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Short-term memory is a fundamental cognitive function for 
both humans and other animals. Despite its importance, its 
neural basis largely remains an open problem. The classical 

view of how a short-term memory might be implemented in the 
brain relies on the idea of a fixed point attractor1,2. In this view, 
a memory is maintained via persistent activity of individual neu-
rons. By virtue of their persistent activity, those neurons continue 
to represent information in the absence of any sensory stimula-
tion. However, persistent activity of individual neurons is not 
necessary for maintaining information in short-term memory; 
dynamic activity patterns can also maintain short-term memo-
ries3–5. According to this alternative view, individual neurons can 
be active only transiently, whereas the population as a whole main-
tains the memory through a dynamically changing activity pattern 
across time.

It has been an ongoing debate as to whether one of these alterna-
tive pictures provides a more accurate representation of the neural 
mechanism (or mechanisms) underlying short-term memory than 
the other 6,7. Experimental evidence for both alternatives has been 
reported previously; for example, some studies8–12 observed persis-
tent or nearly persistent activity during the delay period of short-
term memory tasks, whereas other studies13–18 observed sequential 
or dynamic activity patterns. These studies used different tasks, 
different stimuli, different experimental designs, and sometimes 
recorded from different areas or even from different species. It is 
difficult to know which of these differences might be relevant for 
the observed differences in mnemonic activity patterns. Although 
this question can, in principle, be addressed experimentally by run-
ning many experiments, systematically varying each experimental 
factor or neural circuit property that could conceivably have an 
effect on the observed differences, this would be too costly. Instead, 
we addressed this question by performing these experiments in 
silico. This allowed us to not only identify the relevant factors, but 
also understand mechanistically why those factors have the effects 
that they do.

More specifically, we trained recurrent neural networks on a 
range of short-term memory tasks and investigated the effects of a 
diverse array of task- and circuit-related factors on the sequential-
ity or persistence of the emergent activity patterns: (1) the task; (2) 
other experimental variables such as delay duration variability or 
whether the task had a navigation component; (3) whether the net-
work was previously trained on another task; (4) intrinsic network 
properties such as the intrinsic timescale of individual neurons and 
the strength of coupling between the neurons; and (5) Hebbian 
short-term synaptic plasticity.

We found that both sequential and nearly persistent solutions 
are part of a spectrum that emerges naturally in trained networks 
under different conditions. Tasks with higher temporal complexity, 
fixed delay durations, stronger network coupling between neurons, 
prior training in another task, and task-irrelevant, motion-related 
dynamic cues that arise in navigation-like tasks all increased the 
sequentiality of the emergent solutions. On the other hand, tasks 
with lower temporal complexity, variable delay durations, weak 
coupling between neurons, and symmetric Hebbian short-term 
synaptic plasticity reduced the sequentiality of the emergent solu-
tions. Furthermore, having complete access to the networks and 
their behavior allowed us to develop a detailed mechanistic under-
standing of the circuit mechanism that generates sequential versus 
persistent mnemonic activity and why the aforementioned factors 
have the effects that they do on the sequentiality or persistence of 
the neural responses.

Results
Experimental setup. Networks. In our main simulations, we used 
vanilla recurrent neural networks with rectified linear recur-
rent units (Fig. 1a; see Methods). The input to the network was 
provided in the form of a population of Poisson neurons, emit-
ting independent Poisson counts at each time step of the simula-
tion. Experimental evidence suggests that both the intrinsic time 
constants of individual neurons and the overall coupling strength 
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between them can vary significantly across the cortex19,20. To tease 
apart the potential effects of these two factors, we initialized the 
recurrent connectivity matrix as λ0I +​ σ0Σ​off, where λ0 and σ0 are 
hyperparameters controlling the amount of initial self-recurrence 
and recurrence from the rest of the network respectively, I is the 
identity matrix, and Σ​off is an off-diagonal matrix whose off-diag-
onal entries are drawn independently from a zero-mean normal 
distribution with standard deviation ∕ n1 , where n is the number 
of recurrent units in the network. Given that regularization of the 
network parameters (or the recurrent activity) can sometimes sig-
nificantly impact the nature of the emergent solutions21–23, we also 
placed an L2 norm regularizer on the network parameters through-
out training and controlled its strength through another hyper-
parameter, ρ. We repeated our main simulations for 800 different 
hyperparameter configurations drawn over a grid in the (λ0, σ0, ρ) 
space. On this grid, λ0 took ten uniformly spaced values between  

0.8 and 0.98, σ0 took ten uniformly spaced values between 0 and 
0.4025, and ρ took seven logarithmically spaced values between 
10−6 and 10−3, as well as ρ =​ 0. In general, we chose these ranges to be 
as large as possible, subject to the trainability of the networks, such 
that values outside of these ranges generally significantly impeded 
the trainability of the networks. These choices still gave rise to a 
wide range of initial network dynamics, from quickly decaying to 
strongly unstable (Supplementary Fig. 1). Qualitatively, increasing 
λ0 has the effect of increasing the intrinsic time constant of the indi-
vidual neurons, making their activity more persistent in response to 
an input pulse. On the other hand, increasing σ0 introduces oscilla-
tory components to the network response.

Tasks. To eliminate potential differences resulting from trial struc-
ture, we used a common trial structure for all our tasks (Fig. 1b). 
Each trial started with the presentation of one or two stimuli for 
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Fig. 1 | Experimental setup. a, Schematic diagram of recurrent networks. The input neurons are Poisson neurons providing noisy information about the 
stimulus or stimuli. These neurons project onto the recurrent neurons, which are modeled as ReLUs. Recurrent neurons in turn project onto the output unit or 
units, which are either linear or sigmoidal in different tasks. b, The five main experimental tasks and the common trial structure. c, Two factors determining the 
SI: the ridge-to-background ratio16 measures the temporal localization of the activity of individual units; the entropy of the peak time distribution measures the 
uniformity of the peak response times of the units in a given trial. The SI for a given trial is then given by the sum of the mean log ridge-to-background ratio of 
the recurrent units and the entropy of the peak time distribution. d, Example idealized single-trial activity patterns with the corresponding SIs indicated at the 
top of each panel. The different colors represent the temporal activity patterns of a subset of individual units. These example trials were generated with the 
same number of recurrent units and time steps as in the simulations in the rest of the article. Hence, the SI values shown in the figure are directly comparable 
to the SI values reported elsewhere in the article. A small amount of noise, independent across neurons and time, was added to the responses of all neurons 
to break possible ties in determining peak response times. e, How the example trials shown in d score along each of the two dimensions defining the SI. The 
dashed lines represent several iso-SI contours. All examples except for the ramping one score close to maximum on the entropy dimension, hence their SIs 
are largely distinguished by the mean ridge-to-background ratio. Note that the nearly persistent example was generated by broadening the temporal activity 
profiles in the sequential example. Thus, it has the same peak time entropy as the sequential example, but has a much smaller mean ridge-to-background 
ratio. The ramping example, on the other hand, has minimal peak time entropy and a medium mean ridge-to-background ratio.
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250 ms. A delay period of 1,000 ms then followed. After the delay, 
there was a response period of 250 ms. In some tasks, a second stim-
ulus or a cue appeared during the response period, in which case the 
target response depended on this second stimulus or cue.

We considered five main tasks in our experiments (Fig. 1b; see 
Methods for task details): (1) delayed estimation with one (DE-1) 
or two stimuli (DE-2), where the task was to report the stimulus or 
stimuli presented at the beginning of the trial; (2) change detection, 
where the task was to report whether the stimulus presented before 
the delay was the same as the stimulus presented after the delay (for 
example, see Wilken and Ma24); (3) gated delayed estimation (GDE), 
where two stimuli were presented simultaneously at the beginning 
of the trial and the task was to report the cued one after the delay 
(for example, see Wilken and Ma24); (4) two-alternative forced 
choice (2AFC), where one of two possible stimuli (for example, left 
versus right moving dots) was presented at the beginning of the trial 
and the task was to report which one was presented (for example, 
see Goard et al.11, Harvey et al.16); and (5) comparison (COMP), 
where the task was to report whether the stimulus presented before 
the delay was smaller or larger than the one presented after the delay 
(for example, Romo et al.10).

Quantifying sequentiality. Intuitively, there are two requirements for 
the recurrent activity of a population of neurons to be considered 
sequential (Fig. 1c): (1) each neuron should be active only during a 
short interval compared with the duration of the trial, and (2) the 
active periods of the neurons should tile the entire duration of the 
trial approximately uniformly. Thus, we designed a sequentiality 
index (SI) that takes into account both of these requirements. The 
SI for a given trial is defined as the sum of the entropy of the peak 
response time distribution of the recurrent neurons and the mean 
log ridge-to-background ratio of the neurons, where the ridge-to-
background ratio for a given neuron is defined as the mean activ-
ity of the neuron inside a small window around its peak response 
time divided by its mean activity outside this window16. The SI for a 
given experimental condition is then determined by averaging over 
the SIs of all trials belonging to that condition. Fig. 1d shows some 
idealized single-trial temporal activity patterns and the correspond-
ing SIs. These examples were generated using the same number of 
recurrent neurons and time steps as in other simulations in this 
study; hence, the SI values reported in Fig. 1d are directly compa-
rable to those reported elsewhere in the article. Fig. 1e shows how 
these example trials score along each of the two dimensions defin-
ing the SI, namely the mean log ridge-to-background ratio and the 
entropy of the peak response time distribution.

Factors affecting the sequentiality of the responses. Intrinsic circuit  
properties affect sequentiality. Fig. 2a schematically illustrates the 
three main intrinsic circuit properties considered: the initial net-
work coupling, σ0; the initial intrinsic timescale of individual units, 
λ0; and the regularization coefficient ρ. In successfully trained net-
works, the sequentiality of the recurrent activity increased with 
σ0 (Fig. 2b); it did not change significantly with λ0 (Fig. 2c) and it 
slightly but significantly decreased with ρ (Fig. 2d). Larger σ0 values 
introduce higher-frequency oscillatory dynamics in the initial net-
work, which promotes the emergence of a high-frequency sequen-
tial structure in the trained networks. Larger ρ values, on the other 
hand, have the opposite effect.

The temporal complexity of tasks affects sequentiality. There was sig-
nificant variability in SI among the tasks (Fig. 3a; see Supplementary 
Figs. 2–6 for example trials from all tasks under different hyperpa-
rameter settings). Indeed, task was the most predictive variable in 
a linear regression analysis of the SI that included the task variable 
(coded ordinally) and the three hyperparameters σ0, λ0, and ρ: task 
alone yielded R2 =​ 0.20 compared with R2 =​ 0.08 for the next most 

predictive variable, σ0. Some tasks, such as comparison or change 
detection, led to highly sequential responses, whereas other tasks, 
such as the basic 2AFC task, led to less sequential and more per-
sistent responses (Fig. 3b). We hypothesized that this variability 
was related to the temporal complexity of the target functions that 
need to be learned in different tasks, where target function com-
plexity can be formalized as the mean temporal frequency of the 
target function25, for example. In change detection, gated delayed 
estimation, and comparison tasks, the target function depends on 
the probe (or cue) stimulus presented after the delay period. Thus, 
these tasks have higher temporal complexity. On the other hand, 
in delayed estimation and 2AFC tasks no probe is presented after 
the delay and the target response does not depend on what hap-
pens after the delay. Thus, these tasks have lower temporal com-
plexity. Implementing temporally more complex target functions 
requires higher-frequency temporal basis functions; and sequential 
activity in the recurrent population provides such a high-frequency  
temporal basis.

To test this hypothesis more directly, we conducted two simple 
experiments. First, we trained networks to output sine functions with 
different temporal frequencies during the response period (upper 
panel in Fig. 3c). Thus, the target function had the following form: 
sin(2πft/Tresp), where 0 ≤​ t ≤​ Tresp, and Tresp denotes the duration of the 
response period. The networks received one-dimensional random 
input throughout the trial in these tasks. According to our hypoth-
esis, target functions with higher temporal frequency (larger f)  
should lead to more sequential responses. We observed that this was 
indeed the case (Fig. 3c): the linear regression of SI on f yielded a 
slope of 0.60 ±​ 0.10 (R2 =​ 0.43, two-sided Wald test, P <​ 10−7).

Second, we introduced a ‘tethering’ manipulation in our experi-
mental design that increased the temporal complexity of the tasks. 
Under tethered conditions, we put a strong penalty on recur-
rent responses deviating from 0 during the last 50 ms of the trial 
(upper panel in Fig. 3d). An analogous tethering manipulation can 
be induced experimentally, for example, by optogenetic silencing 
of a relevant neural circuit toward the end of the trial. Tethering 
increases the temporal complexity of the task because it forces the 
network’s output to sharply change from the roughly constant value 
it takes before the onset of tethering. Thus, we expected this manip-
ulation to increase the sequentiality of the responses in successfully 
trained networks. Tethering indeed led to an overall increase in the 
sequentiality of the responses (Fig. 3d,e). Notably, in many cases, 
tethering changed the dynamics throughout the entire trial dura-
tion and not just toward the end of the trial (for example, see the 
representative pair of trials in Fig. 3f).

Hebbian short-term synaptic plasticity affects sequentiality. Short-
term synaptic plasticity is a ubiquitous feature of synapses in real 
neural circuits26. A number of theoretical and experimental studies 
have suggested that short-term synaptic plasticity might be involved 
in short-term memory by storing information in an ‘activity-silent’ 
format in synapses27–29. To investigate the effect of short-term syn-
aptic plasticity on the sequentiality of the recurrent activity in our 
networks, we added a simple symmetric Hebbian short-term syn-
aptic plasticity term to the recurrent weights (see Methods). This 
Hebbian contribution to the recurrent weights is sometimes known 
as ‘fast weights’ in the machine learning literature30.

Symmetric Hebbian short-term synaptic plasticity decreased the 
sequentiality of the recurrent activity in trained networks (Fig. 4a).  
A symmetric contribution to the recurrent connectivity matrix 
reduces the high-frequency oscillatory dynamics in the network, 
which in turn reduces the sequentiality of the recurrent activity. We 
emphasize again the symmetry of the short-term synaptic plasticity 
rule considered in this study, as asymmetric associative rules (for 
example, spike-timing-dependent plasticity) can often have oppo-
site effects, as demonstrated in earlier studies31–33. We tried several 
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asymmetric variants of our Hebbian short-term synaptic plasticity 
rule, but we found these rules to be quite unstable in general and we 
could not train our networks successfully with these kinds of rules.

Delay duration variability affects sequentiality. Thus far, our simula-
tions assumed a fixed delay duration of 1,000 ms. However, experi-
menters sometimes use variable delay durations in short-term 
memory experiments. To test the effect of delay duration variability, 
we designed versions of each of our tasks with delay duration vari-
ability. In these versions, delay duration was one of 100, 400, 700, 
and 1,000 ms, chosen randomly on each trial. Variability in delay 
duration significantly decreased the sequentiality of the recurrent 
activity in successfully trained networks (Fig. 4b). In sequential 
solutions, the representations of task-relevant variables change over 
time. Thus, these representations cannot be decoded with a fixed 
decoder across time. However, the delay duration variability experi-
ments demand that the learned representations be decodable with a 
fixed decoder at different delay durations, thereby forcing the net-
work to learn more stable representations across time.

Task-irrelevant structured dynamic inputs affect sequentiality. 
Motion-related signals that animals receive during navigation-
type experiments have previously been argued to be crucial for the 
generation of sequential neural activity observed in rodent experi-
ments34. Our results from experiments without such motion-related 
signals clearly demonstrate that such signals are not necessary for 
the generation of sequential activity. However, it is still possible 
that because such signals already have a sequential structure, they 
may facilitate the generation of sequential activity in the network. 
To test this hypothesis, we designed navigation versions of our 
main experiments where, in each trial, the network was assumed 
to navigate through a linear track at constant speed. The network 
received noisy population-coded information about its hypothetical 
location in the linear track, in addition to the task-relevant inputs 
it received (see Methods). The location information was irrelevant 
for performing the tasks, hence the network could safely ignore this 
information. These motion-related, task-irrelevant location signals 
significantly increased the sequentiality of the recurrent activity in 
successfully trained networks (Fig. 4c), suggesting that the networks 
did not completely suppress these signals despite the fact that they 
were irrelevant to the tasks the networks were trained on.

Learning multiple tasks in sequence affects sequentiality. Our simula-
tions so far assumed that each network is trained on a single task. 
However, a common situation that arises in many animal experi-
ments is that the same animal may be trained on multiple tasks, 
usually sequentially. This can happen, for example, when an animal 
takes part in several different experiments throughout its lifetime, 
or when it learns to perform different tasks as part of a curriculum 
strategy for learning a more complex task. To investigate the effects 
of such sequential multitask learning, we considered networks that 
learned a pair of tasks sequentially. We only considered the 2AFC–
COMP and 2AFC-CD task pairs, trained in either order because (1) 
these task pairs have the same number and type of inputs and out-
puts, hence they do not require any changes in the network archi-
tecture, and (2) they have maximally different SIs when trained in 
isolation: the COMP and CD tasks have the largest SIs and the 2AFC 
task has the smallest SI among all tasks (Fig. 3a). We then compared 
the SI in the second task of the pair with the SI of the same task 
when it was trained in isolation. Sequential multitask training led to 
an overall increase in the SIs compared with the corresponding sin-
gle-task training conditions (Fig. 5a,b). This might be expected in 
cases where the network was first trained on a high SI task and then 
on a low SI task (that is, COMP →​ 2AFC and CD →​ 2AFC, although 
the effect was not significant in the latter case). More surprisingly, 
however, a significant increase in SI was also observed in the other 
direction, that is, training in 2AFC →​ COMP produced a higher SI 
than training in COMP alone; similarly, training in 2AFC →​ CD led 
to a higher SI than training in CD alone. We observed that this was 
because training a network in any task, including in low SI tasks 
such as 2AFC, consistently decreased the mean self-recurrence 
of the units, λ ≡​ 〈​Wii〉​, and increased the size of the fluctuations 
in the strength of recurrent coupling to the rest of the network, 
σ ≡​ std(Wij,i≠j), compared with the initial weights (Fig. 5c). Thus, for 
the second task in the pair, the effect of prior training in another 
task is analogous to an increase in the hyperparameter σ0, which was 
shown to increase the SI (Fig. 2b).

Circuit mechanism that generates sequential versus persistent 
activity. To probe the circuit mechanism generating sequential ver-
sus persistent activity in trained networks, we performed an analysis 
proposed by Rajan et al.35. In this analysis, we first ordered the recur-
rent neurons in the network by their time of peak activity. We then 
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measured the mean and s.d. of the recurrent weights (Wij) as a func-
tion of the order difference between two neurons, i −​ j. In trained 
networks, connections from earlier to later peaking neurons had, on 
average, larger weights than connections from later to earlier peak-
ing neurons. The mean connection weight was an approximately 
monotonically increasing function of i −​ j (Fig. 6a,b). This particu-
lar asymmetric structure was absent in untrained random networks 
(Fig. 6c); and it generated sequential activity in trained networks 
with increasingly prolonged responses in later peaking neurons in 
the sequence (Fig. 6e). However, in trained networks with a high SI 
(SI >​ 5), a prominent asymmetric peak appeared in the connection 
weight profile (inset in Fig. 6a). This asymmetric peak corresponds 
to strengthened connections between temporally close neurons in 
the sequence at the expense of weakened connections between tem-
porally distant neurons, with connections in the ‘forward’ direction 
being strengthened more than those in the opposite direction. This, 
in turn, led to more strongly sequential responses in the network 
(Fig. 6d) by reducing the temporal smearing of the responses that 

took place in networks with a low SI (SI <​ 2.5), which did not display 
such a peak in their connection weight profile (Fig. 6b). A simpli-
fied model that only incorporated the non-linearity and idealized 
versions of the mean connection weight profiles shown in Fig. 6a,b 
captured the essential aspects of the difference between the two 
cases (Supplementary Fig. 7).

Notably, the preceding analysis suggests that both sequential and 
persistent activity patterns underlying short-term memory under 
different conditions emerge as two ends of a spectrum in trained 
networks, rather than being categorically different solutions.

Robustness of the results to variations in some architectural and 
experimental choices. In our simulations thus far, we have used 
recurrent networks of rectified linear units (ReLUs). This particular 
non-linearity is unbounded on one side; thus, it may be considered 
biologically unrealistic, even though in trained networks the recur-
rent units typically did not attain unrealistically large values. Thus, 
it is important to check whether our main results still hold for a 
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tasks. Exact sample sizes and P values for any statistical test in a and c–e are reported in Supplementary Table 1. f, Normalized responses of recurrent units 
in a pair of example trials from the tethered and untethered versions of the 2AFC task, respectively, trained under the same hyperparameter setting. We 
again chose representative trials with SI values close to the mean SIs of the two conditions.
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non-linearity saturating on both sides. For this purpose, we repro-
duced our main experiments with a simple modification to the net-
works; namely, we replaced the ReLU non-linearity with a clipped 
version of it that was bounded above by a maximum value, which 
we chose to be 100. Overall, the results from these simulations were 
qualitatively in agreement with the results from the ReLU networks. 
In particular, the hyperparameters σ0 and ρ (but not λ0) had similar 
effects on the SI, the ordering of the tasks by SI was similar, and 
the underlying mechanism that generated more sequential versus 
more persistent activity in different conditions was also similar in 
the clipped ReLU networks (see Supplementary Fig. 8).

Second, in our simulations, we chose the input noise levels to be 
roughly consistent with those used in Orhan and Ma36, where generic 
neural networks were trained on tasks similar to those considered 
in this study in psychophysically realistic input noise regimes. To 
investigate the sensitivity of our results to the amount of input noise, 
we reran our main experiments with up to 2.5 times lower and up 
to 2 times higher levels of input noise. Increasing the input noise 
slightly increased the SI (Supplementary Fig. 9c). Importantly, even 
when we restricted the analysis to the lowest and the highest levels 
of input noise, we observed qualitatively very similar results to those 
reported for our main experiments; that is, the hyperparameters σ0 
and λ0 had similar effects on SI, the ordering of the tasks by SI was 

similar, and the circuit mechanism generating more sequential ver-
sus more persistent solutions under different conditions was also 
similar (Supplementary Figs. 10 and 11).

Discussion
We have identified a diverse range of circuit- and task-related fac-
tors affecting the sequentiality or persistence of recurrent neural 
activity underlying short-term memory maintenance. Tasks with 
higher temporal complexity, fixed delay durations, stronger net-
work coupling between neurons, motion-related dynamic cues, 
and prior training in other tasks promote more sequential activity 
in trained networks; tasks with lower temporal complexity, variable 
delay durations, weak coupling between neurons, and symmetric 
short-term synaptic plasticity promote more persistent activity.

We have also developed a detailed mechanistic understanding 
of the circuit mechanism that generates sequential versus persistent 
activity. In all trained networks, the basic mechanism implement-
ing short-term memory maintenance is sequential recurrent activ-
ity generated by a non-normal recurrent connectivity matrix (see 
Supplementary Fig. 12 for Schur decompositions of trained recur-
rent connectivity matrices), with increasingly prolonged responses 
as the activity travels along the sequence. However, in networks 
with more sequential activity, this temporal smearing is reduced 
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by a characteristic asymmetric peak in the weight profile that cor-
responds to strengthened connections between temporally close 
neurons in the sequence (at the expense of weakened connections 
between temporally distant neurons) with connections in the for-
ward direction being preferentially strengthened (Fig. 6).

An important question to consider is why trained networks 
develop a short-term memory maintenance mechanism that relies 
on non-normal recurrent dynamics, even when the recurrent con-
nectivity is initialized close to a normal matrix. For linear networks, 
it has been previously shown by Ganguli et al.37 that any dynami-
cal system with optimal memory properties must be non-normal; 
and a feed-forward chain is one of the simplest examples of such a 
non-normal dynamical system37. However, there are important dif-
ferences between our networks and the simplified setup studied in 
Ganguli et al.37. Therefore, it remains to be seen whether this pre-
vious work can explain the emergence of non-normal structures 
in our trained networks. Another possibility is that non-normal 
solutions may just be more generic than normal solutions so that 
a randomly initialized network is more likely to converge to a non-
normal solution.

A previous study (Rajan et al.35) also investigated the circuit 
mechanism underlying the generation of sequential activity in 
recurrent neural networks. However, that study did not train the 
networks to perform any short-term memory task, but rather 
trained them explicitly to generate sequential activity. Our work, 
on the other hand, shows that sequential activity emerges naturally 
in networks trained to perform short-term memory tasks; and cer-
tain factors identified in our study facilitate the emergence of such 
sequential activity.

Rajan et al.35 discovered qualitatively different mechanisms gen-
erating sequential activity as the fraction of trainable connections  

was varied in their networks. When only a small fraction of the 
connections were trainable, they found an input-dependent mech-
anism for the generation of sequences that is different from the 
mechanism uncovered in this work. Our mechanism relies on an 
asymmetric recurrent connectivity matrix and is conceptually simi-
lar to the sequence generation mechanism they found in networks 
where all connections were trainable. However, the particular 
asymmetry we found is qualitatively different from the one found in 
their work. This difference is largely a result of the difference in the 
training signals: our networks were trained on actual short-term 
memory tasks without constraining the dynamics, whereas theirs 
were trained to generate sequential activity. Training the networks 
to explicitly generate sequential activity constrains the recurrent 
connectivity more strongly and results in more structured weight 
profiles, especially with the tanh non-linearity used in Rajan et al.35 
(Supplementary Fig. 13).

In addition to the difference in training signals, there are two 
other differences between Rajan et al.35 and our work. First, they 
used tanh units, whereas we used ReLUs in our networks. We could 
not successfully train networks of tanh units in any of our tasks, 
neither with the particular initialization we used, nor with more 
standard initializations. However, we reproduced our experiments 
with two other activation functions, exponential linear38 and softp-
lus39 (in addition to the double-sided saturating, clipped ReLU non-
linearity discussed earlier) and found asymmetries in the trained 
recurrent connectivity matrices that were qualitatively similar to 
those observed in our ReLU networks (Supplementary Fig. 14). 
Second, the networks used by Rajan et al.35 always received dynamic 
inputs, whereas in our basic condition, the networks did not receive 
any input during the delay, except for a very small amount of spon-
taneous input due to the stochasticity of input units (see Methods). 
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Hence, their simulations were more similar to our dynamic, motion-
related input condition than to our basic condition. Together, Rajan 
et al.35 and this study demonstrate a multiplicity of ways in which 
sequential activity can be generated in neural circuits.

Our results concerning the various factors affecting the sequen-
tiality or persistence of neural activity underlying short-term 
memory immediately lead to experimental predictions that can 
be tested in the laboratory. There is already experimental evidence 
confirming the effects of some of these factors. For instance, Goard 
et al.11 observed more persistent responses in the mouse posterior 
parietal cortex than Harvey et al.16 did in the same area when ani-
mals in both studies were performing visual short-term memory 
tasks. However, there were crucial differences between the experi-
mental designs in these studies: in the study by Goard et al.11, the 
task was not a navigation-type task and there was significant delay 
duration variability, whereas in the study by Harvey et al.16, the task 
was a navigation task in a simulated linear track and the delay dura-
tion variability was much smaller. Consistent with these results, 
we found more persistent responses in tasks with significant delay 
duration variability and more sequential responses in tasks with 
dynamic, motion-related inputs.

Our networks and learning paradigm had a number of biologi-
cally unrealistic features. Our networks consisted of simple generic 
rate neurons, whereas real neurons communicate via spikes and 
display a wide range of morphological and functional diversity. 
Moreover, our networks were trained with the biologically unrealis-
tic backpropagation algorithm. However, a growing body of research 
demonstrates that task-trained generic neural networks like the 
ones we used in our simulations can capture many, sometimes sur-
prisingly subtle, aspects of real biological circuits performing the 
same tasks23,40–42, implying that one may not always need highly 
biologically realistic architectures or learning rules to explain the 
behavior of complex neural circuits performing complex tasks. Our 
results contribute to this literature by showing that both the sequen-
tial and nearly persistent stable activity patterns experimentally  

observed in short-term memory studies are part of a spectrum that 
emerges naturally in generic neural networks trained on short-term 
memory tasks under different conditions.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-018-0314-y.
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Methods
Network details. We adopted a discrete-time formulation in which the network 
dynamics was described by

= + +−f W Wr r h b( ) (1)t r t h t1

where rt and ht are the responses of the recurrent and input units at time t, 
respectively. Note that some previous studies start with a continuous-time 
formulation and obtain a discrete-time version through the Euler method. This 
yields an equation with the following form:

α α= − + + +− −f W Wr r r h b(1 ) ( )t t r t h t1 1

where α ≡​ Δ​t/τ describes the time step of the simulation in units of the intrinsic 
time scale of individual units. Typically, α is chosen to be small (for example, 
α =​ 0.05–0.1), which is equivalent to assuming a long time constant for individual 
units. In contrast, our formulation (equation (1)) corresponds to choosing α =​ 1; 
this does not assume a long time constant, but note that we increase the effective 
time constant of individual units through our initialization of Wr instead. More 
specifically, the hyperparameter λ0 controls the initial effective time constant of the 
units in our formulation. We set Δ​t =​ 10 ms in all results reported in this article.

For the main experiments, we used linear rectification (ReLU) for the  
non-linearity f. All networks had 50 Poisson neurons in each input population  
and 500 recurrent neurons with ReLU activation. In networks with Hebbian 
synaptic plasticity, the general equation describing the network dynamics can be 
expressed as
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In practice, however, we found networks with T >​ 1 to be very unstable and difficult 
to train; hence, we set T =​ 1, which yields the following equation:

γκ= + + +− −
⊤

− −f W Wr r r r r h b( ( ) )t r t t t t h t1 2 1 2

where κ(·) is a clipping function that clips its input between 0 and 100 to ensure 
stability and γ controls the strength of the Hebbian contribution; γ was set to 0.0005 
in the change detection task and to 0.0007 in all other tasks. These values were the 
largest γ values that allowed the network to train successfully starting from at least 
ten different initial conditions.

Task details. In change detection, delayed estimation, and gated delayed estimation 
tasks, we used circular stimulus spaces, which can be thought of as orientation, for 
example. The input neurons had von Mises tuning functions with circular means 
uniformly spaced between 0 and π and a constant concentration parameter κ =​ 2. 
The stimuli were drawn uniformly between 0 and π. In the 2AFC and comparison 
tasks, linear stimulus spaces were used. In the 2AFC task, the input neurons had 
Gaussian tuning functions with centers uniformly spaced between −​40 and 40, 
and a constant s.d. of 10. The stimuli presented were either −​15 or 15 (randomly 
chosen in each trial) corresponding to the left and right choices, respectively. In the 
comparison task, the input neurons had Gaussian tuning functions with centers 
uniformly spaced between −​50 and 50, and a constant s.d. of 10. The stimuli were 
drawn uniformly between −​40 and 40. In the dynamic, motion-related input 
conditions, noisy, task-irrelevant pseudo-location information was provided by 
50 additional Poisson neurons with Gaussian tuning functions uniformly tiling 
the stimulus range for each task. The s.d. of the tuning functions was 0.2236 and 
the network was assumed to cover the entire stimulus range at constant speed 
over the trial duration. In all tasks, during the stimulation periods, the gains of 
the input neurons were set to 1/Tstim at each time step (where Tstim denotes the 
duration of the stimulation period), yielding a cumulative gain of 1 for each input 
neuron throughout the stimulation period. All input neurons also had a stimulus-
independent, uniform spontaneous gain of 0.1/Tdelay at each time point during the 
delay, yielding a cumulative spontaneous firing rate of 0.1 spikes s−1 throughout the 
delay period. In all tasks, each trial took 1,500 ms (150 simulation steps): 250 ms 
(25 simulation steps) for the stimulus period; 1,000 ms (100 simulation steps) for 
the delay period; and 250 ms (25 simulation steps) for the response period.

Training details. The networks were trained with the Adam stochastic gradient 
descent algorithm43 with a learning rate of 0.0005 and using the appropriate cost 
function for each task—mean squared error for continuous output tasks and mean 

cross-entropy error for categorical tasks. For all tasks, we put an additional L2 
norm regularizer (with coefficient 0.0001) on the mean activity of all recurrent 
units in the last 50 ms of each trial. In the tethering tasks, the coefficient of this 
regularizer was increased to 0.1. Batch size was 50 trials in all experiments. The 
networks were trained for 25,000 iterations and tested on 300 new trials. All 
analyses were performed on these test trials.

Analysis details. Ideal observer models for each task were derived based on earlier 
work (for example, see Orhan and Ma36 and Keshvari et al.44) and the optimal 
performance was calculated from these ideal observers. As in Orhan and Ma36, for 
the categorical tasks (COMP, CD, 2AFC), we measured performance in terms of 
the fractional information loss, which is defined as the average Kullback–Leibler 
divergence between the actual posterior and the network’s output normalized by 
the mutual information between the class labels and the neural responses. For 
the continuous output tasks (GDE, DE-1, DE-2), performance was measured 
in terms of the fractional root mean squared error (RMSE), which is defined as 
100 ×​ (RMSEnetw −​ RMSEopt)/RMSEopt, where RMSEnetw is the RMSE of the network 
and RMSEopt is the RMSE of the ideal observer. In all the analyses presented in 
this study, we only considered networks that had at most 50% information loss 
or fractional RMSE on the test set to ensure that only sufficiently well-trained 
networks were included.

In calculating the SI for a given trial, we only included the recurrent neurons 
that had an average response of at least 0.1 during that trial. The remaining 
neurons did not contribute significantly to task performance and caused numerical 
instabilities in calculating the SI. In addition, the entropy of the peak time 
distribution, which is one of the determinants of the SI, was calculated by dividing 
the total trial duration into 20 bins and calculating the Shannon entropy of the 
resulting count distribution. A pseudocount of 0.1 was added to each bin before 
calculating the entropy.

In the simulated trials shown in Fig. 6d–f, a randomly selected set of 100 
recurrent units (out of 500 units) received unit inputs for the entire duration of the 
trial, while the remaining units did not receive any direct input.

Statistical analysis. To test for the significance of mean SI differences between two 
conditions, we used a two-sided Welch’s t test throughout the study. This test does 
not assume equal variances for the two conditions, but it assumes that the groups 
are normally distributed. We did not formally test the normality assumption. In 
linear regression analyses, we used the two-sided Wald test with the null hypothesis 
that the slope is zero. This test assumes that the estimate of the slope is normally 
distributed. The normality assumption was not formally tested.

No statistical methods were used to predetermine sample sizes. Since this work 
is a purely computational study, our sample sizes were effectively determined by 
the computational resources available to us in our High-Performance Computing 
Cluster. We used the maximum sample size that was practically feasible for all 
experiments. Our sample sizes are larger than those reported in comparable 
studies (for example, see Sussillo et al.21, Rajan et al.35, and Mante et al.40) because 
these earlier studies typically did not perform an extensive exploration of the 
hyperparameter and task space, which was one of the main goals of our study.

Since this work is a simulation study, differences between experimental 
conditions were precisely controlled (including random seeds). Randomization and 
blinding are thus not relevant for this study. Each experiment was run with a fixed 
and known random seed, hence all results reported here are precisely reproducible. 
Data collection and analysis were not performed blind to the conditions of the 
experiments.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability
The code for reproducing the experiments and analyses reported in this article is 
available at https://github.com/eminorhan/recurrent-memory.

Data availability
The raw simulation data used for generating each figure are available upon request.

References
	43.	Kingma, D. P. & Ba, J. L. Adam: a method for stochastic optimization. 

Preprint at https://arxiv.org/abs/1412.6980 (2015).
	44.	Keshvari, S., van den Berg, R. & Ma, W. J. No evidence for an item limit in 

change detection. PLoS Comput. Biol. 9, e1002927 (2013).

Nature Neuroscience | www.nature.com/natureneuroscience

https://github.com/eminorhan/recurrent-memory
https://arxiv.org/abs/1412.6980
http://www.nature.com/natureneuroscience


1

nature research  |  reporting sum
m

ary
April 2018

Corresponding author(s): Emin Orhan

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Theano (0.8.2) and Lasagne (0.2.dev1). The code for reproducing the experiments reported in the paper is available at: https://
github.com/eminorhan/recurrent-memory

Data analysis Data analysis is performed with custom Python 3 code. The code is available at: https://github.com/eminorhan/recurrent-memory

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The raw simulation data used for generating each figure are available upon request.



2

nature research  |  reporting sum
m

ary
April 2018

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes. Since this work is a purely computational study, our sample sizes were 
effectively determined by the computational resources available to us in our High Performance Computing cluster. We used the maximum 
sample size that was practically feasible for all experiments. Our sample sizes are larger than those reported in comparable earlier studies, 
because earlier studies typically did not perform an extensive exploration of the hyperparameter and task space, which was one of the main 
goals of our paper.

Data exclusions We restricted all analyses to networks that achieved a test set performance that was within 50% of the optimal performance. Some such 
restriction has to be made, since the remaining networks do not learn the task successfully. In calculating the sequentiality index (SI) for a 
trial, we also excluded neurons with an average response below 0.1 during the trial. Such neurons did not contribute significantly to task 
performance and caused numerical instabilities in calculating the SI.

Replication Since this work is a simulation study, differences between experimental conditions were precisely controlled (including random seeds). Each 
experiment was run with a fixed and known random seed, hence all results reported here are precisely reproducible.

Randomization Since this work is a simulation study, differences between experimental conditions were precisely controlled (including random seeds). 
Randomization is thus not relevant for this study.

Blinding Data collection and analysis were not performed blind to the conditions of the experiments.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	A diverse range of factors affect the nature of neural representations underlying short-term memory

	Results

	Experimental setup. 
	Networks
	Tasks
	Quantifying sequentiality

	Factors affecting the sequentiality of the responses. 
	Intrinsic circuit properties affect sequentiality
	The temporal complexity of tasks affects sequentiality
	Hebbian short-term synaptic plasticity affects sequentiality
	Delay duration variability affects sequentiality
	Task-irrelevant structured dynamic inputs affect sequentiality
	Learning multiple tasks in sequence affects sequentiality

	Circuit mechanism that generates sequential versus persistent activity. 
	Robustness of the results to variations in some architectural and experimental choices. 

	Discussion

	Online content

	Acknowledgements

	Fig. 1 Experimental setup.
	Fig. 2 Intrinsic circuit properties and their effect on the sequentiality of recurrent activity in trained networks.
	Fig. 3 The temporal complexity of the task increases the sequentiality of the recurrent activity in trained networks.
	Fig. 4 Hebbian short-term synaptic plasticity, delay duration variability, and structured dynamic inputs affect the sequentiality of the recurrent activity in trained networks.
	Fig. 5 Multitask learning experiments.
	Fig. 6 Circuit mechanism that generates sequential versus persistent activity.




