mask, (row 2) salt-and-pepper
noise with a variable mask, (row 3) additive uniform noise with fixed mask, (row 4) additive uniform
noise with a variable mask, (row 5) single diagnostic pixel, fixed location and colour and (row 6)
single diagnostic pixel with variable location and colour.
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C EFFECT OF FREEZING LEARNING

A trick that is frequently used in deep learning networks to enable them to generalise between tasks
is to switch off learning completely in the convolution layers after pre-training on one dataset. The
assumption here is that different categorisation tasks share low level features used for classification.
Switching off learning means that these features are not unlearned as a result of training on a new
dataset. We noticed that when this is done, the network was less sensitive to the introduction of a
category-correlated pixel (Figure 9, light gray bars). This is not surprising — freezing the weights in
convolution layers prevents the network from learning any new features such as the single predictive
pixel. In fact, even under this extreme constraint, the performance of the network is significantly
affected by the presence of a single diagnostic pixel. The effect of introducing additive uniform
noise are even more acute (dark gray bars in Figure 9) — accuracy drops to nearly 40% in the ‘Diff’
and ‘NoPix’ conditions, showing that the model learns to rely on the noise-like mask even when
learning in convolution layers is switched off.

100 [ One pixel
I Uniform

Accuracy
o1 ~
o 9)}

N
&)

0 Same Diff NoPix

Figure 9: Effect of completely freezing convolution layers. Accuracy on images containing either
Additive (Uniform) noise-like mask or single diagnostic pixel (One pixel) when the learning rate for
convolution layers is set to zero after pre-training on ImageNet.
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