
Published as a conference paper at ICLR 2020

LEARNING TO SOLVE THE CREDIT ASSIGNMENT
PROBLEM

Benjamin James Lansdell
Department of Bioengineering
University of Pennsylvania
Pennsylvania, PA 19104
lansdell@seas.upenn.edu

Prashanth Ravi Prakash
Department of Bioengineering
University of Pennsylvania
Pennsylvania, PA 19104

Konrad Paul Kording
Department of Bioengineering
University of Pennsylvania
Pennsylvania, PA 19104

ABSTRACT

Backpropagation is driving today’s artificial neural networks (ANNs). However,
despite extensive research, it remains unclear if the brain implements this algo-
rithm. Among neuroscientists, reinforcement learning (RL) algorithms are often
seen as a realistic alternative: neurons can randomly introduce change, and use un-
specific feedback signals to observe their effect on the cost and thus approximate
their gradient. However, the convergence rate of such learning scales poorly with
the number of involved neurons. Here we propose a hybrid learning approach.
Each neuron uses an RL-type strategy to learn how to approximate the gradients
that backpropagation would provide. We provide proof that our approach con-
verges to the true gradient for certain classes of networks. In both feedforward
and convolutional networks, we empirically show that our approach learns to ap-
proximate the gradient, and can match or the performance of exact gradient-based
learning. Learning feedback weights provides a biologically plausible mechanism
of achieving good performance, without the need for precise, pre-specified learn-
ing rules.

1 INTRODUCTION

It is unknown how the brain solves the credit assignment problem when learning: how does each
neuron know its role in a positive (or negative) outcome, and thus know how to change its activity
to perform better next time? This is a challenge for models of learning in the brain.

Biologically plausible solutions to credit assignment include those based on reinforcement learn-
ing (RL) algorithms and reward-modulated STDP (Bouvier et al., 2016; Fiete et al., 2007; Fiete
& Seung, 2006; Legenstein et al., 2010; Miconi, 2017). In these approaches a globally distributed
reward signal provides feedback to all neurons in a network. Essentially, changes in rewards from
a baseline, or expected, level are correlated with noise in neural activity, allowing a stochastic ap-
proximation of the gradient to be computed. However these methods have not been demonstrated to
operate at scale. For instance, variance in the REINFORCE estimator (Williams, 1992) scales with
the number of units in the network (Rezende et al., 2014). This drives the hypothesis that learning
in the brain must rely on additional structures beyond a global reward signal.

In artificial neural networks (ANNs), credit assignment is performed with gradient-based methods
computed through backpropagation (Rumelhart et al., 1986; Werbos, 1982; Linnainmaa, 1976). This
is significantly more efficient than RL-based algorithms, with ANNs now matching or surpassing
human-level performance in a number of domains (Mnih et al., 2015; Silver et al., 2017; LeCun
et al., 2015; He et al., 2015; Haenssle et al., 2018; Russakovsky et al., 2015). However there are
well known problems with implementing backpropagation in biologically realistic neural networks.

1

Published as a conference paper at ICLR 2020

One problem is known as weight transport (Grossberg, 1987): an exact implementation of back-
propagation requires a feedback structure with the same weights as the feedforward network to
communicate gradients. Such a symmetric feedback structure has not been observed in biological
neural circuits. Despite such issues, backpropagation is the only method known to solve supervised
and reinforcement learning problems at scale. Thus modi�cations or approximations to backpropa-
gation that are more plausible have been the focus of signi�cant recent attention (Scellier & Bengio,
2016; Lillicrap et al., 2016; Lee et al., 2015; Lansdell & Kording, 2018; Ororbia et al., 2018).

These efforts do show some ways forward. Synthetic gradients demonstrate that learning can be
based on approximate gradients, and need not be temporally locked (Jaderberg et al., 2016; Czar-
necki et al., 2017b). In small feedforward networks, somewhat surprisingly, �xed random feedback
matrices in fact suf�ce for learning (Lillicrap et al., 2016) (a phenomenon known as feedback align-
ment). But still issues remain: feedback alignment does not work in CNNs, very deep networks,
or networks with tight bottleneck layers. Regardless, these results show that rough approximations
of a gradient signal can be used to learn; even relatively inef�cient methods of approximating the
gradient may be good enough.

On this basis, here we propose an RL algorithm to train a feedback system to enable learning. Recent
work has explored similar ideas, but not with the explicit goal of approximating backpropagation
(Miconi, 2017; Miconi et al., 2018; Song et al., 2017). RL-based methods like REINFORCE may
be inef�cient when used as a base learner, but they may be suf�cient when used to train a system
that itself instructs a base learner. We propose to use REINFORCE-style perturbation approach to
train feedback signals to approximate what would have been provided by backpropagation.

This sort of two-learner system, where one network helps the other learn more ef�ciently, may in fact
align well with cortical neuron physiology. For instance, the dendritic trees of pyramidal neurons
consist of an apical and basal component. Such a setup has been shown to support supervised
learning in feedforward networks (Guergiuev et al., 2017; Kording & Konig, 2001). Similarly,
climbing �bers and Purkinje cells may de�ne a learner/teacher system in the cerebellum (Marr,
1969). These components allow for independent integration of two different signals, and may thus
provide a realistic solution to the credit assignment problem.

Thus we implement a network that learns to use feedback signals trained with reinforcement learn-
ing via a global reward signal. We mathematically analyze the model, and compare its capabilities
to other methods for learning in ANNs. We prove consistency of the estimator in particular cases,
extending the theory of synthetic gradient-like approaches (Jaderberg et al., 2016; Czarnecki et al.,
2017b; Werbos, 1992; Schmidhuber, 1990). We demonstrate that our model learns as well as reg-
ular backpropagation in small models, overcomes the limitations of feedback alignment on more
complicated feedforward networks, and can be used in convolutional networks. Thus, by combining
local and global feedback signals, this method points to more plausible ways the brain could solve
the credit assignment problem.

2 LEARNING FEEDBACK WEIGHTS THROUGH PERTURBATIONS

We use the following notation. Letx 2 Rm represent an input vector. Let anN hidden-layer
network be given bŷy = f (x) 2 Rp. This is composed of a set of layer-wise summation and
non-linear activations

h i = f i (h i � 1) = �
�
W i h i � 1�

;

for hidden layer statesh i 2 Rn i , non-linearity� , weight matricesW i 2 Rn i � n i � 1 and denoting
h0 = x andhN +1 = ŷ . Some loss functionL is de�ned in terms of the network output:L (y ; ŷ).
Let L denote the loss as a function of(x ; y): L (x; y) = L(y ; f (x)) . Let data(x; y) 2 D be drawn
from a distribution� . We aim to minimize:E� [L (x; y)] :

Backpropagation relies on the error signalei , computed in a top-down fashion:

ei =
�

@L=@̂y � � 0(W i h i � 1); i = N + 1;�
(W i +1)T ei +1

�
� � 0(W i h i � 1); 1 � i � N

;

where� denotes element-wise multiplication.

2

Published as a conference paper at ICLR 2020

Figure 1: Learning feedback weights through perturbations. (A) Backpropagation sends error infor-
mation from an output loss function,L , through each layer from top to bottom via the same matrices
W i used in the feedforward network. (B) Node perturbation introduces noise in each layer,� i , that
perturbs that layer's output and resulting loss function. The perturbed loss function,~L , is correlated
with the noise to give an estimate of the error current. This estimate is used to update feedback
matricesB i to better approximate the error signal.

2.1 BASIC SETUP

Let the loss gradient term be denoted as

� i =
@L
@h i = (W i +1)T ei +1 :

In this work we replace� i with an approximation with its own parameters to be learned (known as a
synthetic gradient, or conspiring network, (Jaderberg et al., 2016; Czarnecki et al., 2017b), or error
critic (Werbos, 1992)):

� i � g(h i ; ~ei +1 ; �);

for parameters� . Note that we must distinguish the true loss gradients from their synthetic estimates.
Let ~ei be loss gradients computed by backpropagating the synthetic gradients

~ei =
�

@L=@̂y � � 0(W i h i � 1); i = N + 1;
g(h i ; ~ei +1 ; �) � � 0(W i h i � 1); 1 � i � N

:

For the �nal layer the synthetic gradient matches the true gradient:eN +1 = ~eN +1 . This setup can
accommodate both top-down and bottom-up information, and encompasses a number of published
models (Jaderberg et al., 2016; Czarnecki et al., 2017b; Lillicrap et al., 2016; Nøkland, 2016; Liao
et al., 2016; Xiao et al., 2018).

2.2 STOCHASTIC NETWORKS AND GRADIENT DESCENT

To learn a synthetic gradient we utilze the stochasticity inherent to biological neural networks. A
number of biologically plausible learning rules exploit random perturbations in neural activity (Xie
& Seung, 2004; Seung, 2003; Fiete & Seung, 2006; Fiete et al., 2007; Song et al., 2017). Here, at
each time each unit produces a noisy response:

h i
t = �

X

k

W i
�k h i � 1

t

!

+ ch � i
t ;

for independent Gaussian noise� i � � = N (0; I) and standard deviationch > 0. This generates
a noisy loss~L (x; y ; �) and a baseline lossL (x; y) = ~L (x; y ; 0). We will use the noisy response
to estimate gradients that then allow us to optimize the baselineL – the gradients used for weight
updates are computed using the deterministic baseline.

3

Published as a conference paper at ICLR 2020

2.3 SYNTHETIC GRADIENTS VIA PERTURBATION

For Gaussian white noise, the well-known REINFORCE algorithm (Williams, 1992) coincides with
the node perturbation method (Fiete & Seung, 2006; Fiete et al., 2007). Node perturbation works by
linearizing the loss:

~L � L +
@L
@hij

ch � i
j ; (1)

such that

E
�

(~L � L)ch � i
j jx ; y

�
� c2

h
@L
@hij

�
�
�
�
x ;y

;

with expectation taken over the noise distribution� (�). This provides an estimator of the loss gradi-
ent

�̂ i := (~L (x; y ; �) � L (x; y))
� i

ch
: (2)

This approximation is made more precise in Theorem 1 (Supplementary material).

2.4 TRAINING A FEEDBACK NETWORK

There are many possible sensible choices ofg(�). For example, takingg as simply a function of
each layer's activations:� i = g(h i) is in fact suf�cient parameterization to express the true gradient
function (Jaderberg et al., 2016). We may expect, however, that the gradient estimation problem be
simpler if each layer is provided with some error information obtained from the loss function and
propagated in a top-down fashion. Symmetric feedback weights may not be biologically plausible,
and random �xed weights may only solve certain problems of limited size or complexity (Lillicrap
et al., 2016). However, a system that can learn to appropriate feedback weightsB may be able to
align the feedforward and feedback weights as much as is needed to successfully learn.

We investigate various choices ofg(h i ; ~ei +1 ; B i +1) outlined in the applications below. Parameters
B i +1 are estimated by solving the least squares problem:

B̂ i +1 = arg min
B

E

 g(h i ; ~ei +1 ; B) � �̂ i

2

2
: (3)

Unless otherwise noted this was solved by gradient-descent, updating parameters once with each
minibatch. Refer to the supplementary material for additional experimental descriptions and param-
eters.

3 THEORETICAL RESULTS

We can prove the estimator (3) is consistent as the noise variancech ! 0, in some particular
cases. We state the results informally here, and give the exact details in the supplementary materials.
Consider �rst convergence of the �nal layer feedback matrix,B N +1 .

Theorem 1. (Informal) ForgF A (h i ; ~ei +1 ; B i +1) = B i +1 ~ei +1 , then the least squares estimator

(B̂ N +1)T := �̂ N (eN +1)T �
eN +1 (eN +1)T � � 1

; (4)

solves (3) and converges to the true feedback matrix, in the sense that:lim ch ! 0 plimT !1 B̂ N +1 =
W N +1 ; whereplim indicates convergence in probability.

Theorem 1 thus establishes convergence ofB in a shallow (1 hidden layer) non-linear network. In a
deep, linear network we can also use Theorem 1 to establish convergence over the rest of the layers.

Theorem 2. (Informal) For gF A (h i ; ~ei +1 ; B i +1) = B i +1 ~ei +1 and � (x) = x, the least squares
estimator

(B̂ i)T := �̂ i � 1(~ei)T �
~ei (~ei)T � � 1

1 � i � N + 1 ; (5)

solves (3) and converges to the true feedback matrix, in the sense that:lim ch ! 0 plimT !1 B̂ i =
W i ; 1 � i � N + 1 :

4

Published as a conference paper at ICLR 2020

Figure 2: Node perturbation in small 4-layer network (784-50-20-10 neurons), for varying noise
levelsc, compared to feedback alignment and backpropagation. (A) Relative error between feedfor-
ward and feedback matrix. (B) Angle between true gradient and synthetic gradient estimate for each
layer. (C) Percentage of signs inW i andB i that are in agreement. (D) Test error for node perturba-
tion, backpropagation and feedback alignment. Curves show mean plus/minus standard error over 5
runs.

Given these results we can establish consistency for the `direct feedback alignment' (DFA;
Nøkland (2016)) estimator:gDF A (h i ; ~eN +1 ; B i +1) = (B i +1)T ~eN +1 . Theorem 1 applies triv-
ially since for the �nal layer, the two approximations have the same form:gF A (hN ; ~eN +1 ; � N) =
gDF A (hN ; ~eN +1 ; � N). Theorem 2 can be easily extended according to the following:

Corollary 1. (Informal) ForgDF A (h i ; ~eN +1 ; B i +1) = B i +1 ~eN +1 and� (x) = x, the least squares
estimator

(B̂ i)T := �̂ i � 1(~eN +1)T �
~eN +1 (~eN +1)T � � 1

1 � n � N + 1 ; (6)

solves (3) and converges to the true feedback matrix, in the sense that:lim ch ! 0 plimT !1 B̂ i =Q i
j = N +1 W j ; 1 � i � N + 1 :

Thus for a non-linear shallow network or a deep linear network, for bothgF A andgDF A , we have
the result that, for suf�ciently smallch , if we �x the network weightsW and trainB through node
perturbation then we converge toW . Validation that the method learns to approximateW , for �xed
W , is provided in the supplementary material. In practice, we updateB andW simultaneously.
Some convergence theory is established for this case in (Jaderberg et al., 2016; Czarnecki et al.,
2017b).

4 APPLICATIONS

4.1 FULLY CONNECTED NETWORKS SOLVINGMNIST

First we investigateg(h i ; ~ei +1 ; B i +1) = (B i +1)T~ei +1 , which describes a non-symmetric feedback
network (Figure 1). To demonstrate the method can be used to solve simple supervised learning
problems we use node perturbation with a four-layer network and MSE loss to solve MNIST (Figure
2). Updates toW i are made using the synthetic gradients� W i = � ~ei h i � 1; for learning rate� . The
feedback network needs to co-adapt with the feedforward network in order to continue to provide a
useful error signal. We observed that the system is able to adjust to provide a close correspondence
between the feedforward and feedback matrices in both layers of the network (Figure 2A). The
relative error betweenB i andW i is lower than what is observed for feedback alignment, suggesting
that this co-adaptation of bothW i andB i is indeed bene�cial. The relative error depends on the
amount of noise used in node perturbation – lower variance doesn't necessarily imply the lowest

5

Published as a conference paper at ICLR 2020

Figure 3: Results with �ve-layer MNIST autoencoder network. (A) Mean loss plus/minus standard
error over 10 runs. Dashed lines represent training loss, solid lines represent test loss. (B) Latent
space activations, colored by input label for each method. (C) Sample outputs for each method.

error betweenW andB , suggesting there is an optimal noise level that balances bias in the estimate
and the ability to co-adapt to the changing feedforward weights.1

Consistent with the low relative error in both layers, we observe that the alignment (the angle be-
tween the estimated gradient and the true gradient – proportional toeT WB T ~e) is low in each layer
– much lower for node perturbation than for feedback alignment, again suggesting that the method
is much better at communicating error signals between layers (Figure 2B). In fact, recent studies
have shown that sign congruence of the feedforward and feedback matrices is all that is required to
achieve good performance (Liao et al., 2016; Xiao et al., 2018). Here the sign congruence is also
higher in node perturbation, again depending somewhat the variance. The amount of congruence is
comparable between layers (Figure 2C). Finally, the learning performance of node perturbation is
comparable to backpropagation (Figure 2D), and better than feedback alignment in this case, though
not by much. Note that by setting the feedback learning rate to zero, we recover the feedback
alignment algorithm. So we should expect to be always able to do at least as well as feedback align-
ment. These results instead highlight the qualitative differences between the methods, and suggest
that node perturbation for learning feedback weights can be used to approximate gradients in deep
networks.

4.2 AUTO-ENCODING MNIST

The above results demonstrate node perturbation provides error signals closely aligned with the
true gradients. However, performance-wise they do not demonstrate any clear advantage over feed-
back alignment or backpropagation. A known shortcoming of feedback alignment is in very deep
networks and in autoencoding networks with tight bottleneck layers (Lillicrap et al., 2016). To
see if node perturbation has the same shortcoming, we test performance of ag(h i ; ~ei +1 ; B i +1) =
(B i +1)T~ei +1 model on a simple auto-encoding network with MNIST input data (size 784-200-2-
200-784). In this more challenging case we also compare the method to the `matching' learning
rule (Rombouts et al., 2015; Martinolli et al., 2018), in which updates toB match updates toW
and weight decay is added, a denoising autoencoder (DAE) (Vincent et al., 2008), and the ADAM
(Kingma & Ba, 2015) optimizer (with backprop gradients).

As expected, feedback alignment performs poorly, while node perturbation performs better than
backpropagation (Figure 3A). The increased performance relative to backpropagation may seem
surprising. A possible reason is the addition of noise in our method encourages learning of more
robust latent factors (Alain & Bengio, 2015). The DAE also improves the loss over vanilla back-
propagation (Figure 3A). And, in line with these ideas, the latent space learnt by node perturbation
shows a more uniform separation between the digits, compared to the networks trained by backprop-
agation. Feedback alignment, in contrast, does not learn to separate digits in the bottleneck layer
at all (Figure 3B), resulting in scrambled output (Figure 3C). The matched learning rule performs
similarly to backpropagation. These possible explanations are investigated more below. Regardless,

1Code to reproduce these results can be found at:https://github.com/benlansdell/
synthfeedback

6

	Introduction
	Learning feedback weights through perturbations
	Basic setup
	Stochastic networks and gradient descent
	Synthetic gradients via perturbation
	Training a feedback network

	Theoretical results
	Applications
	Fully connected networks solving MNIST
	Auto-encoding MNIST
	Convolutional neural networks solving CIFAR
	What is helping, noisy activations or approximating the gradient?

	Discussion
	Proofs
	Discussion of assumptions

	Validation with fixed W
	Experiment details
	Figure 2
	Figure 3
	Figure 4
	CNN architecture and implementation
	Noise ablation study

