Towards an argumentation-based approach to explainable planning

Anna Collins, Daniele Magazzeni and Simon Parsons
Department of Informatics, King’s College London
{anna.collins,daniele.magazzeni,simon.parsons } @kcl.ac.uk

Abstract

Providing transparency of Al planning systems is crucial for
their success in practical applications. In order to create a
transparent system, a user must be able to query it for expla-
nations about its outputs. We argue that a key underlying prin-
ciple for this is the use of causality within a planning model,
and that argumentation frameworks provide an intuitive rep-
resentation of such causality. In this paper, we discuss how ar-
gumentation can aid in extracting causalities from plans and
models, and how they can create explanations from them.

1 Introduction

Explainability of AI decision-making is crucial for increas-
ing trust in Al systems, efficiency in human-Al teaming,
and enabling better implementation into real-world settings.
Explainable AI Planning (XAIP) is a field that involves ex-
plaining Al planning systems to a user. Approaches to this
problem include explaining planner decision-making pro-
cesses as well as forming explanations from the models. Past
work on model-based explanations includes an iterative ap-
proach (Smith 2012) as well as using explanations for more
intuitive communication with the user (Fox, Long, and Mag-
azzeni 2017). With respect to human-Al teaming, the more
helpful and illustrative the explanations, the better the per-
formance of the system overall.

Research into the types of questions and motivations a
user might have includes work with contrastive questions
(Miller 2018). These questions are structured as ‘Why F
rather than G?’, where F is some part (i.e. action(s) in a
plan) of the original solution and G is something the user
imagines to be better. While contrastive questions are use-
ful, they do not consider the case when a user doesn’t have
something else in mind (i.e. G) or has a more general ques-
tion about the model. This includes the scenario in which the
user’s understanding of the model is incomplete or inaccu-
rate. Research in the area of model reconciliation attempts
to address this knowledge gap (Chakraborti et al. 2017).

More broadly, questions such as ‘Why A?’, where A is an
action in the plan, or ‘How G?’, where G is a (sub)goal, must
be answerable and explainable. Questions like these are in-
herently based upon definitions held in the domain related

to a particular problem and solution. The user’s motivation
behind such questions can vary: he could think the action
is unnecessary, be unsure as to its effects, or think there is
a better option. Furthermore, questions regarding particular
state information may arise, such as ‘Why A here?’ and ‘Why
can’t A go here?’. For these, explanations that include rele-
vant state information would vastly improve their efficiency
when communicating with a user (Miller 2018). This is es-
pecially true for long plans, when a user does not have ac-
cess to a domain, or the domain is too complex to be eas-
ily understood. Thus, extracting relevant information about
action-state causality from the model is required.

In the space of planning, causality underpins a variety
of research areas including determining plan complexity
(Giménez and Jonsson 2008) and heuristics (Helmert 2004).
Many planners also can create causal graph visualizations
of plans for a user to interact with (Pearl 2014). The general
structure of causality in planning is ‘action causes state’. In-
directly, this can be seen as ‘action enables action’, where
the intermediary state is sufficient for the second action to
occur. Hilton describes different ‘causal chains’ which mir-
ror the types of causality found in planning; action-state
causality can be identified as either a ‘temporal’ or ‘unfold-
ing’ chain, while action-action causality is similar to an ‘op-
portunity chain’(Hilton, McClure, and Slugoski 2005). For
now, we will focus on these two types of general causality.

To represent the causality of a model, argumentation is
a good candidate; as detailed by (Bochman 2005), argu-
mentation frameworks and causal models can be viewed as
two versions of one entity. A recent related work uses ar-
gumentation for explainable scheduling (Cyras et al. 2019).
We consider an ASPICt (Modgil and Prakken 2013) style
framework with defeasible rules capturing the relationships
between actions in a plan and strict rules capturing action-
state causality. This structure allows more than a causal rep-
resentation of a plan; it allows multiple types of causality to
be distinguished and different causal ‘chunks’ to be created
and combined to be used as justification for explanations.

In this paper we present an initial approach for using ar-
gumentation to represent causality, which can then be used
to form more robust explanations. In the following sections,
a motivating scenario will be introduced and used to show-
case our current approaches of abstracting causalities and
state information into argumentation frameworks.

Anna Collins

2 Motivating Example

Consider a simple logistics scenario in which three trucks
are tasked with delivering three packages to different loca-
tions. The user analyzing the planner output has the plan as
well as a general, non-technical understanding of the model
and the goals of the problem; the user knows that trucks can
move between certain waypoints that have connecting roads
of differing lengths, there are refueling stations at waypoints
B and FE, and some subgoals of the problem are to have
package 1 delivered to waypoint C, package 2 delivered to
waypoint G, and package 3 delivered to waypoint D. The
user is also aware that the three trucks and three packages
are at waypoint A in the initial state. A basic map of the
domain and plan are shown in Figures 1 and 2, respectively.

OLECY
- @5@

o0 3

'”4@ NO

Figure 1: Example Domain Map

0.000: (load_truck tl pl) [1.000]
0.000: (load_truck t2 p3) [1.000]
0.000: (drive_truck t3 wpB) [2.000]
1.001: (load_truck tl p2) [1.000]
1.001: (drive_truck t2 wpD) [3.000]
2.001: (drive_truck tl wpC) [4.000]
2.001: (refuel_truck t3) [5.000]
4.002: (unload_truck t2 p3) [1.000]
5.002: (unload_truck tl pl) [1.000]
6.003: (drive_truck tl wpD) [2.000]
8.004: (drive_truck tl wpE) [2.000]
10.005: (refuel_truck tl) [5.000]
15.006: (drive_truck tl wpF) [3.000]
18.007: (drive_truck tl wpG) [3.000]
21.008: (unload_truck tl p2) [1.000]

Figure 2: Example Plan

Even with a simple and intuitive problem such as this,
questions may arise which cannot be answered trivially. One
such question is ‘Why drive truck 1 to waypoint E?’. Ad-
dressing this question requires the causal consequence of ap-
plying the action; in other words, how does driving truck I
to waypoint E help in achieving the goal(s)?

As discussed previously, tracking state information
throughout a plan can be useful for explanations. This is es-
pecially true when values of state variables are not obvious
at any given point in a plan and their relevance to a ques-
tion is not known. A question such as ‘Why drive truck 3 to
waypoint B?’ has this property. These two questions will be
addressed in the following sections.

3 Background on Argumentation

As mentioned above, in this paper we will make use
of ASPICT as the underlying argumentation system from
which explanations are constructed. However, what we are
suggesting is not limited to ASPIC*; we can imagine using
most formal argumentation systems to reason in this way.
For a full description of ASPIC* see (Modgil and Prakken
2013). In this paper we only make use of the ability to con-
struct arguments, and so that is the only aspect of the system
that we describe.

We start with a language £, closed under negation. A rea-
soner is then equipped with a set Rules of strict rules,
denoted ¢1,...,¢, — ¢, and defeasible rules, denoted
P1y...,0n = ¢, Where @1, ..., ¢,, ¢ are all elements of
L. A knowledge base A is then a set of elements K from
L and a set Rules. From A it is possible to construct a set
of arguments A(A), where an argument A is made up of
some subset of K, along with a sequence of rules, that lead
to a conclusion. Given this, Prem(-) returns all the premises,
Conc(-) returns the conclusion and TopRule(-) returns the
last rule in the argument. An argument A is then:

e ¢ if ¢ € K with: Prem(A) = {¢}; Conc(4) = ¢;
Sub(A) = {A}; and TopRule(A) = undefined.

e Ay,..., A, — ¢ if A;, 1 < i < n, are arguments
and there exists a strict rule of the form Conc(A;),...,
Conc(A,) — ¢ in Rules. Prem(A) = Prem(A4;) U
... UPrem(4,); Conc(A) = ¢; and TopRule(4) =
Conc(Ay),...,Conc(A,) — ¢.

e Ay,... A, = ¢if A;, 1 < i < n, are arguments and
there exists a defeasible rule of the form Conc(A4,),...
Conc(A,) = ¢ in Rules. Prem(A) = Prem(4;)
... U Prem(4,); Conc(A) = ¢; and TopRule(A)
Conc(Ay),...,Conc(4,) = ¢.

I C

Then, given K = {a;b} and Rules = {a — ¢;b,c = d},
we have the following arguments:

Al a

As: b

Az : A1 —c
Ay Ay, A3 =d

When applied to planning, these arguments define a sub-
section of a causal chain, as will be described below.

4 Tracing Causality

In order to utilize causality in explanations, the causal links
between actions in a plan need to be extracted and abstracted
into a framework. This process is planner-independent, so it
requires only the plan, problem, and domain as inputs. An
algorithm is used to extract the causalities which then form
a knowledge base of causal links. This can then be used by
an argumentation engine to construct arguments represent-
ing the causal ‘chunks’ in a plan. From this, questions of
the forms ‘Why A?’ and ‘How G?’ can be addressed. This
process is described in the following sections.

4.1 Extracting causalities from a plan

To extract causal relationships between actions in a plan, an

algorithm similar to the one used in (Chrpa and Bartdk 2008)

for detecting action dependencies is utilized:

1. Finds connections between one action’s effects and an-
other’s preconditions from the domain to form a knowl-
edge base. In general terms we can think of these chunks
as being statements in some logical language of the form:

a=b
b,c=d
which denote the statements ‘a enables b’ and ‘b and ¢
together enable d’ where a, b, ¢, d are actions in a plan.

2. Finds the subgoals, if any, that are satisfied by these causal
links

Thus, part of our logistics example could be translated into
the causal knowledge base:

((load truck t1 pl),
(drive truck t1 wpC)) = (unload truck t1 pl)
(drive truck t1 wpC') = (drive truck t1 wpD)
(unload truck t1 pl) = pl at wpC
(drive truck t1 wpD) = (drive truck t1 wpE)

4.2 Forming arguments
Given a knowledge base, the argumentation engine can con-
struct a sequence of arguments with defeasible rules:
A; :(load truck t1 pl)
As :(drive truck t1 wpC)
As A1, Ay = (unload truck t1 pl)
Ay 1Az = pl at wpC
As :Ag = (drive truck t1 wpD)
Ag :As = (drive truck t1 wpE)
Az :Ag = (refuel truck t1)
Ag A7 = (drive truck t1 wpF)
Ag :Ag = (drive truck t1 wpG)
Ay :Ag = (unload truck t1 p2)
Aq1 A1 = p2 at wpG
These summarize the causal structure of part of the plan (i.e.
a ‘causal chunk’ as defined in Secion 4.3), summarized in
argument A;1, which can then be presented to a user who

is seeking explanations. A visualization of these arguments
can be seen in Figure 3.

4.3 Using causal chunks for explanation

We define the notion of a causal ‘chunk’ as any subsection(s)
of the causal chain(s) extracted from the plan or model
and then combined. Intuitively, these chunks can focus on
one ‘topic’ (e.g. state variable, object instance) to provide a
higher-level abstraction of causality rather than just the in-
dividual causal links. The argument A;; which represents
such a causal chunk shows only the action-action causalities

A | Ay | A [

- ®+@ @00

Figure 3: [is the initial state, G is the goal state, a, b, c,d
are (not necessarily sequential) actions in a plan, §; are the
defeasible rules from the knowledge base, and A;, As, A3
are arguments formed from these actions and rules.

(i.e. from just one causal chain) involving the object truck 1.
These chunks are created by searching through the Rules
of the framework for those pertaining to a specific ‘topic’.

Given arguments such as A;;, we propose two methods
of structuring explanations. The first method is allowing the
user to engage the system in a dialogue. For our example,
the question, ‘Why e? where e is the action of driving truck
1 to waypoint E could be used to query the system:

why e
Following work such as (Parsons, Wooldridge, and Amgoud
2003), the system replies to this query by building an ar-
gument for e, in this case Ag, and using this to provide a
suitable response, which might be by returning Conc(A4s),
since A5 = e. Thus the system could reply with:

d,which leads toe
where d is drive truck t1 wpD. The user could then continue
to unpack the causal chunk by asking:

why d
and so on. This would provide the user with the causalities
which enabled action e to be applied. The same could be
done using a forward approach where the argument Ag is
expanded until a subgoal is reached, if possible (e.g. A11).
The user can then ask:

why e
and the system responds with:

e leads to f

asin Ay : Ag = f. Iteratively, this would show how e leads
to some goal or subgoal. Reversing this process will also
explain how a goal is reached.

The second method of structuring explanations is detailed
in Section 5.2, and can be applied to this example similarly.

5 Extracting State Information

Using a similar method as above, causalities held within the
state space of the plan are extracted and represented as a

knowledge base. An algorithm is used that iterates through
the effects of actions from a plan and extracts the state vari-
ables they alter. They can then be used to answer questions
such as ‘Why A here?’ and ‘Why can’t A go here?’. In gen-
eral terms, we define these dependencies as being statements
in some logical language of the form:

0, Y0, 20
a — Az,
b— Ayb; b— Az

L, Yf,2f

which denote the statements ‘a causes Az,’ and ‘b causes
Ay, and Az.’. Here, a, b are actions in the plan, and x, y, z
are state variables. The x, yo, 29 denote the values of those
variables in the initial state while x ¢, yr, zy denote the final
values in the goal state; Az, denotes the change in x after
applying action a.

Applying this to our logistics example and the question,
‘Why drive truck 3 to waypoint B?’, these strict rules are
relevant:

t3 fuelis 2
(drive truck t3 wpB) — t3 fuel decrease 2
(refuel truck t3) — t3 fuel increase 25
t3 fuel is 25

From these, it is clear the truck’s fuel level is too low in the
initial state to go anywhere besides waypoint B (see Figure
1). However, it is not clear why the truck does not just stay
put. Alone, these rules do not provide a full explanation, but
they can be added to the action-action causal chains for more
complete explanations.

5.1 Combining different forms of causality

When used in conjunction, the causal traces and opportunity
traces form a strong basis of justification for an explanation
(see Figure 4 for a visual representation). Using the example
from before, the relevant defeasible rules from the causal
chain are:

(drive truck t3 wpB) = (refuel truck t3)
(refuel truck t3) = t3 fuel >5

where the conclusion of the second rule is a subgoal of the
problem, perhaps previously unknown to the user. That is,
because the problem requires all trucks to have a minimum
amount of fuel at the end, truck 3 had to refuel but could not
deliver any packages due to its low initial fuel amount. Thus,
combining arguments from both types of causal chains more
aptly answers this question.

A method for seamlessly creating explanations from this
structure is an intended future work. For now, it is possible
to extract both the defeasible rules and strict rules governing
the causal effects related to a specific topic and present them
to a user. How to determine which rules are relevant to a
specific user question and how to combine the rules to form
higher-level causal chunks are ongoing works.

One possible method of creating relevant causal chunks
is to extract all rules related to a specific ‘topic’ (e.g. state

Figure 4: Rules from both the plan layer (blue) and the
model layer (yellow) are combined to form the causal
‘chunks’.

variable). For the variable ‘t3 fuel’, all actions which alter
it will be extracted along with any actions that enable the
altering actions from the defeasible rules. Additionally, any
(sub)goals containing ‘t3 fuel’ will be extracted. Together,
these form a chunk representing the causes of changes to
‘t3 fuel’ as well as its relationship to the (sub)goals. The
arguments below represent the causal ‘chunk’:

Aq o t3 fuelis?2

Ay :A1 = ((drive truck t3 wpB) — t3 fuel decrease 2)
As Ay = ((refuel truck t3) — t3 fuel increase 25)
Ay Az =3 fuel >5

where the conclusion of Aj is a subgoal of the problem.

5.2 More forms of explanation

When unpacked iteratively, the arguments in the causal
chunk centred on ‘t3 fuel” would give a similar output expla-
nation as in the example in Section 4.3. For example, a user
asking the question ‘Why b?’ where b is the action (drive
truck 3 to waypoint B) would either receive the response:

3 fuel is 2 enables b
or the response:
b causes 13 fuel decrease 2 and enables ¢

if using a forward chaining approach, where c is the premise
of the conclusion of A, (refuel truck t3). This process would
continue until the subgoal ¢3 fuel >5 is reached. However,
identifying what state variables are relevant given a user
question is not trivial. The question ‘Why drive truck 3 to
waypoint B?’ has no mention of the truck’s fuel, so its rele-
vance must be deduced from the plan, problem and domain.

Another method of providing explanations is through a
graph structure, as depicted in Figure 5. Given a query, the
relevant causal chunks would be identified and represented
in the graph with individual actions and state changes as
nodes and the causal rules between them as edges. This ap-
proach could also help explain question of the form, Why

can’t A go here?, as inapplicable actions (ones not in the
plan) can be shown. Developing a robust system such as this
is important future work.

I: G:
Drive Truck3to| _ _ » Refuel
Waypoint B Truck 3
Truck 3
Fuel>5
Truck3 _ 7 N/ Drive Truck 3 to
Fuel is 2 \‘ Waypoint C Truck 3 Fuel
| increase 25
AY
~ 3\ /_ Drive Truck 3 to
Waypoint D

Figure 5: An example graph with the queried action in blue
and nodes contained in the ‘t3 fuel’ chunk in orange, and /
and G the initial and goal states. Dashed edges denote de-
feasible rules; solid edges denote strict rules.

6 Discussion

We acknowledge that this is a preliminary step and more
work is required to expand on the ideas presented in this
paper. One such future work involves defining exactly what
questions, which range from action-specific to model-based,
can be answered and explained using our approach. Also,
how these questions are captured from a user is an open
question. The query, ‘Why didn’t truck 3 deliver any pack-
ages?’ can be answered using the causal information cap-
tured in the framework, but how one converts this question
to a form that the system understands requires further re-
search. Potential methods for communicating a user ques-
tion include a dialogue system or Natural Language Process-
ing techniques.

Along with expanding the set of questions that can be ad-
dressed, extensions to the argumentation framework itself
should be considered. Better methods for creating causal
‘chunks’ for specific user questions are needed. It may be
advantageous to use argumentation schemes to help identify
relevant topics of chunks and which causal chains should
be included from the framework. This relates to the idea of
‘context’ and identifying the motivation of a question. If the
system can be more precise in extracting the relevant infor-
mation, the explanations themselves will be more effective.

Related to this is the need to explore other ways of pre-
senting an explanation to a user. Research into the efficacy of
explanations and how to properly assess the effectiveness of
the explanations in practice are future areas of research, and
will require user studies. Our starting point will be the ap-
proach outlined in Section 4.3 which has been shown empir-
ically to be effective in contexts such as human-robot team-
ing (Sklar and Azhar 2015).

7 Conclusion

In this paper we proposed an initial approach to explainable
planning using argumentation in which causal chains are ex-
tracted from a plan and model and abstracted into an argu-
mentation framework. Our hypothesis is that this allows ease
of forming and communicating explanations to a user. Fur-
thermore, causal ‘chunks’ can be created by combining rel-

evant causal links from the chains which explain the causal-
ities surrounding one ‘topic’. We believe these help with
making more precise explanations, and that chunks can be
used to provide hierarchical explanations. Overall, the ap-
proach is a first step towards exploiting the intuitive func-
tionality of argumentation in order to use causality for ex-
planations.

Acknowledgements This work was partially supported
by EPSRC grant EP/R033722/1, Trust in Human-Machine
Partnership, and by a PhD studentship from the Faculty of
Natural and Mathematical Sciences at King’s College Lon-
don.

References

Bochman, A. 2005. Propositional argumentation and causal
reasoning. In IJCAI

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAL

Chrpa, L., and Bartdk, R. 2008. Towards getting domain
knowledge: Plans analysis through investigation of actions
dependencies. In International Florida Artificial Intelli-
gence Research Society Conference.

Cyras, K.; Letsios, D.; Misener, R.; and Toni, F
2019. Argumentation for explainable scheduling. In
https://arxiv.org/abs/1811.05437.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Ex-
plainable planning. IJCAI workshop on Explainable Al
abs/1709.10256.

Giménez, O., and Jonsson, A. 2008. The complexity of
planning problems with simple causal graphs. J. Artif. Intell.
Res. 31:319-351.

Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS.

Hilton, D. J.; McClure, J. L.; and Slugoski, B. R. 2005.
The course of events: Counterfactuals, causal sequences and
explanation. In The Psychology of Counterfactual Thinking.
Miller, T. 2018. Contrastive explanation: A structural-model
approach. arXiv preprint arXiv:1811.03163.

Modgil, S., and Prakken, H. 2013. A general account
of argumentation with preferences. Artificial Intelligence
195:361-397.

Parsons, S.; Wooldridge, M.; and Amgoud, L. 2003. Proper-
ties and complexity of formal inter-agent dialogues. Journal
of Logic and Computation 13(3):347-376.

Pearl, J. 2014. Graphical models for probabilistic and causal
reasoning. In Computing Handbook, Third Edition: Com-
puter Science and Software Engineering. 44: 1-24.

Sklar, E. 1., and Azhar, M. Q. 2015. Argumentation-based
dialogue games for shared control in human-robot systems.
Journal of Human-Robot Interaction 4(3):120-148.

Smith, D. 2012. Planning as an iterative process. In AAAL

