
Under review as a conference paper at ICLR 2019

GRADIENT DESCENT HAPPENS IN A TINY SUBSPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

We show that in a variety of large-scale deep learning scenarios the gradient dy-
namically converges to a very small subspace after a short period of training. The
subspace is spanned by a few top eigenvectors of the Hessian (equal to the number
of classes in the dataset), and is mostly preserved over long periods of training.
A simple argument then suggests that gradient descent may happen mostly in this
subspace. We give an example of this effect in a solvable model of classification,
and we comment on possible implications for optimization and learning.

1 INTRODUCTION

Stochastic gradient descent (SGD) (Robbins & Monro, 1951) and its variants are used to train nearly
every large-scale machine learning model. Its ubiquity in deep learning is connected to the efficiency
at which gradients can be computed (Rumelhart et al., 1985; 1986), though its success remains some-
what of a mystery due to the highly nonlinear and nonconvex nature of typical deep learning loss
landscapes (Bottou et al., 2016). In an attempt to shed light on this question, this paper investigates
the dynamics of the gradient and the Hessian matrix during SGD.

In a common deep learning scenario, models contain many more tunable parameters than training
samples. In such “overparameterized” models, one expects generically that the loss landscape should
have many flat directions: directions in parameter space in which the loss changes by very little or
not at all (we will use “flat” colloquially to also mean approximately flat).1 Intuitively, this may
occur because the overparameterization leads to a large redundancy in configurations that realize the
same decrease in the loss after a gradient descent update.

One local way of measuring the flatness of the loss function involves the Hessian. Small or zero
eigenvalues in the spectrum of the Hessian are an indication of flat directions (Hochreiter & Schmid-
huber, 1997). In Sagun et al. (2016; 2017), the spectrum of the Hessian for deep learning cross-
entropy losses was analyzed in depth.2 These works showed empirically that along the optimization
trajectory the spectrum separates into two components: a bulk component with many small eigen-
values, and a top component of much larger positive eigenvalues.3

Correspondingly, at each point in parameter space the tangent space has two orthogonal components,
which we will call the bulk subspace and the top subspace. The dimension of the top subspace is k,
the number of classes in the classification objective. This result indicates the presence of many flat
directions, which is consistent with the general expectation above.

In this work we present two novel observations:

• First, the gradient of the loss during training quickly moves to lie within the top subspace
of the Hessian.4 Within this subspace the gradient seems to have no special properties; its
direction appears random with respect to the eigenvector basis.

1 Over parameterization suggests many directions in weight space where the loss does not change. This
implies that the curvature of the loss, captured through the hessian spectrum, vanishes in these directions. In
the remainder of the paper, we use the term flat, as is common in the literature, in a slightly broader sense to
describe this curvature of the loss surface, not necessarily implying vanishing of the gradient.

2For other recent work on the spectrum of the Hessian as it relates to learning dynamics, see Pascanu et al.
(2014); Dauphin et al. (2014); Chaudhari et al. (2016).

3We provide our own evidence of this in Appendix B and provide some additional commentary.
4 This is similar to Advani & Saxe (2017), who found that a large fraction of the weights in overparameter-

ized linear models remain untrained from their initial values (thus the gradient in those directions vanishes).

1



Under review as a conference paper at ICLR 2019

• Second, the top Hessian eigenvectors evolve nontrivially but tend not to mix with the bulk
eigenvectors, even over hundreds of training steps or more. In other words, the top subspace
is approximately preserved over long periods of training.

These observations are borne out across model architectures, including fully connected networks,
convolutional networks, and ResNet-18, and data sets (Figures 1, 2, Table 1, Appendices C-D).

Taken all together, despite the large number of training examples and even larger number of pa-
rameters in deep-learning models, these results seem to imply that learning may happen in a tiny,
slowly-evolving subspace. Indeed, consider a gradient descent step−ηg where η is the learning rate
and g the gradient. The change in the loss to leading order in η is δL = −η ‖g‖2. Now, let gtop be
the projection of g onto the top subspace of the Hessian. If the gradient is mostly contained within
this subspace, then doing gradient descent with gtop instead of g will yield a similar decrease in the
loss, assuming the linear approximation is valid. Therefore, we think this may have bearing on the
question of how gradient descent can traverse such a nonlinear and nonconvex landscape.

To shed light on this mechanism more directly, we also present a toy model of softmax regression
trained on a mixture of Gaussians that displays all of the effects observed in the full deep-learning
scenarios. This isn’t meant as a definitive explanation, but rather an illustrative example in which
we can understand these phenomenon directly. In this model, we can solve the gradient descent
equations exactly in a limit where the Gaussians have zero variance.5 We find that the gradient is
concentrated in the top Hessian subspace, while the bulk subspace has all zero eigenvalues. We
then argue and use empirical simulations to show that including a small amount of variance will not
change these conclusions, even though the bulk subspace will now contain non-zero eigenvalues.

Finally, we conclude by discussing some consequences of these observations for learning and opti-
mization, leaving the study of improving current methods based on these ideas for future work.

2 THE GRADIENT AND THE TOP HESSIAN SUBSPACE

In this section, we present the main empirical observations of the paper. First, the gradient lies
predominantly in the smaller, top subspace. Second, in many deep learning scenarios, the top and
bulk Hessian subspaces are approximately preserved over long periods of training. These properties
come about quickly during training.

In general, we will consider models with p parameters denoted by θ and a cross-entropy loss function
L(θ). We will generally use g(θ) ≡ ∇L(θ) for the gradient and H(θ) ≡ ∇∇TL(θ) for the Hessian
matrix of the loss function at a point θ in parameter space. A gradient descent update with learning
rate η at step t is

θ(t+1) = θ(t) − η g
(
θ(t)
)
, (1)

and for stochastic gradient descent we estimate the gradient using a mini-batch of examples.

2.1 THE GRADIENT CONCENTRATES IN THE TOP SUBSPACE

For a classification problem with k classes, consider a point θ in parameter space where the Hessian
spectrum decomposes into a top and a bulk subspace as discussed above.6

Now, let Vtop be the subspace of tangent space spanned by the top k eigenvectors of the Hessian; we
will call this the top subspace. Let Vbulk be the orthogonal subspace. The gradient at this point can
be written as a sum g(θ) = gtop + gbulk where gtop (gbulk) is the orthogonal projection of g onto
Vtop (Vbulk). The fraction of the gradient in the top subspace is then given by

ftop ≡
‖gtop‖2

‖g‖2
. (2)

5Other works where the dynamics of gradient descent were analyzed directly include Fukumizu; Saxe et al.
(2013); Arora et al. (2018).

6As we have mentioned, this decomposition was originally found in Sagun et al. (2016; 2017), and we
provide additional discussion of the Hessian spectrum in Appendix B.

2



Under review as a conference paper at ICLR 2019

Figure 1 shows this fraction for common datasets and network architectures during the early stages
of training. The fraction starts out small, but then quickly grows to a value close to 1, implying that
there is an underlying dynamical mechanism that is driving the gradient into the top subspace.

For these experiments, training was carried out using vanilla stochastic gradient descent on a variety
of realistic models and dataset combinations. However, measurements of the gradient and Hessian
were evaluated using the entire training set. Additionally, all of our empirical results have been
replicated in two independent implementations. (See Appendix A for further details on the numerical
calculation.)

In the next subsection we provide evidence that this effect occurs in a broader range of models.

(a) (b)

(c) (d)

(e) (f)

Figure 1: Fraction of the gradient in the top subspace ftop, along with training loss and accuracy.
Only the initial period of training is shown, until the fraction converges. (a,b) Fully-connected
network with two hidden layers with 100 neurons each, trained on MNIST using SGD with batch
size 64 and η = 0.1. (c,d) Simple convolutional network (taken from Chollet et al. (2015)) trained
on CIFAR10 with the same optimizer. (e,f) ResNet-18 (He et al., 2016) trained on CIFAR10.

3



Under review as a conference paper at ICLR 2019

2.2 HESSIAN-GRADIENT OVERLAP

In this section, we consider the overlap between the gradient g and the Hessian-gradient productHg
during training, defined by

overlap(g,Hg) ≡ gTHg

‖g‖ · ‖Hg‖
. (3)

The overlap takes values in the range [−1, 1].
Computing the overlap is computationally much more efficient than computing the leading Hessian
eigenvectors. We argue below that the overlap becomes big (of order 1) if the gradient is contained
in the top subspace of the Hessian. We can use the overlap as a proxy measurement: if the overlap
is large, we take that to be evidence that the gradient lives mostly in the top subspace. We measured
the overlap in a range of deep learning scenarios, and the results are shown in Table 1. In these
experiments we consider fully-connected networks, convolutional networks, a ResNet-18 (He et al.,
2016), as well as networks with no hidden layers, models with dropout (Srivastava et al., 2014)
and batch-norm (201), models with a smooth activation function (e.g. softplus instead of ReLU),
models trained using different optimization algorithms (SGD and Adam), models trained using dif-
ferent batch sizes and learning rates, models trained on data with random labels (as was considered
by Zhang et al. (2016)), and a regression task. The overlap is large for the gradient and Hessian
computed on a test set as well (except for the case where the labels are randomized). In addition, we
will see below that the effect is not unique to models with cross-entropy loss; a simpler version of
the same effect occurs for linear and deep regression models. In all the examples that we checked,
the overlap was consistently close to one after some training.

Let us now show that the overlap tends to be large for a random vector in the top Hessian subspace.
Let λi be the Hessian eigenvalues in the top subspace of dimension k, with corresponding eigenvec-
tors vi. Let w be a vector in this subspace, with coefficients wi in the vi basis. To get an estimate
for the overlap equation 3, we choose w to be at a random vertex on the unit cube, namely choosing
wi = ±1 at random for each i. The overlap is then given by

overlap(w,Hw) =

∑k
i λiw

2
i√(∑k

j w
2
j

)(∑k
l λ

2
lw

2
l

) =

∑k
i λi√

k
∑k
j λ

2
j

. (4)

As discussed above, in typical scenarios the spectrum will consist of k positive eigenvalues where k
is the number of classes and all the rest close to zero. To get a concrete estimate ,we approximate this
spectrum by taking λi ∝ i (a rough approximation, empirically, when k = 10), and take k large so
that we can compute the sums approximately. This estimate for the overlap is

√
3/4 ≈ 0.87, which

is in line with our empirical observations. This should compared with a generic random vector not
restricted to the top subspace, which would have an overlap much less than 1.

We have verified empirically that a random unit vector w in the top Hessian subspace will have
a large overlap with Hw, comparable to that of the gradient, while a random unit vector in the
full parameter space has negligible overlap. Based on these observations, we will take the overlap
equation 3 to be a proxy measurement for the part of the gradient that lives in the top Hessian
subspace.

2.3 EVOLUTION OF THE TOP SUBSPACE

We now show empirically that the top Hessian subspace is approximately preserved during train-
ing. Let the top subspace V (t)

top at training step t be spanned by the top k Hessian eigenvectors

v
(t)
1 , . . . , v

(t)
k . Let P (t)

top be the orthogonal projector onto V (t)
top, defined such that

(
P

(t)
top

)2
= P

(t)
top.

We will define the overlap between a subspace V (t)
top and a subspace V (t′)

top at a later step t′ > t as
follows.

overlap
(
V

(t)
top, V

(t′)
top

)
≡

Tr
(
P

(t)
topP

(t′)
top

)
√

Tr
(
P

(t)
top

)
Tr
(
P

(t′)
top )

=
1

k

k∑
i=1

∥∥∥P (t)
topv

(t′)
i

∥∥∥2 . (5)

4



Under review as a conference paper at ICLR 2019

Table 1: Mean overlap results for various cases. FC refers to a fully-connected network with two
hidden layers of 100 neurons each and ReLU activations. ConvNet refers to a convolutional network
taken from Chollet et al. (2015). By default, no regularization was used. The regression data set was
sampled from one period of a sine function with Gaussian noise of standard deviation 0.1. We used
SGD with a mini-batch size of 64 and η = 0.1, unless otherwise specified. All models were trained
for a few epochs, and the reported overlap is the mean over the last 1,000 steps of training. Plots of
ftop for many of these experiments are collected in Appendix D.

DATASET MODEL COMMENT MEAN OVERLAP
MNIST Softmax 0.96
MNIST FC Softplus activation 0.96
MNIST FC η = 0.01 0.96
MNIST FC Batch size 256 0.97
MNIST FC Random labels 0.86
CIFAR10 ConvNet Random labels 0.86
CIFAR10 ConvNet Dropout, batch-norm, and extra dense layer 0.93
CIFAR10 ConvNet Optimized using Adam 0.89
Regression FC Batch size 100 0.99

It is easy to verify the rightmost equality. In particular, each element in the sum measures the fraction
of a late vector v(t

′)
i that belongs to the early subspace V (t)

top. Notice that the overlap of a subspace
with itself is 1, while the overlap of two orthogonal subspaces vanishes. Therefore, this overlap is a
good measure of how much the top subspace changes during training.7

Figure 2 shows the evolution of the subspace overlap for different starting times t1 and future times
t2, and for classification tasks with k = 10 classes. For the subspace spanned by the top k eigenvec-
tors we see that after about t1 = 100 steps the overlap remains significant even when t2 − t1 � t1,
implying that the top subspace does not evolve much after a short period of training. By contrast,
the subspace spanned by the next k eigenvectors does not have this property: Even for large t1 the
subspace overlap decays quickly in t2.

This means that the projector P (t)
top is only weakly dependent on time, making the notion of a “top

subspace” approximately well-defined during the course of training. It is this observation, in con-
junction with the observation that the gradient concentrates in this subspace at each point along the
trajectory, that gives credence to the idea that gradient descent happens in a tiny subspace.8

In Appendix C we give additional results on the evolution of the top subspace, by studying different
sizes of the subspace. To summarize this, we can average the overlap over different interval values
t2 − t1 for each fixed t1 and plot as a function of subspace dimension. We present this plot in
Figure 3 for the same fully-connected (a) and ResNet-18 (b) models as in Figure 1. Here, we very
clearly see that increasing the subspace until d = 9 leads to a pretty fixed overlap as a function of
dimension. At d = 10 it begins to decrease monotonically with increasing dimension. This is strong
evidence that there’s and interesting feature when the dimension is equal to the number of classes.9

3 A TOY MODEL

In order to understand the mechanism behind the effects presented in the previous section, in this
section we work out a toy example. We find this to be a useful model as it captures all of the effects

7 We have written the middle expression in (equation 5) to make it clear that our overlap is the natural
normalized inner product between the projectors P (t)

top and P (t′)
top . This is simply related to the Frobenius norm

of the difference between the two projectors, ||P (t)
top−P

(t′)
top ||, the canonical distance between linear subspaces.

8Note that this does not mean the actual top eigenvectors are similarly well-defined, indeed we observe that
sometimes the individual eigenvectors within the subspace tend to rotate quickly and other times they seem
somewhat fixed.

9 It might be more reasonable to describe this transition at the number of classes minus one, k − 1, rather
than the number of classes k. This distinction is inconclusive given the spectrum (see Appendix B), but seems
rather sharp in Figure 3.

5



Under review as a conference paper at ICLR 2019

(a) (b)

(c) (d)

(e) (f)

Figure 2: Overlap of top Hessian subspaces V (t1)
top and V (t2)

top . (a) Top 10 subspace of fully-connected
network trained on MNIST. (b) Subspace spanned by the next 10 Hessian eigenvectors. (c) Top
10 subspace of convolutional network trained on CIFAR10. (d) Subspace spanned by the next 10
Hessian eigenvectors. (e) Top 10 subspace of ResNet-18 trained on CIFAR10. (f) Subspace spanned
by the next 10 Hessian eigenvectors. The network architectures are the same as in Figure 1.

we observed in realistic deep learning examples. However, at this point we only interpret the toy
model to be illustrative and not a definitive explanation of the phenomenon.10

Although the way we first set it up will be very simple, we can use it as a good starting point for
doing small perturbations and generalizations in which all of the realistic features are present. We
will show empirically that such small perturbations do not change the qualitative results, and leave
an analytic study of this perturbation theory and further generalization to future work.

Consider the following 2-class classification problem with n samples {(xa, ya)}na=1 with xa ∈ Rd
and labels ya. The samples xa are chosen from a mixture of two Gaussian distributions N (µ1, σ

2)
and N (µ2, σ

2), corresponding to the two classes. The means µ1,2 are random unit vectors. On this
data we train a model of softmax-regression, with parameters θy,i where y = 1, 2 is the label and

10It is also useful in understanding how results might change as hyperparameters, e.g. the learning rate, are
varied.)

6



Under review as a conference paper at ICLR 2019

(a) (b)

Figure 3: Subspace overlap of top Hessian subspaces V (t1)
top and V (t2)

top for different top subspace
dimensions with different initial number of steps t1 averaged over the interval t2 − t1 for (a)
fully-connected two-layer network trained on MNIST and (b) ResNet-18 architecture trained on
CIFAR10. Note the kink around subspace dimension equal to one less than the number of classes in
the dataset.

i = 1, . . . , d. The cross-entropy loss is given by

L(θ) = − 1

n

n∑
a=1

log

(
eθya ·xa∑
y e

θy·xa

)
. (6)

(Here we denote by θy ∈ Rd the weights that feed into the y logit.) We will now make several
simplifying approximations. First, we take the limit σ2 → 0 such that the samples concentrate at µ1

and µ2. The problem then reduces to a 2-sample learning problem. Later on we will turn on a small
σ2 and show that our qualitative results are not affected. Second, we will assume that µ1 and µ2 are
orthogonal. Random vectors on the unit sphere Sd−1 have overlap d−1/2 in expectation, so this will
be a good approximation at large d.

With these assumptions, it is easy to see that the loss function has 2d − 2 flat directions. Therefore
the Hessian has rank 2, its two nontrivial eigenvectors are the top subspace, and its kernel is the bulk
subspace. The gradient is always contained within the top subspace.

In Appendix E, we use these assumptions to solve analytically for the optimization trajectory. At
late-times in a continuous-time approximation, the solution is

θ1,2(t) = θ̃1,2 + θ̃′ ± µ1

2
log (ηt+ c1)∓

µ2

2
log (ηt+ c2) , (7)

gθ1(t) =
2(µ2 − µ1)

ηt
+O(t−2), gθ1(t) = −gθ2(t), (8)

H(t) =
1

2ηt

(
+1 −1
−1 +1

)
⊗
[
µ1µ

T
1 + µ2µ

T
2

]
+O(t−2). (9)

Here η is the learning rate, ci are arbitrary positive real numbers, θ̃i ∈ Rd are two arbitrary vectors
orthogonal to both µ1,2, and θ̃′ ∈ Rd is an arbitrary vector in the space spanned by µ1,2.11 To-
gether, ci, θ̃i, and θ̃′ parameterize the 2d-dimensional space of solutions. This structure implies the
following.

1. The Hessian has two positive eigenvalues (the top subspace),12 while the rest vanish. The
top subspace is always preserved.

2. The gradient evolves during training but is always contained within the top subspace.

11 We thank Vladimir Kirilin for pointing out a mistake in an earlier version of this paper.
12 For the analytically simple form of model chosen here, the two eigenvalues in this top subspace are equal.

However, this degeneracy can be broken in a number of ways such as adding a bias.

7



Under review as a conference paper at ICLR 2019

These properties are of course obvious from the counting of flat directions above. We have verified
empirically that the following statements hold as well.13

• If we introduce small sample noise (i.e. set σ2 to a small positive value), then the bulk of
the Hessian spectrum will contain small non-zero eigenvalues (suppressed by σ2), and the
gradient will still evolve into the top subspace.

• If we add biases to our model parameters, then the degeneracy in the top subspace will be
broken. During training, the gradient will become aligned with the eigenvector that has the
smaller of the two eigenvalues.

• All these statements generalize to the case of a Gaussian mixture with k > 2 classes.14 The
top Hessian subspace will consist of k positive eigenvalues. If the degeneracy is broken by
including biases, there will be k−1 large eigenvalues and one smaller (positive) eigenvalue,
with which the gradient will become aligned.

3.1 MOSTLY PRESERVED SUBSPACE, EVOLVING GRADIENT

Let us now tie these statements into a coherent picture explaining the evolution of the gradient and
the Hessian.

The dynamics of the gradient within the top subspace (and specifically that fact that it aligns with
the minimal eigenvector in that subspace) can be understood by the following argument. Under a
single gradient descent step, the gradient evolves as

g(t+1) = g
(
θ(t) − ηg(t)

)
=
(
1− ηH(t)

)
g(t) +O(η2) . (10)

If we assume the linear approximation holds, then for small enough η this evolution will drive
the gradient toward the eigenvector of H that has the minimal, non-zero, eigenvalue. This seems
to explain why the gradient becomes aligned with the smaller of the two eigenvectors in the top
subspace when the degeneracy is broken. (It is not clear that this explanation holds at late times,
where higher order terms in η may become important.)15

The reader may wonder why the same argument does not apply to the yet smaller (or vanishing)
eigenvalues of the Hessian that are outside the top subspace. Applying the argument naively to the
whole Hessian spectrum would lead to the erroneous conclusion that the gradient should in fact
evolve into the bulk. Indeed, from equation 10 it may seem that the gradient is driven toward the
eigenvectors of (1− ηH) with the largest eigenvalues, and these span the bulk subspace of H .

There are two ways to see why this argument fails when applied to the whole parameter space.
First, the bulk of the Hessian spectrum corresponds to exactly flat directions, and so the gradient
vanishes in these directions. In other words, the loss function has a symmetry under translations in
parameter space, which implies that no dynamical mechanism can drive the gradient toward those
tangent vectors that point in flat directions. Second, in order to show that the gradient converges
to the bulk we would have to trust the linear approximation to late times, but (as mentioned above)
there is no reason to assume that higher-order corrections do not become large.

ADDING SAMPLE NOISE

Let us now discuss what happens when we introduce sample noise, setting σ2 to a small positive
value. Now, instead of two samples we have two sets of samples, each of size n/2, concentrated
around µ1 and µ2. We expect that the change to the optimization trajectory will be small (namely

13 In our experiments we used d = 1000, k = 2, 5, 10, and σ = 0, 0.02. For the means µi, we use random
unit vectors that are not constrained to be orthogonal.

14 This can be studied analytically and will be presented in future work (Kirilin et al.). However, we will
discuss an important point here of the k > 2 class model that makes the dynamical nature of the top-k subspace
more apparent. Considering the loss equation 6 and k orthogonal mean vectors, one can see that symmetries of
the loss lead to k(k−1) nontrivial directions, meaning the Hessian is naturally rank k(k−1). After solving the
model, one can see that in fact this k(k − 1) subspace dynamically becomes dominated by k top eigenvalues.

15 We mention in passing that the mechanism above holds exactly for linear regression with quadratic loss. In
this setting the Hessian is constant and there are no higher-order corrections, and so the gradient will converge
to the leading eigenvector of (1− ηH).

8



Under review as a conference paper at ICLR 2019

suppressed by σ2) because the loss function is convex, and because the change to the optimal so-
lution is also suppressed by σ2. The noise breaks some of the translation symmetry of the loss
function, leading to fewer flat directions and to more non-zero eigenvalues in the Hessian, appearing
in the bulk of the spectrum. The Hessian spectrum then resembles more closely the spectra we find
in realistic examples (although the eigenvalues comprising the top subspace have a different struc-
ture). Empirically we find that the top subspace still has two large eigenvalues, and that the gradient
evolves into this subspace as before. Therefore turning on noise can be treated as a small pertur-
bation which does not alter our analytic conclusions. We leave an analytic analysis of the problem
including sample noise to future work. We note that the argument involving equation 10 can again
not be applied to the whole parameter space, for the same reason as before. Therefore, there is no
contradiction between that equation and saying that the gradient concentrates in the top subspace.

4 DISCUSSION

We have seen that quite generally across architectures, training methods, and tasks, that during the
course of training the Hessian splits into two slowly varying subspaces, and that the gradient lives
in the subspace spanned by the k eigenvectors with largest eigenvalues (where k is the number of
classes). The fact that learning appears to concentrate in such a small subspace with all positive
Hessian eigenvalues might be a partial explanation for why deep networks train so well despite
having a nonconvex loss function. The gradient essentially lives in a convex subspace, and perhaps
that lets one extend the associated guarantees to regimes in which they otherwise wouldn’t apply.

An essential question of future study concerns further investigation of the nature of this nearly
preserved subspace. From Section 3, we understand, at least in certain examples, why the spectrum
splits into two blocks as was first discovered by Sagun et al. (2016; 2017). However, we would
like to further understand the hierarchy of the eigenvalues in the top subspace and how the top
subspace mixes with itself in deep learning examples. We’d also like to investigate more directly the
different eigenvectors in this subspace and see whether they have any transparent meaning, with an
eye towards possible relevance for feature extraction.

Central to our claim about learning happening in the top subspace was the fact the decrease in
the loss was predominantly due to the projection of the gradient onto this subspace. Of course,
one could explicitly make this projection onto gtop and use that to update the parameters. By the
argument given in the introduction, the loss on the current iteration will decrease by almost the same
amount if the linear approximation holds. However, updating with gtop has a nonlinear effect on the
dynamics and may, for example, alter the spectrum or cause the top subspace to unfreeze. Further
study of this is warranted.

Similarly, given the nontrivial relationship between the Hessian and the gradient, a natural question
is whether there are any practical applications for second-order optimization methods (see Bottou
et al. (2016) or Dennis Jr & Schnabel (1996) for a review). Much of this will be the subject of future
research, but we will conclude by making a few preliminary comments here.

An obvious place to start is with Newton’s method (Dennis Jr & Schnabel, 1996). Newton’s method
consists of the parameter update θ(t+1) = θ(t) − H−1g(t). There are a few traditional criticisms
of Newton’s method. The most practical is that for models as large as typical deep networks, com-
putation of the inverse of the highly-singular Hessian acting on the gradient is infeasible. Even if
one could represent the matrix, the fact that the Hessian is so ill-conditioned makes inverting it not
well-defined. A second criticism of Newton’s method is that it does not strictly descend, but rather
moves towards critical points, whether they are minima, maxima, or saddles (Pascanu et al., 2014;
Dauphin et al., 2014). These objections have apparent simple resolutions given our results. Since
the gradient predominantly lives in a tiny nearly-fixed top subspace, this suggests a natural low rank
approximation to Newton’s method

θ(t+1) = θ(t) − (H
(t)
top )
−1g

(t)
top . (11)

Inverting the Hessian in the top subspace is well-defined and computationally simple. Furthermore,
the top subspace of the Hessian has strictly positive eigenvalues, indicating that this approximation
to Newton’s method will descend rather then climb. Of course, Newton’s method is not the only
second-order path towards optima, and similar statements apply to other methods.

9



Under review as a conference paper at ICLR 2019

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning.

Madhu S Advani and Andrew M Saxe. High-dimensional dynamics of generalization error in neural
networks. arXiv preprint arXiv:1710.03667, 2017.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. arXiv preprint arXiv:1802.06509, 2018.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. arXiv preprint arXiv:1606.04838, 2016.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient
descent into wide valleys. arXiv preprint arXiv:1611.01838, 2016.

François Chollet et al. Keras. https://keras.io, 2015.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. In Advances in Neural Information Processing Systems 27, pp. 2933–2941. 2014.

John E Dennis Jr and Robert B Schnabel. Numerical methods for unconstrained optimization and
nonlinear equations, volume 16. Siam, 1996.

Kenji Fukumizu. Effect of batch learning in multilayer neural networks. Gen, 1(04):1E–03.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

Vladimir Kirilin, Guy Gur-Ari, and Daniel A. Roberts. Forthcoming.

R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-scale Eigen-
value Problems with Implicitly Restarted Arnoldi Methods. Society for Industrial and Applied
Mathematics, 1998.

Razvan Pascanu, Yann N Dauphin, Surya Ganguli, and Yoshua Bengio. On the saddle point problem
for non-convex optimization. arXiv preprint arXiv:1405.4604, 2014.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533, 1986.

Levent Sagun, Léon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
larity and beyond. arXiv preprint arXiv:1611.07476, 2016.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of
the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

10

https://keras.io


Under review as a conference paper at ICLR 2019

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

11



Under review as a conference paper at ICLR 2019

A NUMERICAL METHODS

For the empirical results in this paper, we did not actually have to ever represent the Hessian.
For example, to compute the top eigenvectors of the Hessian efficiently, we used the Lanczos
method (Lehoucq et al., 1998), which relies on repeatedly computing the Hessian-vector product
Hv for some vector v. This product can be computed in common autograd packages such as Tensor-
Flow (Abadi et al.) or PyTorch (Paszke et al., 2017) as follows. Let v be a pre-computed numerical
vector (such as the gradient). One first computes the scalar a = ∇LT v, and then takes the gradient
of this expression, resulting in∇a = Hv.

B HESSIAN SPECTRUM

As first explored by Sagun et al. (2016; 2017), the Hessian eigenvalue spectrum appears to naturally
separate into “top” and “bulk” components, with the top consisting of the largest k eigenvalues, and
the bulk consisting of the rest.

An example of this for a small fully-connected two-layer network is shown in Figure 4. The hidden
layers each have 32 neurons, and the network was trained on MNIST for 40 epochs. The eigenvalues
belonging to the top subspace are clearly visible, and for clarity, we labeled them showing that there’s
10 nontrivial eigenvalues. We further confirmed this effect by studying datasets with a different
number of classes (such as CIFAR100) and by studying synthetic datasets.

Figure 4: Eigenvalues of the Hessian of a fully-connected network with two hidden layers, each with
32 neurons, trained on MNIST for 40 epochs. The top 10 largest eigenvalues are labeled and clearly
form a nontrivial tail at the right edge of the spectrum.

We also confirmed that the dimension of the top subspace is tied to the classification task and not
intrinsic to the dataset. For instance, we can study MNIST where we artificially label the digits
according to whether they are even or odd, creating 2 class labels (even though the data intrinsically
contains 10 clusters). In this case, there were only 2 large eigenvalues, signifying that the top
is 2-dimensional and not 10-dimensional. Additionally, we experimented by applying a random
permutation to the MNIST labels. This removed the correlation between the input and the labels,
but the network could still get very high training accuracy as in Zhang et al. (2016). In this case, we
still find 10 large eigenvalues.

The fact that the top subspace is frozen (as we show in Figure 2), suggests that there could be
some kind of a special feature in the Hessian spectrum. To study this, we looked at a two-layer
fully-connected network on CIFAR100, with each hidden layer having 256 neurons each. We chose
CIFAR100 to allow us a larger value of k to perhaps see something meaningful in the transition be-
tween the bulk and top subspaces. Furthermore, rather than just plotting the value of the eigenvalues
as a function of their index, we made a density plot averaged over 200 realizations. This is shown

12



Under review as a conference paper at ICLR 2019

in Figure 5, where we note that the x-axis is log of the eigenvalue. Since we were only interested
in the transition from top to bulk, we only computed the top 1000 eigenvalues. This allowed us to
study a larger model (256, 256) than we did for the plot of the full spectrum in Figure 4.

Figure 5: Histogram of eigenvalue density on the right edge of the Hessian spectrum for a fully-
connected two-layer (256, 256) model trained on CIFAR100 averaged over 200 realizations.

The density plot, Figure 5, shows a clear feature in the density function describing the Hessian
eigenvalues occurring around the mean 100th eigenvalue. While the exact location is hard to deter-
mine, there is a clear underdensity around the 100th eigenvalue, counting from the right edge. It’s
an interesting observation that a Gaussian provides a very good fit to the part of the spectrum in the
top subspace, suggesting the eigenvalue distribution could be described by a log-normal distribu-
tion. However, this is only suggestive, and much more evidence and explanation is needed. In future
work, it would be interesting to characterize the different functions that describe the spectral density
of the Hessian.

Next, let’s look at a particular top eigenvector. One hypothesis is that the corresponding eigenvectors
to the k largest eigenvalues would just correspond to either the weights or biases in the last layer
(which also depend on the number of classes). In Figure 6, we plot the maximal eigenvector after (a)
0 steps, (b) 100 steps, (c) 200 steps, and (d) 400 steps of training for the fully-connected (100,100)
architecture trained on MNIST. First it’s easy to see that this vector is not constant during training.
More importantly, we see that there are many nonzero elements of the vectors across the entire range
of model parameters. We colored these plots according to where the parameters are located in the
network, and we note that even though the top layer weights seem to have the largest coefficients,
they are only ∼ 4× larger than typical coefficients in the first hidden layer.

In Figure 7, we zoom in on the final layer for the fully-connected (100,100) architecture trained on
MNIST after (a) 0 steps and (b) 400 steps. This makes it clear that the eigenvector is never sparse
and is evolving in time. Thus, we conclude that eigenvectors are a nontrivial linear combination of
parameters with different coefficients. It would be interesting to understand in more detail whether
the linear combinations of parameters represented by these top-subspace eigenvectors are capturing
something important about either learning dynamics or feature representation.

Finally, for completeness let us also give a plot of some example evolutions of a top Hessian eigen-
value. In Figure 8, we plot the evolution of the maximal eigenvalue for (a) our fully-connected
(100, 100) architecture trained on MNIST and (b) our ResNet-18 architecture trained on CIFAR10.
In both cases, we see an initial period of growth, then the eigenvalue remains very large as the model
is training, then it decays. The fully-connected MNIST example trains very quickly, but comparing
with Figure 1 (f) for the ResNet-18, we see that the loss and accuracy converge around step 10000,
where the maximum eigenvalue begins to oscillate and also decay. Our toy model suggests that
eigenvalues should decay at the late part of training like ∼ 1/t. These plots are too rough to say

13



Under review as a conference paper at ICLR 2019

(a) (b)

(c) (d)

Figure 6: Eigenvector corresponding to the maximal eigenvalue for the fully-connected (100,100)
architecture trained on MNIST after (a) 0 steps, (b) 100 steps, (c) 200 steps, and (d) 400 steps.
We organize according to first hidden layer (blue), second hidden layer (orange), top layer weights
(green), and top layer biases (red).

(a) (b)

Figure 7: Eigenvector corresponding to the maximal eigenvalue for the fully-connected (100,100)
architecture trained on MNIST after (a) 0 steps and (b) 400 steps zoomed in on the top layer weights
and biases. These plots are strong evidence that eigenvector is clearly not dominated by any partic-
ular parameter and is meaningfully changing in time.

anything specific about the functional form of the decay, but we do see qualitatively in both cases
that it’s decreasing.16

16To learn something more concrete, ideally we should train a large number of realizations and then average
the behavior of the maximal eigenvalue across the different runs. We will save this analysis for the future.

14



Under review as a conference paper at ICLR 2019

(a) (b)

Figure 8: Evolution of the maximal eigenvalue for (a) fully-connected (100,100) architecture trained
on MNIST and (b) ResNet-18 architecture trained on CIFAR10. Note the second plot has a log scale
on the y-axis.

C k IS FOR CLASSES

In this section, we will give further evidence that the size of the nearly-preserved subspace is related
to the number of classes. As we showed in the last section and Figure 5 in particular, there is a
feature in the Hessian spectrum that seems related to the number of classes. In Figure 1, we explain
that the gradient tends to lie in a subspace spanned by the eigenvalues corresponding to the top-k
eigenvectors, and in Figure 2, we show that a subspace of size k seems to be nearly preserved over
the course of training. These three phenomena seem to be related, and here we’d like to provide
more evidence.

First, let’s investigate whether the nearly preserved subspace is k-dimensional. To do so, let us
consider the same fully-connected two-layer network considered in (a) and (b) of Figure 2. In
Figure 9, we consider top subspaces of different dimensions, ranging from 2 to 20. We can consider
subspace dimensions of different sizes for the ResNet-18 architecture considered in (e) and (f) of
Figure 2, which also has 10 classes. These results are shown in Figure 10. Both of these results
show interesting behavior as we increase the subspace past the number of classes.

Notably, the top 15 and top 20 subspaces shown in (e) and (f) of Figures 9-10 and are significantly
less preserved than the others. The top 11 subspace is marginally less preserved, and most of the
subspaces with dimensions less than 10 seem to be preserved amongst themselves. In particular, both
(e) and (f) in both plots shows that adding additional eigenvectors does not always lead to increased
preservation. The maximally (i.e. largest dimensional) preserved subspace seems to peak around the
number of classes. The fact that these smaller top subspaces are also preserved suggests additional
structure perhaps related to the eigenvectors no longer rotating as much amongst themselves as
training progresses. A nice summary of these results where we average the overlap for a particular
t1 over the interval t2 − t1 is shown in the main text in Figure 3.

Now that we’ve studied whether the fixed subspace is really k-dimensional, let’s better understand
how the fraction of the gradient spreads across the top subspace for a few different points in training.
Let us define the overlap of the gradient with a particular eigenvector

c2i ≡
‖vi · g‖2

‖g‖2
, (12)

where the numerator represents the overlap of the ith eigenvector (order from eigenvectors corre-
sponding to the largest eigenvalues to the least), and the numerator is the norm squared of the ith
overlap. This satisfies

∑
c2i = 1 when summed overall all p parameter directions.

In Figure 11, we plot c2i for (a) 0 steps (b) 50 steps (c) 100 steps, and (d) 200 steps of training for
the i corresponding to the top and next subspace (i = 1 . . . 20) for the fully-connected (100,100)
network trained on MNIST. Importantly, these plots make it clear that the gradient is not simply
an eigenvector of the Hessian. In particular, before any training, the gradient doesn’t seem to have
any significant overlap in the top or next subspaces (

∑20
i=1 c

2
i = .20, after 0 steps of training cf.

15



Under review as a conference paper at ICLR 2019

(a) (b)

(c) (d)

(e) (f)

Figure 9: Overlap of top Hessian subspaces V (t1)
top and V (t2)

top for fully-connected network trained on
MNIST using the same architecture in Figure 1. (a) Top 2 subspace. (b) Top 5 subspace. (c) Top 9
subspace. (d) Top 11 subspace. (e) Top 15 subspace. (f) Top 20 subspace.

∑20
i=1 c

2
i = .94 after 50 steps of training). After some training, see (b), (c), (d), the gradient is

spread over the different c2i ’s from i = 1 . . . 10 in the top subspace and never has any real significant
weight for i > 10. (E.g. we have

∑10
i=1 c

2
i = .93 vs.

∑20
i=11 c

2
i = .01 after 50 steps of training.)

D ADDITIONAL EXPERIMENTS

In this section, we provide some plots highlighting additional experiments. The results of these
experiments were summarized in Table 1, but we include some additional full results on the gradient
overlap with the top-k subspace here.

In particular, Figure 12 plots the fraction of the gradient lying in the top subspace, ftop, for a variety
of different scenarios. In (a) we give an example of changing the learning rate, in (b) we give an
example of changing the batch size, in (c) we give an example with 0 hidden layers, in (d) we give an
example of changing the activation function, in (e) we apply a random permutation to labels, and in

16



Under review as a conference paper at ICLR 2019

(a) (b)

(c) (d)

(e) (f)

Figure 10: Overlap of top Hessian subspaces V (t1)
top and V (t2)

top for ResNet-18 architecture trained on
CIFAR10 as in in Figure 1. (a) Top 2 subspace. (b) Top 5 subspace. (c) Top 9 subspace. (d) Top 11
subspace. (e) Top 15 subspace. (f) Top 20 subspace.

(f) we use the Adam optimizer instead of SGD. In all these experiments, we see pretty consistently
that the gradient quickly converges to live in the top subspace and then stays there.

E ANALYTIC EXAMPLE: DETAILED CALCULATIONS

For the reduced case of a 2-sample, 2-class problem learned using softmax-regression, the loss
function can be written as

L(θ) =
1

2
log
(
1 + e(θ2−θ1)·µ1

)
+

1

2
log
(
1 + e(θ1−θ2)·µ2

)
. (13)

At a late stage of training the loss is near its zero minimum value. The exponents in equation 13
must then be small, so we can approximate

L(θ) ≈ 1

2
e(θ2−θ1)·µ1 +

1

2
e(θ1−θ2)·µ2 . (14)

17



Under review as a conference paper at ICLR 2019

(a) (b)

(c) (d)

Figure 11: The overlap squared c2i of the gradient with the ith eigenvector of the Hessian. Data is
for a fully-connected (100,100) architecture trained on MNIST for (a) 0 steps, (b) 50 steps, (c) 100
steps, and (d) 200 steps. After 0 steps, we have

∑20
i=1 c

2
i = .20 compared with

∑20
i=1 c

2
i = .94 after

50 steps. Also, note that after 50 steps we have
∑10
i=1 c

2
i = .93 vs.

∑20
i=11 c

2
i = .01. Together, these

results show that that the gradient dynamically evolves to lie mostly in the top subspace and is not
simply an eigenvector of the Hessian.

The loss function has 2d − 2 flat directions,17 and so the Hessian can have rank at most 2, and
the gradient will live inside this non-trivial eigenspace. This is a simple example of the general
phenomenon we observed. To gain further understanding, we solve for the optimization trajectory.

We train the model using gradient descent, and take the small learning rate limit (continuous time
limit) in which the parameters θ(t) evolve as dθ

dt = −η∇L(θ(t)). The general solution of this
equation is

θ1(t) = θ̃1 +
µ1

2
log (ηt+ c1)−

µ2

2
log (ηt+ c2) , (15)

θ2(t) = θ̃2 −
µ1

2
log (ηt+ c1) +

µ2

2
log (ηt+ c2) . (16)

The space of solutions has 2d − 2 dimensions and is parameterized by the positive constants c1,2
and by θ̃1,2, which are constant vectors in Rd orthogonal to both µ1 and µ2. The gradient along the
optimization trajectory is then given by

∇θ1L(t) = −∇θ2L(t) = −
µ1

2(ηt+ c1)
+

µ2

2(ηt+ c2)
=

2(µ2 − µ1)

ηt
+O(t−2) . (17)

Notice that in the limit t → ∞ the gradient approaches a vector that is independent of the solution
parameters.

Next, consider the Hessian. By looking at the loss equation 13 we see there are 2d−2 flat directions
and 2d parameters, implying that the Hessian has at most rank 2. Let us work out its spectrum in

17 There are d directions spanned by θ1 + θ2, and d− 2 directions spanned by directions of θ1 − θ2 that are
orthogonal to µ1, µ2.

18



Under review as a conference paper at ICLR 2019

(a) (b)

(c) (d)

(e) (f)

Figure 12: Fraction of the gradient in the top subspace ftop. In experiments (a)-(e), we use a fully-
connected network trained on MNIST, and in (f) we use a CovNet trained on CIFAR10. The changes
from the setup described in Figure 1 are: (a) changed learning rate, η = .01 instead of η = 0.1. (b)
changed batch size, 256 instead of 64. (c) no hidden layers, just softmax. (d) changed activation:
softplus instead of ReLU. (e) random labels on MNIST. (f) changed optimizer, Adam instead of
SGD.

more detail. Decomposing the parameter space as Rk ⊗ Rd, the Hessian along the optimization
trajectory is given by

H =

(
+1 −1
−1 +1

)
⊗
[

µ1µ
T
1

2(ηt+ c1)
+

µ2µ
T
2

2(ηt+ c2)

]
=

1

2ηt

(
+1 −1
−1 +1

)
⊗
[
µ1µ

T
1 + µ2µ

T
2

]
+O(t−2) . (18)

At leading order in the limit t→∞ we find two non-trivial eigenvectors, given by(
µ1

−µ1

)
and

(
µ2

−µ2

)
, (19)

both with eigenvalue (ηt)−1. The remaining eigenvalues all vanish. The top Hessian subspace is
fixed, and the gradient is contained within this space.

19


	Introduction
	The Gradient and the Top Hessian Subspace
	The Gradient Concentrates in the Top Subspace
	Hessian-Gradient Overlap
	Evolution of The Top Subspace

	A Toy Model
	Mostly Preserved Subspace, Evolving Gradient

	Discussion
	Numerical Methods
	Hessian Spectrum
	k is for Classes
	Additional Experiments
	Analytic Example: Detailed Calculations

