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ABSTRACT

Neural Machine Translation (NMT) systems rely on large amounts of parallel data.
This is a major challenge for low-resource languages. Building on recent work on
unsupervised and semi-supervised methods, we present an approach that combines
zero-shot and dual learning. The latter relies on reinforcement learning, to exploit
the duality of the machine translation task, and requires only monolingual data
for the target language pair. Experiments on the UN corpus show that a zero-shot
dual system, trained on English-French and English-Spanish, outperforms by large
margins a standard NMT system in zero-shot translation performance on Spanish-
French (both directions). We also evaluate on newstest2014. These experiments
show that the zero-shot dual method outperforms the LSTM-based unsupervised
NMT system proposed in (Lample et al., 2018b), on the en−→fr task, while on
the fr−→en task it outperforms both the LSTM-based and the Transformers-based
unsupervised NMT systems.

1 INTRODUCTION

The availability of large high-quality parallel corpora is key to building robust machine translation
systems. Obtaining such training data is often expensive or outright infeasible, thereby constraining
the availability of translation systems, especially for low-resource language pairs. Among the work
trying to alleviate this data-bottleneck problem, Johnson et al. (2016) present a system that performs
zero-shot translation. Their approach is based on a multi-task model trained to translate between
multiple language pairs with a single encoder-decoder architecture. Multi-tasking is accomplished by
a special symbol, introduced at the beginning of the source sentence, that identifies the desired target
language. Their idea enables the NMT model of Wu et al. (2016) to translate between language pairs
not encountered during training, as long as source and target language were part of the training data.

Since any machine translation task has a canonical inverse problem, namely that of translating in the
opposite direction, He et al. (2016) propose a dual learning method for NMT. They report improved
translation quality of two dual, weakly trained translation models using monolingual data from
both languages. For that, a monolingual sentence is translated twice, first into the target language
and then back into the source language. A language model is used to measure the fluency of the
intermediate translation. In addition, a reconstruction error is computed via back-translation. Fluency
and reconstruction scores are combined in a reward function which is optimized with reinforcement
learning.

We propose an approach that builds upon the multilingual NMT architecture of (Johnson et al., 2016)
to improve the zero-shot translation quality by applying the reinforcement learning ideas from the
dual learning work (He et al., 2016). Our model outperforms the zero-shot system’s performance
while being simpler and more scalable than the original dual formulation, as it learns a single model
for all involved translation directions. Moreover, for the original dual method to work, some amount
of parallel data is needed in order to train an initial weak translation model. If no parallel data is
available for that language pair, the original dual approach is not feasible, as a random translation
model is ineffective in guiding exploration for reinforcement learning. In our formulation, however,
no parallel data is required at all to make the algorithm work, as the zero-shot mechanism kick-starts
the dual learning.

Experiments show that our approach outperforms by large margins the zero-shot translation of
the NMT model using only monolingual corpora. Finally, we prove that zero-shot dual NMT is
competitive with recent unsupervised methods such as (Lample et al., 2018b).
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2 RELATED WORK

We build on the standard encoder-attention-decoder architecture for neural machine transla-
tion (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2015), and specifically on the Google
NMT implementation (Wu et al., 2016). This architecture has been extended by Johnson et al. (2016)
for unsupervised or zero-shot translation. Here, one single multi-task system is trained on a subset
of language pairs, but then can be used to translate between all pairs, including unseen ones. The
success of this approach will depend on the ability to learn interlingua semantic representations of
which some evidence is provided in (Johnson et al., 2016). In a zero-shot evaluation from Portuguese
to Spanish Johnson et al. (2016) report a gap of 6.75 BLEU points from the supervised NMT model.

He et al. (2016) propose a learning mechanism that bootstraps an initial low-quality translation model.
This so-called dual learning approach leverages criteria to measure the fluency of the translation and
the reconstruction error of back-translating into the source language. As shown in (He et al., 2016),
this can be effective, provided that the initial translation model provides a sufficiently good starting
point. In the reported experiments, they bootstrap an NMT model (Bahdanau et al., 2015) trained on
1.2M parallel sentences. Dual learning improves the BLEU score on WMT’14 French-to-English by
5.23 points, obtaining comparable accuracy to a model trained on 10x more data, i.e. 12M parallel
sentences.

Xia et al. (2017) use dual learning in a supervised setting and improve WMT’14 English-to-French
translation by 2.07 BLEU points over the baseline of Bahdanau et al. (2015); Jean et al. (2014). In the
supervised setting Bahdanau et al. (2017) show that Actor-Critic can be more effective than vanilla
policy gradient (Williams, 1992).

Recent work has also explored fully unsupervised machine translation. Lample et al. (2018a) propose
a model that takes sentences from monolingual corpora from both languages and maps them into
the same latent space. Starting from an unsupervised word-by-word translation, they iteratively train
encoder-decoder to reconstruct and translate from a noisy version of the input. Latent distributions
from the two domains are aligned using adversarial discriminators. At test time, encoder and decoder
work as a standard NMT system. Lample et al. (2018a) obtain BLEU score of 15.05 on WMT’14
English-to-French translation, improving over a word-by-word translation baseline with inferred
bilingual dictionary (Conneau et al., 2018) by 8.77 BLEU points.

Artetxe et al. (2018) present a method related to Lample et al. (2018a). The model is an encoder-
decoder system with attention trained to perform autoencoding and on-the-fly back-translation. The
system handles both translation directions at the same time. Moreover, it shares the encoder across
languages, in order to generate language independent representations, by exploiting pre-trained
cross-lingual embeddings. This approach performs comparably on WMT’14 English-to-French,
improving by 0.08 BLEU points over Lample et al. (2018a). Furthermore, WMT’14 French-to-
English translation obtains 15.56 BLEU points.

Lample et al. (2018b) combine the previous two approaches. They first learn NMT language models,
as denoising autoencoders, over the source and target languages. Leveraging these, two translation
models are initialized, one in each direction. Iteratively, source and target sentences are translated
using the current translation models and new translation models are trained on the generated pseudo-
parallel sentences. The encoder-decoder parameters are shared across the two languages to share the
latent representations and for regularization, respectively. Their results outperform those of Lample
et al. (2018a); Artetxe et al. (2018), obtaining 25.1 BLEU points on WMT’14 English-to-French
translation.

3 ZERO-SHOT DUAL MACHINE TRANSLATION

Our method for unsupervised machine translation works as follows: We start with a multi-language
NMT model as used in zero-shot translation (Johnson et al., 2016). However, we then train this
model using only monolingual data in a dual learning framework, similar to that proposed by He et al.
(2016).

At least three languages are involved in our setting. Let them be X, Y and Z. Let the pairs Z-X
and Z-Y be the language pairs with available parallel data and X-Y be the target language pair
without. We thus assume to have access to sufficiently large parallel corpora DZ↔X and DZ↔Y ,
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monolingual data DX and DY for training the language models, as well as a small corpus DX↔Y
for the low-resource pair evaluation.

3.1 ZERO-SHOT DUAL TRAINING

A single multilingual NMT model with parameters θ is trained on both DZ↔X and DZ↔Y , in both
directions. We stress that this model does not train on any X-Y sentence pairs. The multilingual NMT
model is capable of generalizing to unseen pairs, that is, it can translate from X to Y and vice versa.
Yet, the quality of the zero-shot pt→es translations, in the best setting (Model 2 in (Johnson et al.,
2016)) is approximately 7 BLEU points lower than the corresponding supervised model.

Using the monolingual data DX and DY , we train two disjoint language models with maximum
likelihood. We implement the language models as multi-layered LSTMs1 that process one word at a
time. For a given sentence, the language model outputs a probability PX(.), quantifying the degree
of fluency of the sentence in the corresponding language X. Similar to He et al. (2016), we define a
REINFORCE-like learning algorithm (Williams, 1992), where the translation model is the policy that
we want to learn. The procedure on one sample is, schematically:

1. Given a sentence x in language X, sample a corresponding translation from the multilingual
NMT model y ∼ Pθ(·|x).

2. Compute the fluency reward, r1 = logPY (y).

3. Compute the reconstruction reward r2 = logPθ(x|y) by using Pθ(·|y) for back-translation.

4. Compute the total reward for y as R = αr1 + (1− α)r2, where α is a hyper-parameter.

5. Update θ by scaling the gradient of the cross entropy loss by the reward R.

The process can be started with a sentence from either language X or Y and works symmetrically.
Notice that this process captures the same main three principles that characterize the unsupervised
approach of Lample et al. (2018b): Initialization, Language Modeling and Back-translation. However,
rather than being combined in an algorithmic procedure, the reinforcement learning formulation
allows to utilize them as components of a composite objective, which is optimized directly. This is a
conceptually simple, flexible formulation. We envision that it may allow, among other things, the
modeling of additional properties of good translations; as long as they can be implemented as reward
functions.

3.2 DETAILS OF THE GRADIENT COMPUTATION

The reward for generating the target y from source x is defined as:

R(y) = α logPY (y) + (1− α) logPθ(x|y) (1)

We want to optimize the expected reward, under the translation model (the policy) Pθ and thus
compute the gradient with respect to the expected reward:

∇θEy|x[R] = ∇θ
∑
y

Pθ(y|x)R(y) =
∑
y

∇θPθ(y|x)R(y) + Pθ(y|x)∇θR(y) (2)

= Ey|x [R(y)∇θ logPθ(y|x) + (1− α)∇θ logPθ(x|y)] (3)

Here we have used the product rule and the identity ∇P = P · ∇ logP . Notice that, the reward
depends (differentiably) on θ, because of the reconstruction term.

Since the gradient is a conditional expectation, one can sample y to obtain an unbiased estimate of
the expected gradient (Sutton et al., 2000):

∇θEy|x[R] ≈
1

K

∑
i

R(yi)∇θ logPθ(yi|x) + (1− α)∇θ logPθ(x|yi) (4)

1https://www.tensorflow.org/tutorials/recurrent
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Figure 1: The zero-shot dual learning procedure (bottom-up, left-to-right). The encoder, on the
forward translation step, receives the source sentence x as input with the target language tag ytag.
The decoder, on the forward translation step, randomly samples a translation y, which is passed to the
language model to generate the fluency reward. At the same time, y is encoded, by the same model,
now with the source language tag xtag. Then the decoder is used to compute the probability of the
original sentence x, conditioning on y. Both encoders and decoders share the same parameters.

Any sampling approach can be used to estimate the expected gradient. He et al. (2016) use beam
search instead of sampling to avoid large variance and unreasonable results. We generate from the
policy by randomly sampling the next word from the predicted word distribution. However, we found
it helpful to make the distribution more deterministic using a low softmax temperature (0.002). In
order to reduce variance further, we compute a baseline through the batch. That is, we compute the
average of each reward through the whole batch and subtract it from each reward. We optimize the
likelihood of the translation system on the monolingual data of both the source and target languages,
while scaling the gradients (equivalently, the loss or the negative likelihood) with the total rewards.

3.3 SYSTEM IMPLEMENTATION

The system is implemented as an extension of the Tensorflow (Abadi et al., 2016) NMT tutorial code2,
and is released as open source. Figure 1 visualizes the training process. The model is optimized
after two calls: one for the forward translation and another for the backward translation. During
the forward translation, the encoder takes a sentence x = ytag, x1, ..., xM , where ytag is the tag of
the target language, and samples a translation output y = y1, y2, ..., yN . At each step the decoder
randomly picks the next word from the current distribution. This word is fed as input at the next
decoding step.

Then, y is used by the language model RNN trained on the target language. The language model is
kept fixed during the whole process. Observe that initially the special begin-of-sentence symbol is
fed, so that we can also obtain the probability for the first word. Here, we use the output logits in
order to calculate the probability of the sample sentence. The first reward is computed as:

2https://www.tensorflow.org/tutorials/seq2seq.
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r1 = logPY (y) =

N∑
i=1

logPY (yi|y1, . . . , yi−1) (5)

In addition, the backward translation call is executed: y, plus the source language tag added in
the beginning, xtag, is encoded to a sequence of hidden state vectors h0, h1, h2, . . . , hN using the
encoder. These outputs are passed to the decoder which is fed with the original source words xi
at each step. The output logits are used to calculate the probability of the source sentence x being
reconstructed from y. This value is used as the second reward:

r2 = logPθ(x|y) =
M∑
i=1

logPθ(xi|x1, . . . , xi−1, h0, h1, . . . , hN ) (6)

4 EXPERIMENTS

We conduct experiments for two language pairs: we evaluate on French↔Spanish in an in-domain
setting, and out-of-domain, on English↔French to allow for comparison with results reported in
recent literature.

Similar to phrase-based systems we need two kinds of data to train our models: parallel and
monolingual. A key factor in the choice of parallel training corpora is the fact that we require
parallel data for the supervised language pairs (Z-X, Z-Y), in order to perform zero-shot translation
(X-Y). In order to be able to better understand both the performance of the initial model and the
effectiveness of our approach, we chose the United Nations Parallel Corpus (UN corpus) (Ziemski
et al., 2016). The fully-aligned sub-corpus is composed of sentences from UN documents, which are
fully aligned across the six official UN languages, i.e. the same sentence is available in 6 languages.
We only use English, Spanish and French.

As the UN corpus is of sufficient size we also use it to collect our monolingual data used for training
the language model. Moreover, official development and test sets are provided which comprise 4,000
sentences each, aligned for all the six languages. This allows for experiments to be evaluated, and
replicated, in all directions.

In addition, we conduct a second line of experiments on English↔French translation in order to
compare our approach with previously reported results. Here, we switch the monolingual data to the
News Crawl dataset from WMT14 but keep the parallel UN corpus for initial training,

4.1 VOCABULARY

Following Johnson et al. (2016), we tokenize the data using an algorithm similar to Byte-Pair-
Encoding (BPE) (Sennrich et al., 2016) in order to efficiently deal with unknown words while still
keeping a limited vocabulary.

We calculate the vocabulary on the parallel data sampled for the translation system. We apply 32k
merge operations which yields a vocabulary of roughly 33k sub-word units, shared across the three
languages. Every model that we train—the language models and the translation systems—relies on
this vocabulary. Three language tags are added at the end of the vocabulary in the translation systems
for the zero-shot purpose (the language model does not use them).

4.2 LANGUAGE MODELS

We sampled 4M random sentences from the parallel UN corpus for each language to train the language
models. In other words, we selected 4M Spanish sentences from the union of the Spanish lines
contained in the English-Spanish and Spanish-French corpora. Similarly, we collected the French
training dataset from the English-French and Spanish-French files. We remove sentences longer than
100 words.

The language model is a 2-layer, 512-unit LSTM, with 65% dropout probability applied on all
non-recurrent connections. It is trained using Stochastic Gradient Descent (SGD) to minimize the
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Phrase-based NMT-0
Parallel en-fr (1M) en-fr (1M)
Data en-es (1M) en-es (1M)

en→es 51.10 51.93
es→en 49.55 51.58
en→fr 39.43 40.56
fr→en 40.44 43.33

Table 1: BLEU scores on the UN corpus test
set. The first column refers to a number of
baseline phrase-based models, the second is
a single multi-lingual NMT model. All mod-
els are trained on the same 1M en-es and 1M
en-fr aligned sentences, used in both direc-
tions. In this setting, NMT-0 is used in the
supervised direction.

NMT-0 Dual-0
Parallel en-fr (1M) en-fr (1M)
Data en-es (1M) en-es (1M)

Monol. es (500k)
Data fr (500k)

es→fr 20.29 36.68
fr→es 19.10 39.19

Table 2: BLEU scores on the UN corpus test
set, using no parallel data for the evaluated
direction. The first column (NMT zero-shot,
same model as in Table 1) refers to our base-
line multilingual model. The Dual-0 model
refers to our approach, applying RL with 500k
monolingual sentences of each language on
top of NMT-0.

negative log probability of the target words. We trained the model for six epochs, halving the learning
rate, initially 1.0, in every epoch starting at the third. The norm of the gradients is clipped at 10. We
used a batch size of 64 and the RNN is unrolled for 35 time steps. The vocabulary is embedded to
512 dimensions. Each language model was trained on a single Tesla-K80 for approximately 60 hours.

Our Spanish language model obtains a wordpiece-level perplexity of 18.919, while the French one
obtains 15.090. Since the perplexities we report are at sub-word unit level, it is not easy to quantify
their quality. For that reason, we use the KenLM implementation (Heafield, 2011) with the same
sample and vocabulary. We obtain test perplexities of 14.76 and 12.84 for the Spanish and French
language models, respectively. While that difference is significant, we do not attempt to improve our
language models as they are sufficient to obtain a coarse fluency metric.

4.3 TRANSLATION SYSTEMS

For the translation systems, we randomly sampled 1M parallel sentences for each language pair. All
sentences are disjoint across language pairs. After sampling, we removed sentences longer than 100
tokens. Development and test sets are used as they are in both cases.

Our base NMT model uses LSTM cells with 1024 hidden units and a 8+1-layer encoder and 8-
layer decoder as described by Wu et al. (2016). The baseline zero-shot NMT was trained on two
Tesla-P100s for approximately one week.

Training with reinforcement learning is performed on 1M monolingual sentences, e.g. 500K each for
Spanish and French for the es-fr model. This data does not include aligned pairs across languages.
They are also disjoint from the ones used to train the base NMT model. The model configuration is
the same as the NMT base model, except for the batch size which needs to be halved for memory
resources, given that we now need to load two language models. We use learning rates γ1,t = 0.0002
and γ2,t = 0.02 and α=0.005, following He et al. (2016). We did not attempt to optimize hyper-
parameters to fine tune the model. Training takes approximately 3 days on two Tesla-P100s.

5 RESULTS

We first report our Spanish↔French results, followed by English↔French.

5.1 SUPERVISED PERFORMANCE

We compute the BLEU score on the official test sets, using the multi-bleu-detok.perl script,
as distributed with Moses (Koehn et al., 2007).3

3http://www.statmt.org/moses/
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For comparison, the first column of Table 1 reports the BLEU scores for a phrase-based translation
system using the same data as our baseline multilingual NMT model. We’ve build these systems
as another baseline using Moses (Koehn et al., 2007) with the common pipeline (MGiza, 5-gram
KenLM (Heafield, 2011), Mert) but without including additional monolingual data to make both
systems comparable.

The second column reports the scores of our multilingual NMT baseline model (NMT-0). The
numbers show that our baseline is a competitive starting point even though the multilingual NMT
system learns four translation directions at the same time. We would like to stress, though, that
our goal is not to achieve good performance on the supervised directions but to have a reasonable
initialization for the reinforcement learning of the unsupervised pairs.

5.2 UNSUPERVISED PERFORMANCE

The first column of Table 2 shows the performance of the baseline multilingual NMT model (NMT-0)
on the low-resource pair (es-fr), which is the main focus of this work. NMT-0 already obtains a
reasonable performance on Spanish and French: 20.29 es→fr and 19.10 fr→es, without having
been trained on a single parallel sentence pair. The zero-shot dual system (Dual-0) starts training
from the parameters of the NMT-0 model. We observe a marked improvement for the zero-shot
translation directions, outperforming the baseline by 16.39 and 20.09 BLEU points for es→fr and
fr→es respectively. By inspection, the translation quality seems reasonable.

5.3 WMT EXPERIMENTS

In this section we evaluate a zero-shot dual system out of domain, on the WMT14 testset, new-
stest2014, which is the standard testset used in the literature. We train a zero-shot dual system by
training on the English-Spanish and Spanish-French UN data. In this setting, English↔French is the
zero-shot pair. Training and model setup is as in the previous experiments. The monolingual data for
the reinforcement learning for the en-fr pair uses 500k monolingual sentences sampled at random
from each language, from the WMT News Crawl corpora, all years, as common in the literature.
Training is also kept the same, except for γ1,t = 0.002 which helped the model converge faster.

Table 3 reports the detokenized BLEU scores computed using sacreBLEU (Post, 2018).

As opposed to the experiments above, the test and RL data are of a different domain from our LM
training data (News vs. UN documents). To overcome this mismatch we train English and French
language models on 10M random sentences of the News Crawl data. These sentences are disjoint
from the RL data. The architecture for the LSTM based LM is mostly kept the same, except for the
LSTM size which we increased to 1500 units. As for the training schedule, we train the models for
30 epochs, decreasing the learning rate (initially 1) by 0.8 every epoch after the 8th. We use the same
vocabulary as in the previous experiments.

For this experiment we implement additional baselines. First of all, we train single translation
direction NMT models for en-es and es-fr on the UN parallel data. These follow the same architecture
and training schedule as the multilingual NMT baseline. The Pivoting column in Table 3 refers to
calculating the en→fr translation of newstest2014 by using the models en→es and es→fr in sequence.
Similarly, for the other direction. As these single-direction models can allocate more parameters to a
translation direction compared to the multi-lingual models, their individual performances are slightly
better than the supervised multi-lingual models scores reported in Table 1, leading to reasonably good
results, despite the domain mismatch.

The Pseudo NMT baseline instead, uses the Pivoting method to generate back-translations of the
monolingual (in-domain) RL data, this way obtaining two synthetic parallel corpora of 500k sentences
each. On this data, using the synthetic data as the source, we perform standard supervised training
of the NMT system. NMT refers to a supervised en-fr model, trained on UN parallel data. As such,
this model is not comparable to the un-supervised models, but shows the significance of domain
mismatch between UN and news data.

As above, NMT-0 refers to the zero-shot model trained on en-es and es-fr UN data and Dual-0 is
using RL with in-domain data on top of NMT-0.
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Pivoting Pseudo NMT NMT NMT-0 Dual-0 NMT-U
Parallel es-en (1M) en-fr (1M) es-en (1M) es-en (1M)
Data (UN) es-fr (1M) es-fr (1M) es-fr (1M)

Parallel en-fr (0.5M)
Synth. (NC)

Monol. en (0.5M) Full
Data (NC) fr (0.5M)

en→fr 18.69 20.24 24.33 21.29 24.93 24.5/ 25.1
fr→en 16.86 21.92 24.52 22.89 25.34 23.7/24.2

Table 3: Comparison with other approaches. Numbers are BLEU scores on WMT newstest2014.
Pivoting refers to translating the testset using the fr-es and es-en single direction NMT models, while
Pseudo-NMT refers to the NMT models trained on synthetic data on the source side, obtained by
back-translating the RL data using the single direction NMT models. NMT refers to the model
trained on parallel UN en-fr data, this is not an unsupervised model. NMT-0 refers to the zero-shot
multilingual NMT baseline, trained on en-es and es-fr parallel UN data. Dual-0 reports the results
of our approach on top of NMT-0. For NMT-U we cite results from Lample et al. (2018b): the
first number refers to the result of the LSTM-based model, while the second is the result of the
Transformers-based model. NC refers to the monolingual News Crawl dataset.

On the WMT14 testset we can compare against the results of the unsupervised MT (NMT-U, in
Table 3) proposed in (Lample et al., 2018b). Specifically, we report the performance of comparable
NMT architectures, both LSTM and Transformers (Vaswani et al., 2017). Dual-0 outperforms the
baselines and seems comparable to NMT-U on en→fr, while on fr→en Dual-0 performs best. Lample
et al. (2018b) show that phrase-based, or combined phrase-based/neural, methods outperform neural
architectures for unsupervised MT (28.11 for en→fr and 27.68 for fr→en. We are investigating ways
of including phrase-based information in our zero-shot dual framework.

We notice that Dual-0 outperforms supervised NMT model. Even though the supervised model is
trained on parallel en-fr UN data, the testset is out of domain. This means that our approach not only
strengthens the zero-shot translation direction, but also works as a domain adaptation approach.

6 CONCLUSION

We propose an approach to zero-shot machine translation between language pairs for which there
is no aligned data. We build upon a multilingual NMT system (Johnson et al., 2016) by applying
reinforcement learning, using only monolingual data on the zero-shot translation pairs, inspired by
dual learning (He et al., 2016).

Experiments show that this approach outperforms the multilingual NMT baseline model for unsu-
pervised language pairs, on in-domain evaluations in the UN corpus. In out-of-domain evaluation
we show that the zero-shot dual approach performs as well or better than the state of the art for
unsupervised MT, for comparable neural architectures, including Transformers.

These results show that this is a promising framework for machine translation for low-resource
languages, given that aligned data already exists for numerous other language pairs. This framework
seems particularly promising in combination with techniques like bridging, given the abundant data,
to and from English and other popular languages. For future work, we would like to understand
better the relation between model capacity, number of languages and language families, to optimize
information sharing. Exploiting more explicitly cross-language generalization; e.g., in combination
with recent unsupervised methods for embeddings optimization (Lample et al., 2018a; Artetxe et al.,
2018), seems also promising. Finally, we would like to extend the reinforcement learning approach
to include other reward components; e.g., linguistically motivated.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pp. 265–283, 2016.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. Unsupervised neural machine
translation. In ICLR, 2018.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and
translate. In ICLR, 2015.

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An
actor-critic algorithm for sequence prediction. In ICLR, 2017.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In EMNLP, 2014.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
Word translation without parallel data. In ICLR, 2018.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tieyan Liu, and Wei-Ying Ma. Dual learning
for machine translation. In Advances in Neural Information Processing Systems, pp. 820–828,
2016.

Kenneth Heafield. Kenlm: Faster and smaller language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation, pp. 187–197. Association for Computational
Linguistics, 2011.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using very large target
vocabulary for neural machine translation. In ACL-IJCNLP, 2014.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil
Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. Google’s multilingual neural
machine translation system: enabling zero-shot translation. arXiv preprint arXiv:1611.04558,
2016.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. Moses: Open source
toolkit for statistical machine translation. In Proceedings of the 45th annual meeting of the ACL
on interactive poster and demonstration sessions, pp. 177–180. Association for Computational
Linguistics, 2007.

Guillaume Lample, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised machine translation
using monolingual corpora only. In ICLR, 2018a.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. Phrase-
based & neural unsupervised machine translation. In Proceedings of EMNLP, 2018b.

Matt Post. A call for clarity in reporting bleu scores. arXiv preprint arXiv:1804.08771, 2018.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In ACL, 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pp. 1057–1063, 2000.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30, pp. 5998–6008. 2017.

9



Under review as a conference paper at ICLR 2019

R.J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3-4), 1992.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

Yingce Xia, Tao Qin, Wei Chen, Jiang Bian, Nenghai Yu, and Tie-Yan Liu. Dual supervised learning.
In ICML, 2017.

Michal Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen. The united nations parallel corpus
v1. 0. In LREC, 2016.

10


	Introduction
	Related work
	Zero-shot dual machine translation
	Zero-shot dual training
	Details of the gradient computation
	System implementation

	Experiments
	Vocabulary
	Language models
	Translation systems

	Results
	Supervised performance
	Unsupervised performance
	WMT experiments

	Conclusion

