
Under review as a conference paper at ICLR 2019

ADAPTIVE CONVOLUTIONAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The quest for increased visual recognition performance has led to the develop-
ment of highly complex neural networks with very deep topologies. To avoid high
computing resource requirements of such complex networks and to enable opera-
tion on devices with limited resources, this paper introduces adaptive kernels for
convolutional layers. Motivated by the non-linear perception response in human
visual cells, the input image is used to define the weights of a dynamic kernel
called Adaptive kernel. This new adaptive kernel is used to perform a second
convolution of the input image generating the output pixel. Adaptive kernels en-
able accurate recognition with lower memory requirements; This is accomplished
through reducing the number of kernels and the number of layers needed in the
typical CNN configuration, in addition to reducing the memory used, increasing
2X the training speed and the number of activation function evaluations. Our ex-
periments show a reduction of 66X in the memory used for MNIST, maintaining
99% accuracy and 16X memory reduction for CIFAR10 with 92.5% accuracy.

1 INTRODUCTION

Convolutional Neural Networks (CNN) have demonstrated their capacity to achieve state of the art
accuracy in image classification, semantic segmentation, and object detection. In order to increase
the accuracy of recognition, most of these works rely on deeper and deeper architectures with mil-
lions of parameters. The reason behind this is that more complex features can be abstracted as we
add more layers to a network. Unfortunately such models can not be used in embedded devices,
cellphones or drones due to the size of the models. Recently there are many approaches like Shuf-
fleNet Xiangyu Zhang (2017), MobileNet Andrew G. Howard (2017), HENet Qiuyu Zhu (2018) and
SqueezeNet Forrest N. Iandola (2017) trying to generate small models with an small drop in accu-
racy. The proposed method generates the smallest model with comparable accuracy. In addition this
method can be combined with most of the existent techniques like ResNet generating an improved
version of it.

Previous research has demonstrated that the response of visual cells is a non-linear function of their
stimuli (Szulborski & Palmer, 1990). Thus, finding non-linear models that best represent data is
imperative. Given that a typical convolutional layer is a linear system, its ability to express this
response is limited by the layers and the number of neurons in the intermediate layers. The use
of a non-linear neuron, as it was firstly explored to solve the XOR problem by Minsky & Papert
(1969), (which cannot be solved by a first order neuron, but it can by a second order neuron), seems
an appropriate way to tackle this kind of non linearity issue. Ideally, such non-linear approaches
should be able to provide similar accuracy as compared to traditional CNNs, albeit at a much lower
computation and memory costs. In other hand, in computer vision the filter used to extract borders
is different to the filter used to extract corners, etc. Our method uses the input image to define the
filter that better fits in on the specific location.

Motivated by this, we developed a convolutional kernel, that includes non-linear transformations
obtaining similar results as the state of the art algorithms, while yielding a reduction in required
memory up to 14x in the CIFAR10 (Krizhevsky, 2009) classification, and up to 66x for the MNIST
classification. The main contributions of this paper are: (i) we present the non-linear convolutions
designed for high visual classification accuracy under memory constraints; (ii) using the proposed
convolutions, we present a network design that is partially pre-defined and is capable of completing
self-definition during the pattern evaluation phase, including defining the convolutional kernels on
the fly depending of the input pattern; (iii) we present a method to tackle problems associated with

1



Under review as a conference paper at ICLR 2019

higher order neural networks like the saturation of the activation due to the N-order of multiplica-
tions used; (iv) a method to constrain every new dynamically generated weight to a pre-known range
defined by the activation function, for instance if hyperbolic tangent function was used, the dynam-
ically generated weights would be all in (−1, 1) range; and (v) a pytorch-based implementation
located in https://github.com/adapconv/adaptive-cnn (2018).

This work is organized as follows: Section 2 describes previous approaches, Section 3 explains in
detail our proposed method, Section 4 shows the results for MNIST, CIFAR10 and Navigation. We
end with our conclusions in Section 5.

2 RELATED WORK

Different ways of increasing the accuracy of neural networks have been addressed in the existing
scientific literature, most of these rely on the use CNNs, as they are generalized linear models, and
their level of abstraction is low (Lin et al., 2013). Some approaches have dealt with this low abstrac-
tion by having additional layers (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014), resulting in
a considerable increase in the accuracy on different datasets, e.g. CIFAR10 (Krizhevsky, 2009) and
ImageNet (Deng et al., 2009). However, although the network depth has shown a crucial importance
in neural network performance, the difficulty to train the network also increases, and moreover, the
accuracy of the network drops (He et al., 2015).
A proposal to tackle this problem is the use of ResNet blocks He et al. (2015), which given a set of
inputs X , with an associated label Y and a function H(x) that maps X to Y , the networks define
a building block y = F (x) + x, where F (x) represents the residual mapping to be learned. This
residual network allows to train a deeper network without being affected by the degradation prob-
lem, using a larger amount of layers and parameters.
In the work presented in Lin et al. (2013) a nonlinear function approximator is proposed as a solu-
tion to increase the level of abstraction. The typical convolutional kernel is replaced with a micro
network, i.e. a non linear approximator. A multilayer perceptron is used as the instantiation of this
micro network, and by sliding the micro network over the input in a similar manner as convolutional
neural networks the feature maps are obtained.
In the approach of Brabandere et al. (2016), a dynamic filter module is introduced, where the filters
used for the convolution are generated dynamically depending on the input. This module consists of
two parts: a filter generating network, which generates sample specific parameters given an input;
and the dynamic filtering layer, which applies the parameters to another input. Although the men-
tioned work presents similar components to our proposal, it is important to notice the differences
between these: in Brabandere et al. (2016) a CNN is trained to get the convolutional kernels, and
then another network is defined to generate such kernels, where this second network is trained inde-
pendently. In our work, we define a second order convolutional kernel trained using a novel training
rule, which is explained in detail in the next section.

3 METHOD

An Adaptive Kernel is a dynamic kernel that changes its weights by itself depending on the input
image. An Adaptive Kernel can be viewed as an array of traditional kernels. For instance, each
element in a 3x3 adaptive kernel is a 3x3 linear kernel, as shown in the Figure 1.

The convolution of each kernel element Qu,v with the window X of the input image generates
a component of the new kernel Ku,v after applying the activation function (Figure 1). This new
dynamically generated kernel K is convolved again with the same window X of the input image
(Figure 2).

As result of this second order convolution and the activation function an output pixel value is ob-
tained. By sliding the window through all the input image, we generate the final filtered image.

3.1 FEED FORWARD

Convolving the kernel Qu,v in the Figure 1 and using tanh as activation function the weights Ku,v

are generated
Ku,v(σ) = tanh(σu,v), (1)

2



Under review as a conference paper at ICLR 2019

Figure 1: One adaptive kernel created by the convolution of the input image with a matrix of kernels.

where σu,v is the convolution of each linear kernel Qu,v with the input image

σu,v =

N−1∑
i=0

N−1∑
j=0

Q(u,v)i,j
xi,j , (2)

This new kernel Ku,v is now convolved with the input image to compute S in this location

S =
∑
u,v

xu,vK

∑
i,j

Qu,vi,jxi,j

 (3)

and finally the output pixel is computed using hyperbolic tangent as activation function like f =
tanh(S). Another activation functions can be used, like sigmoid or Relu. We use hyperbolic tangent
to generate weights in the range of (−1, 1).

3.2 TRAINING

For the Adaptive kernel a new training rule is obtained using gradient descent technique in order
to adjust the weights of adaptive kernel Q. The kernel can be seen as an array of NxN traditional
kernels, using Qu,v to refer to each linear kernel and using (i, j) to refer the elements (weights) of
each Qu,v kernel. It means the element Q(u,v)(i,j)

is a scalar value and represents a weight.

The kernel output f(S)k,l, where f is the activation function and S represents sum of input xu,v
weighted by σu,v as shown in Equation (3). The error for output pixel (k, l) denoted as Ek,l is given
by:

Ek,l =
1

2
(dk,l − f(s)k,l)2, (4)

where dk,l represents the expected output at coordinates (k, l). The training rule for the t − th
iteration (Qt) is given by the error derivative per component (u, v)i,j :

∂Ek,l

∂Qt
(u,v)(i,j)

= (dk,l − f(s)k,l)
∂f(s)k,l
∂sk,l

∂Sk,l

∂Qt
(u,v)(i,j)

(5)

3



Under review as a conference paper at ICLR 2019

Figure 2: A single resulting pixel output from the convolution of the input image and the high order
kernel that generates a dynamic kernel which is convolved with the input image again.

The gradient descent updates of the weights Qt
(u,v)i,j

are given by:

Qt+1
(u,v)(i,j)

= Qt
(u,v)(i,j)

+ γ
∑
k,l

(dk,l − f(s)k,l)
∂f(s)k,l

∂Qt
(u,v)(i,j)

(6)

where γ represents the learning rate. Using the hyperbolic tangent as the activation function
f(S)k,l = tanh(Sk,l):

∂f(S)k,l
∂Sk,l

∂Sk,l

∂Qt
(u,v)(i,j)

= (1− f(S)2k,l)
∂S

∂Qt
(u,v)(i,j)

, (7)

where Sk,l is the weighted sum computed as:

Sk,l =

N−1∑
u=0

N−1∑
v=0

(Kk,l
u,v)(xu+k,v+l). (8)

Here, N is the size of the kernel, and Kk,l
u,v(σ) = tanh(σk,l

u,v), with:

σk,l
u,v =

N−1∑
i=0

N−1∑
j=0

Q(u,v)i,j
xi+k,j+l, (9)

Since the hyperbolic tangent was used as the activation function, the gradient is:

∂f(s)k,l
∂Qt

(u,v)(i,j)

= (1− f(S)2k,l)
N−1∑
u=0

N−1∑
v=0

(
1− (Kk,l

u,v(σ))
2)(xu+k,v+l)(xi+k,j+l) (10)

by replacing (10) in (6), the final training rule is defined by:

Qt+1
(u,v)(i,j)

= Qt
(u,v)(i,j)

+ γ
∑
k,l

(dk,l − f(S)k,l)(1− f(S)2k,l)δk,l (11)

where γ is the learning rate,dk,l is the desired value at the window position (k, l), f is the activation
function and δk,l is

δk,l =
∑
u,v

(1− (Kk,l
u,v(σ))

2)(xu+k,v+l)(xi+k,j+l) (12)

4



Under review as a conference paper at ICLR 2019

For this training rule tanh was used as activation function to generate the kernel weights, it ensures
all weight are in the range of (−1, 1). Additionally, this layer allows the reduction of filters in the
subsequent layers without affecting the performance of the network, on the experimental results
different experiments will be used to compared against state of the art for MNIST and CIFAR10 to
show a significant memory compression using the proposed models.

4 RESULTS

Our implementation of the adaptive kernels was written as a layer of Caffe (Jia et al., 2014) with
forward and backward propagation. For CIFAR-10 (Krizhevsky, 2009) we use Nesterov (Nesterov,
1983) as training rule, with momentum set to 0.9, initializing the learning rate to 0.1, dropping it by
a factor of 5 every 20 epochs, and a weight decay of 0.0001. We use the same weight initialization
as He et al. (2015). A 32x32 crop is randomly sampled from a 40x40 image or its horizontal flip,
with the per-pixel mean subtracted and divided by the channel standard deviation. For MNIST we
use the same parameters, changing the learning rate to 0.01 and the weight decay to 0.0005. With
no data augmentation or pre-processing.

4.1 EXPERIMENT 1: MNIST

The MNIST is a public data set, it consists of 60,000 28x28 grey scale images in 10 classes (hand-
written numbers), with 6000 images per class. There are 50,000 training images and 10,000 test
images in the official data. Here our approach has three main advantages: memory reduction, in-
crement of accuracy outperforming the traditional model of CNNs, and the learning speedup. The
results produced by the implementation of the MNIST digits recognition, show a big memory com-
pression, using 66X less memory measured through parameter reduction, additionally high accuracy
was achieved 2x faster. In the table 1a the LeNet neural network architecture used as reference is
detailed1 and table 1b describes our topology.

Table 1: Topology comparison for MNIST.

(a) LeNet CNN Topology as in tutorial

Layer Units Type

Layer1 20 Kernels Conv 5x5
Layer2 50 Kernels Conv 5x5
Layer3 500 Neurons FC
Layer4 10 Neurons FC

(b) Our Neural Network Topology

Layer Units Type

Layer1 5 Kernels Adaptive 5x55x5
Layer2 10 Kernels Conv 5x5
Layer3 20 Neurons FC
Layer4 10 Neurons FC

The (figure 3A) shows a few examples of how the Adaptive kernel is changing according to the input
window. The Figure 3B shows all the kernels generated for random sample of digit seven, For all
the back ground pixels the kernels is simple neutral it does not extract any features there.

There are many different NN Models of MNIST classification, In the table 2 a subset is presented,
selecting only the models having over 99% accuracy with small number of parameters.

Table 2: MNIST Accuracy vs Number of parameters for >99% accuracy

Neural Network Depth #Parameters

LeNet (BAIR/BVLC, 2018) 4 431K
LetNet5 Yann Lecun (1998) 7 60K
50-50-200-10NN MarcAurelio Ranzato (2006) 4 226K
Best Practices (Patrice Y. Simard, 2003) 4 132.5K
Adaptive Kernels CNN 4 6.52K

1FC:Fully connected layer

5



Under review as a conference paper at ICLR 2019

Figure 3: A) A single kernel generated in different positions of the input image. B)Every input
window is convolved by a different filter generated on the fly using the input image.

In order to perform a Hyper-parameter sensibility analysis, eight different models with three layers
were trained using MNIST. By increasing the number of kernels in the first layer, a saturation on the
accuracy can be seen, but this saturation can be mitigated incrementing the number of kernels in the
second layer (3).

Table 3: Hyper-parameter sensibility

Layer type M1 M2 M3 M4 M5 M6 M7 M8

Adaptive 4 5 6 7 4 5 6 7
Conv. 10 10 10 10 20 20 20 20
F.C. 10 10 10 10 10 10 10 10

Accuracy 98.14 98.17 98.24 98.30 98.57 98.65 98.85 99.04

#parameters 6K 6.8K 7.7K 8.6K 9.5k 10.6K 11.7K 12.8K

In this scenario our technique is the smallest CNN model that reaches 99% without any pre-
processing in only 5 epochs, in contrast, the LeNet reached 97% after 9 epochs. In terms of the
number of operations the LeNet as in the tutorial has 2.29M MAC operations, while our method has
1.23M MAC operations for MNIST.

4.2 EXPERIMENT 2:CIFAR10

The CIFAR-10 is a public data set, it consists of 60,000 32x32 color images in 10 classes, with 6000
images per class. There are 50,000 training images and 10,000 test images in the official data. In this
scenario CIFAR10 was used for testing and we used horizontal flipping, padding and 32x32 random
cropping for data augmentation of the training dataset. In the selected topology: only the first layer
uses adaptive kernels of (3x3)(3x3) in order to highlight the impact of a single layer in the full
topology, being the first layer where the main feature extraction takes place. It has 8 convolutional
layers and ends with ten outputs in the fully connected layer.

In order to compare against related work we include some of the latest topologies used for CIFAR10
pattern recognition problem. Our intention is not to outperform the accuracy of these topologies.
Instead, the idea is to achieve similar results with a smaller model. This approach can potentially
enable us to target embedded systems. In the Table 4 we provide a summary of the most popular
methods recently used for CIFAR10. As the Table 4 shows the focus of the prior work has been the
improvement of recognition accuracy without regard to the amount of memory and time required
for classification.

The neural networks achieving the highest scores use over 20 million parameters, making it very
hard to implement them in low capacity embedded devices. Our solution reduces memory usage;
it only uses 200K parameters. While there is no simple way to determine the efficiency of a neural

6



Under review as a conference paper at ICLR 2019

Table 4: CIFAR10 Classification error vs Number of parameters

Neural Network Depth #Parameters Error%

All-CNN (Springenberg et al., 2014) 9 1.3M 7.25
ResNet Stochastic Depth Huang et al. (2016) 110 1.7M 5.23
Pre-act Resnet (He et al., 2016) 1001 10.2M 4.62
Wide ResNet (Zagoruyko & Komodakis, 2016) 40 55.8M 3.8
PyramidNet (Han et al., 2016) 110 28.3M 3.77
Wide-DelugeNet (Kuen et al., 2016) 146 20.2M 3.76
Steerable CNN (Cohen & Welling, 2016) 14 9.1M 3.65
ResNet Xt (Xie et al., 2016) 29 68.1M 3.58
Wide ResNet with Singular Value Bounding (Jia, 2016) 28 36.5M 3.52
Oriented Response Net (Zhou et al., 2017) 28 18.4M 3.52
Baseline wide ResNet 28 36.6M 3.62
Volterra-based Wide ResNet (Zoumpourlis et al., 2017) 28 36.7M 3.51
MobileNetV1 (Andrew G. Howard, 2017) 28 3.2M 10.76
MobileNetV2 (Mark Sandler, 2018) 54 2.24M 7.22
shuffleNet 8 Groups (Xiangyu Zhang, 2017) 10 0.91M 7.71
shuffleNet 1 Group (Xiangyu Zhang, 2017) 10 0.24M 8.56
HENet (Qiuyu Zhu, 2018) 9 0.7M 10.16
VGG Karen Simonyan (2015) 14 14M 7.36
Adaptive Kernels CNN 10 0.2M 7.48

network, our target is the highest accuracy with the least amount of memory as shows (Table 4).
Based on accuracy the Volterra-based Wide ResNet Zoumpourlis et al. (2017) provides the best
score but uses 36M parameters. Our solution, the one with less number of parameters represents
a compression of 184X with 4% drop in accuracy or comparing with All-CNN Springenberg et al.
(2014) our solution represents a 6X memory reduction with 0.2% accuracy drop.

Additional experiments were performed taking as base the ResNet18 topology, in this experiment
the number of parameters was not taken into account and only the first layer was changed to use 16
adaptive kernels instead of 64 convolutional kernels, as in the typical topology, in order to show the
contribution of one adaptive layer. Although the topology with an adaptive layer has less feature
maps in the first layer, it can achieve even better results than ResNet50 see table 5.

Table 5: Combining Adaptive layers with ResNet

Neural Network Depth #Parameters Error%

ResNet18 Kaiming He (2015) 18 11M 6.98
ResNet50 Kaiming He (2015) 50 25.6M 6.38
ResNet100 Kaiming He (2015) 100 44.5M 6.25
Adaptive + ResNet18 18 10.8M 6.33

4.3 EXPERIMENT 3:GENERALIZATION

In this experiment an internal data set was used, in order to train a neural network model, that drives
a robot to navigate inside of a known room. Basically given an input image I from the robot camera,
estimate a required direction α ∈ [0, 360] and a distance d ∈ [0, 100], that drives the drone to reach
the center c(xc, yc) of a known region. For this purpose, a NN architecture was created inspired by
DroNet Loquercio et al. (2018), instead of a standard convolutional layer, an adaptive convolutional
layer was used (Table 6b). The last two layers of the network are trained considering a classification
problem, in order to estimate a steering angle class and a distance class.

The compression is achieved by reducing the number of filters in the three ResNet blocks. In the
table we have k, 2k, and 4k kernels for each block respectively. When the compression increases

7



Under review as a conference paper at ICLR 2019

Table 6: Topology comparison for generalization.

(a) DroNet Neural Network Topology

Layer Units Type

Layer1 32 Kernels Conv 5x5
Layer2-5 k-Kernels ResNet 5,3,1
Layer6-8 2k-Kernels ResNet 5,3,1
Layer9-11 4k-Kernels ResNet 5,3,1
Layer12 120 Neurons FC
Layer12’ 100 Neurons FC

(b) Our Neural Network Topology

Layer Units Type

Layer1 5 Kernels Adaptive 5x55x5
Layer2-5 k-Kernels ResNet 5,3,1
Layer6-8 2k-Kernels ResNet 5,3,1
Layer9-11 4k-Kernels ResNet 5,3,1
Layer12 120 Neurons FC
Layer12’ 100 Neurons FC

Figure 4: Accuracy vs parameter reduction with standard and adaptive models, training (top) and
testing (bottom).

the accuracy drops, but the Adaptive kernels helps to keep a better accuracy in comparison with the
traditional convolutional layers (4).

4.4 CONCLUSION

In this paper we presented adaptive convolutional kernels, capable of redefining the convolutional
kernel during the inference time, depending on the input image. Our technique not only reduces
memory usage, but also reduces the training time. Additionally, our results show adaptive convolu-
tional kernels generalize better than traditional CNNs. Kernels adapt dynamically to extract better
features depending of the input image, and in terms of efficiency, our method has shown to be very
compelling generating 10X lighter solutions with less than 1% accuracy drop. Our solution should
be able to provide direct impact to the computational cost of the inference on embedded systems,
increasing the operational scope of these systems. In terms of accuracy, our proposed Adaptive
kernel can imitate any traditional constant kernel (by training the dynamic kernel to be constant
independent of the input); this means that it can be trained to generate the weights in the best in
class solution and start from there to outperform it. As in traditional CNNs, the increment of the
number of kernels in a layer produces some saturation, with a marginal increment of accuracy, thus
the topology also plays an important role. In our experiments it was observed that less adaptive
kernels in a layer generates comparable or even better level of abstraction than a higher number of
traditional convolutional kernels in a layer. For instance, in ResNet18, the 64 convolutional filters
in the first layer were changed to only 16 Adaptive filters producing better results than the topology
with 50 layers. In addition fully connected layers can use this technique, one adaptive layer can
replace two traditional layers.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Chen Dmitry Kalenichenko-Weijun Wang Tobias Weyand Marco Andreetto Hartwig Adam Andrew
G. Howard, Menglong Zhu Bo. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv:1704.04861, 2017.

BAIR/BVLC. Lenet architecture in caffe tutorial. https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt,
2018.

Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. CoRR,
abs/1605.09673, 2016. URL http://arxiv.org/abs/1605.09673.

Taco S. Cohen and Max Welling. Steerable cnns. CoRR, abs/1612.08498, 2016. URL http:
//dblp.uni-trier.de/db/journals/corr/corr1612.html#CohenW16a.

Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li Fei-fei. Imagenet: A large-scale
hierarchical image database. In In CVPR, 2009.

Matthew W. Moskewicz Khalid Ashraf William J. Dally Kurt Keutzer Forrest N. Iandola,
Song Han. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and ¡0.5mb model
size. ICLR2017, 2017.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. CoRR,
abs/1610.02915, 2016. URL http://dblp.uni-trier.de/db/journals/corr/
corr1610.html#HanKK16.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep resid-
ual networks. CoRR, abs/1603.05027, 2016. URL http://dblp.uni-trier.de/db/
journals/corr/corr1603.html#HeZR016.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. CoRR, abs/1603.09382, 2016. URL http://arxiv.org/abs/1603.
09382.

Kui Jia. Improving training of deep neural networks via singular value bounding. CoRR,
abs/1611.06013, 2016. URL http://dblp.uni-trier.de/db/journals/corr/
corr1611.html#Jia16a.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross B. Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature em-
bedding. CoRR, abs/1408.5093, 2014. URL http://arxiv.org/abs/1408.5093.

Shaoqing Ren Jian Sun Kaiming He, Xiangyu Zhang. Deep residual learning for image recognition.
arXiv:1512.03385, 2015.

Andrew Zisserman Karen Simonyan. Very deep convolutional networks for large-scale image recog-
nition. ICLR2015, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Proceedings of the 25th International Conference on Neural Infor-
mation Processing Systems - Volume 1, NIPS’12, pp. 1097–1105, USA, 2012. Curran Associates
Inc. URL http://dl.acm.org/citation.cfm?id=2999134.2999257.

Jason Kuen, Xiangfei Kong, and Gang Wang. Delugenets: Deep networks with massive and flexible
cross-layer information inflows. CoRR, abs/1611.05552, 2016. URL http://arxiv.org/
abs/1611.05552.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, abs/1312.4400, 2013. URL
http://arxiv.org/abs/1312.4400.

9

http://arxiv.org/abs/1605.09673
http://dblp.uni-trier.de/db/journals/corr/corr1612.html#CohenW16a
http://dblp.uni-trier.de/db/journals/corr/corr1612.html#CohenW16a
http://dblp.uni-trier.de/db/journals/corr/corr1610.html#HanKK16
http://dblp.uni-trier.de/db/journals/corr/corr1610.html#HanKK16
http://arxiv.org/abs/1512.03385
http://dblp.uni-trier.de/db/journals/corr/corr1603.html#HeZR016
http://dblp.uni-trier.de/db/journals/corr/corr1603.html#HeZR016
http://arxiv.org/abs/1603.09382
http://arxiv.org/abs/1603.09382
http://dblp.uni-trier.de/db/journals/corr/corr1611.html#Jia16a
http://dblp.uni-trier.de/db/journals/corr/corr1611.html#Jia16a
http://arxiv.org/abs/1408.5093
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://arxiv.org/abs/1611.05552
http://arxiv.org/abs/1611.05552
http://arxiv.org/abs/1312.4400


Under review as a conference paper at ICLR 2019

Antonio Loquercio, Ana Isabel Maqueda, Carlos R. Del Blanco, and Davide Scaramuzza. Dronet:
Learning to fly by driving. IEEE Robotics and Automation Letters, 2018. doi: 10.1109/lra.2018.
2795643.

Sumit Chopra Yann LeCun MarcAurelio Ranzato, Christopher Poultney. Efficient learning of sparse
representations with an energy-based model. NIPS2006, 2006.

Menglong Zhu Andrey Zhmoginov Liang-Chieh Chen Mark Sandler, Andrew Howard. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. arXiv:801.04381, 2018.

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA, USA, 1969.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/sqr(k)). Soviet Mathematics Doklady, 27:372–376, 1983.

John C. Platt Patrice Y. Simard, Dave Steinkraus. Best practices for convolutional neural networks
applied to visual document analysis. ICDAR 2003, 2003.

Ruixin Zhang Qiuyu Zhu. Henet: A highly efficient convolutional neural networks optimized for
accuracy, speed and storage. arXiv:1803.02742, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving
for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014. URL http://dblp.
uni-trier.de/db/journals/corr/corr1412.html#SpringenbergDBR14.

Robert G. Szulborski and Larry A. Palmer. The two-dimensional spatial structure of nonlinear
subunits in the receptive fields of complex cells. Vision Research, 30(2):249 – 254, 1990.
ISSN 0042-6989. doi: https://doi.org/10.1016/0042-6989(90)90040-R. URL http://www.
sciencedirect.com/science/article/pii/004269899090040R.

https://github.com/adapconv/adaptive-cnn. Adaptive convolutional neural networks source code:
Pythorch implementation. https://github.com/adapconv/adaptive-cnn, 2018.

Mengxiao Lin Jian Sun Xiangyu Zhang, Xinyu Zhou. Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. arXiv:1707.01083, 2017.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated resid-
ual transformations for deep neural networks. CoRR, abs/1611.05431, 2016. URL http:
//arxiv.org/abs/1611.05431.

Yoshua Bengio Patrick Haffner Yann Lecun, Lon Bottou. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 1998.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Oriented response networks. CoRR,
abs/1701.01833, 2017. URL http://arxiv.org/abs/1701.01833.

Georgios Zoumpourlis, Alexandros Doumanoglou, Nicholas Vretos, and Petros Daras. Non-
linear convolution filters for cnn-based learning. CoRR, abs/1708.07038, 2017. URL http:
//arxiv.org/abs/1708.07038.

10

http://arxiv.org/abs/1409.1556
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#SpringenbergDBR14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#SpringenbergDBR14
http://www.sciencedirect.com/science/article/pii/004269899090040R
http://www.sciencedirect.com/science/article/pii/004269899090040R
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1701.01833
http://arxiv.org/abs/1708.07038
http://arxiv.org/abs/1708.07038

	Introduction
	Related work
	Method
	Feed forward
	Training

	Results
	Experiment 1: MNIST
	Experiment 2:CIFAR10
	Experiment 3:Generalization
	Conclusion


