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Abstract

We present an effective blind image deblurring method

based on a data-driven discriminative prior. Our work is

motivated by the fact that a good image prior should fa-

vor clear images over blurred ones. In this work, we for-

mulate the image prior as a binary classifier which can be

achieved by a deep convolutional neural network (CNN).

The learned prior is able to distinguish whether an input im-

age is clear or not. Embedded into the maximum a posterior

(MAP) framework, it helps blind deblurring in various sce-

narios, including natural, face, text, and low-illumination

images. However, it is difficult to optimize the deblur-

ring method with the learned image prior as it involves a

non-linear CNN. Therefore, we develop an efficient numer-

ical approach based on the half-quadratic splitting method

and gradient decent algorithm to solve the proposed model.

Furthermore, the proposed model can be easily extended to

non-uniform deblurring. Both qualitative and quantitative

experimental results show that our method performs favor-

ably against state-of-the-art algorithms as well as domain-

specific image deblurring approaches.

1. Introduction

Blind image deblurring is a classical problem in image

processing and computer vision, which aims to recover a

latent image from a blurred input. When the blur is spatially

invariant, the blur process is usually modeled by

B = I ⊗ k + n, (1)

where ⊗ denotes convolution operator, B, I, k and n de-

note the blurred image, latent sharp image, blur kernel, and

noise, respectively. The problem (1) is ill-posed as both I
and k are unknown, and there exist infinite solutions. To

∗Corresponding author.

(a) Blurred image (b) Xu et al. [38]

(c) Pan et al. [27] (d) Ours

Figure 1. A deblurred example. We propose a discriminative im-

age prior which is learned from a deep binary classification net-

work for image deblurring. For the blurred image B in (a) and

its corresponding clear image I , we can get
‖∇I‖

0

‖∇B‖
0

= 0.85,

‖D(I)‖
0

‖D(B)‖
0

= 0.82 and
f(I)
f(B)

= 0.03, where ∇, D(·), ‖ · ‖0 and

f(·) denote the gradient operator [38], the dark channel [27], L0

norm [27, 38] and our proposed classifier, respectively. The prior

is more discriminative than the hand-crafted priors, thus leading

to better deblurred results. (A larger ratio indicates that the prior

responses are closer and cannot be well separated.)

tackle this problem, additional constraints and prior knowl-

edge on both blur kernels and images are required.

The main success of the recent deblurring methods

mainly comes from the development of effective image

priors and edge-prediction strategies. However, the edge-

prediction based methods usually involve a heuristic edge

selection step, which do not perform well when strong

edges are not available. To avoid the heuristic edge selec-

tion step, numerous algorithms based on natural image pri-
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ors have been proposed, including normalized sparsity [16],

L0 gradients [38] and dark channel prior [27]. These al-

gorithms perform well on generic natural images but do

not generalize well to specific scenarios, such as text [26],

face [25] and low-illumination images [11]. Most of the

aforementioned image priors have a similar effect that they

favor clear images over blurred images, and this property

contributes to the success of the MAP-based methods for

blind image deblurring. However, most priors are hand-

crafted and mainly based on limited observations of specific

image statistics. These algorithms cannot be generalized

well to handle various scenarios in the wild. Thus, it is of

great interest to develop a general image prior which is able

to deal with different scenarios with the MAP framework.

To this end, we formulate the image prior as a binary

classifier which is able to distinguish clear images from

blurred ones. Specifically, we first train a deep CNN to clas-

sify blurred (labeled as 1) and clear (labeled as 0) images.

To handle arbitrary image sizes in the coarse-to-fine MAP

framework, we adopt a global average pooling layer [21] in

the CNN. In addition, we use a multi-scale training strategy

to make the classifier more robust to different input image

sizes. We then take the learned CNN classifier as a regu-

larization term w.r.t. latent images in the MAP framework.

Figure 1 shows an example that the proposed image prior is

more discriminative (i.e., has a lower ratio between the re-

sponse of blurred and clear images) than the state-of-the-art

hand-crafted prior [27].

While the intuition behind the proposed method is

straightforward, in practice it is difficult to optimize the de-

blurring method with the learned image prior as a non-linear

CNN is involved. Therefore, we develop an efficient numer-

ical algorithm based on the half-quadratic splitting method

and gradient decent approach. The proposed algorithm con-

verges quickly in practice and can be applied to different

scenarios as well as non-uniform deblurring.

The contributions of this work are as follows:

• We propose an effective discriminative image prior

which can be learned by a deep CNN classifier for

blind image deblurring. To ensure that the proposed

prior (i.e., classifier) can handle the image of differ-

ent sizes, we use the global average pooling and multi-

scale training strategy to train the proposed CNN.

• We use the learned classifier as a regularization term of

the latent image in the MAP framework and develop an

efficient optimization algorithm to solve the deblurring

model.

• We demonstrate that the proposed algorithm performs

favorably against the state-of-the-art methods on both

the widely-used natural image deblurring benchmarks

and domain-specific deblurring tasks.

• We show the proposed method can be directly gener-

alized to the non-uniform deblurring.

2. Related Work

Recent years have witnessed significant advances in sin-

gle image deblurring. We focus our discussion on recent

optimization-based and learning-based methods.

Optimization-based methods. State-of-the-art optimiza-

tion based approaches can be categorized to implicit and

explicit edge enhancement methods. The implicit edge en-

hancement approaches focus on developing effective image

priors to favor clear images over blurred ones. Representa-

tive image priors include sparse gradients [7, 19, 36], nor-

malized sparsity [16], color-line [17], L0 gradients [38],

patch priors [32], and self-similarity [24].

Although these image priors are effective for deblurring

natural images, they are not able to handle specific types of

input such as text, face and low-illumination images. The

statistics of these domain-specific images are quite different

from natural images. Thus, Pan et al. [26] propose the L0-

regularized prior on both image intensity and gradients for

deblurring text images. Hu et al. [11] detect the light streaks

in extremely low-light images for estimating blur kernels.

Recently, Pan et al. [27] propose a dark channel prior for

deblurring natural images, which can be applied to face, text

and low-illumination images as well. However, the dark

channel prior is less effective when there is no dark pixel in

the image. Yan et al. [40] further propose to incorporate a

bright channel prior with the dark channel prior to improve

the robustness of the deblurring algorithm.

While those algorithms demonstrate state-of-the-art per-

formance, most priors are hand-crafted and designed un-

der limited observation. In this work, we propose to learn

a data-driven discriminative prior using a deep CNN. Our

prior is designed from a simple criterion without any spe-

cific assumption: the prior should favor clear images over

blurred images under various of scenarios.

Learning-based methods. With the success of deep

CNNs on high-level vision problems [8, 22], several ap-

proaches have adopted deep CNNs in image restoration

problems, including super-resolution [6, 14, 18], denois-

ing [23] and JPEG deblocking [5]. Hradiš et al. [10] pro-

pose an end-to-end CNN to deblur text images. Follow-

ing the MAP-based deblurring methods, Schuler et al. [29]

train a deep network to estimate the blur kernel and then

adopt a conventional non-blind deconvolution approach to

recover the latent sharp image. Sun et al. [31] and Yan and

Shao [39] parameterize the blur kernels and learn to esti-

mate them via classification and regression, respectively.

Several approaches train deep CNNs as an image prior or

denoiser for non-blind deconvolution [30, 42, 41], which

cannot be directly applied in blind deconvolution. Re-

cently, Chakrabarti [3] trains a deep network to predict the

Fourier coefficients of a deconvolution filter. Neverthe-
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Layers Filter size Stride Padding

CR1 3×3×1×64 1 1

CR2 3×3×64×64 1 1

M3 2×2 2 0

CR4 3×3×64×64 1 1

M5 2×2 2 0

CR6 3×3×64×64 1 1

M7 2×2 2 0

CR8 3×3×64×64 1 1

C9 3×3×64×1 1 1

G10 (M/8)×(N/8) 1 0

S11 - - -

(a) Network architecture (b) Network parameters

Figure 2. Architecture and parameters of the proposed binary classification network. We adopt a global average pooling layer instead

of a fully-connected layer to handle different sizes of input images. CR denotes the convolutional layer followed by a ReLU non-linear

function, M denotes the max-pooling layer, C denotes the convolutional layer, G denotes the global average pooling layer and S denotes

the sigmoid non-linear function.

less, the performance of deep CNNs on blind image de-

blurring [1, 28] still falls behind conventional optimization-

based approaches on handling large blur kernels. In our

work, we take advantage of both conventional MAP-based

framework and the discriminative ability of deep CNNs. We

embed the learned CNN prior into the coarse-to-fine MAP

framework for solving the blind image deblurring problem.

3. Learning a Data-Driven Image Prior

In this section, we describe the motivation of develop-

ing the proposed image prior, network design, loss function,

and implementation details of our binary classifier.

3.1. Motivation

The MAP-based blind image deblurring methods typi-

cally solve the following problem:

min
I,k

‖I ⊗ k −B‖
2
2 + γ ‖k‖

2
2 + p(I). (2)

The key to the success of this framework lies on the latent

image prior p(I), which favors clear images over blurred

images when minimizing (2). Therefore, the image prior

p(I) should have lower responses for clear images and

higher responses for blurred images. This observation mo-

tivates us to learn a data-driven discriminative prior via bi-

nary classification. We train a deep CNN by predicting

blurred images as positive (labeled as 1) and clear images

as negative (labeled as 0) samples. Compared with state-of-

the-art latent image priors [38, 27], the assumption of our

prior is simple and straightforward without using any hand-

crafted functions or assumptions.

3.2. Binary classification network

Our goal is to train a binary classifier via a deep CNN.

The network takes an image as the input and outputs a single

scalar, which represents the probability of the input image

to be blurred. As we aim to embed the network as a prior

into the coarse-to-fine MAP framework, the network should

be able to handle different sizes of input images. There-

fore, we replace the commonly used fully-connected layers

in classifiers with the global average pooling layer [21]. The

global average pooling layer converts various sizes of fea-

ture maps into a single scalar before the sigmoid layer. In

addition, there is no additional parameter in the global aver-

age pooling layer, which alleviates the overfitting problem.

Figure 2 shows the architecture and detail parameters of our

binary classification network.

3.3. Loss function

We denote the input image by x and the network param-

eters to be optimized by θ. The deep network learns a map-

ping function f(x; θ) = P (x ∈ Blurred|x) that predicts the

probability of the input image to be blurred. We optimize

the network via the binary cross entropy loss function:

L(θ) = −
1

N

N
∑

i=1

ŷi log(yi) + (1− ŷi) log(1− yi), (3)

where N is the number of training samples in a batch, yi =
f(xi; θ) is the output of the classifier and ŷi is the label of

the input image. We assign ŷ = 1 for blurred images and

ŷ = 0 for clear images.

3.4. Training details

We sample 500 clear images from the dataset of Huiskes

and Lew [13], including natural, manmade scene, face, low-

illumination and text images. We use the method of Borac-

chi and Foi [2] to generate 200 random blur kernels with the

size ranging from 7 × 7 to 51 × 51. We synthesize blurred

images by convolving the clear images with blur kernels and

adding a Gaussian noise with σ = 0.01. We generate a to-

tal of 100,000 blurred images for training. During training,

we randomly crop 200× 200 patches from the training im-

ages. In order to make the classifier more robust to different
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sizes of images, we adopt a multi-scale training strategy by

randomly resizing the input images between [0.25, 1].
We implement the network using the MatConvNet [34]

toolbox. We use the Xavier method to initialize the network

parameters and use the Stochastic Gradient Descent (SGD)

method for optimizing the network. We use the batch size

of 50, the momentum of 0.9 and the weight decay of 10−4.

The learning rate is set to 0.001 and decreased by a factor

of 5 for every 50 epochs.

4. Blind Image Deblurring

After the training process of the proposed network con-

verges, we use the trained model as the latent image prior

p(·) in (2). In addition, we use the L0 gradient prior [38, 27]

as a regularization term. Therefore, we aim to solve the fol-

lowing optimization problem:

min
I,k

‖I ⊗ k −B‖
2
2 + γ ‖k‖

2
2 + µ‖∇I‖0 + λf(I), (4)

where γ, µ and λ are the hyper-parameters to balance the

weight of each term.

We optimize (4) by solving the latent image I and the

blur kernel k alternatively. Thus, we divide the problem

into I sub-problem:

min
I

‖I ⊗ k −B‖
2
2 + µ‖∇I‖0 + λf(I), (5)

and k sub-problem:

min
k

‖I ⊗ k −B‖
2
2 + γ ‖k‖

2
2 . (6)

4.1. Solving I

In (5), both f(·) and ‖∇I‖0 are highly non-convex,

which make minimizing (5) computationally intractable.

To tackle this issue, we adopt the half-quadratic splitting

method [37] by introducing the auxiliary variables u and

g = (gh, gv) with respect to the image and its gradients in

horizonal and vertical directions, respectively. The energy

function (5) can be rewritten as

min
I,g,u

‖I ⊗ k −B‖
2
2 + α ‖∇I − g‖

2
2

+ β ‖I − u‖
2
2 + µ‖g‖0 + λf(u)

, (7)

where α and β are penalty parameters. When α and β ap-

proach infinity, the solution of (7) is equivalent to that of

(5). We can solve (7) by minimizing I , g and u alterna-

tively and thus avoid directly minimizing the non-convex

functions f(·) and ‖∇I‖0.

We solve the latent image I by fixing g and u and opti-

mizing:

min
I

‖I ⊗ k −B‖
2
2 + α ‖∇I − g‖

2
2 + β ‖I − u‖

2
2 , (8)

Algorithm 1 Solving (12)

Input: Latent Image I

Output: the solution of u.

1: initialize u(0)
← I

2: while s < smax do

3: solve for u(s+1) by (12).

4: s← s+ 1

5: end while

which is a least squares optimization and has a closed-form

solution:

I = F
−1





F (k)F (B) + βF (u) + α
(

∑

d∈{h,v} F (∇d)F (gd)
)

F (k)F (k) + β + α
(

∑

d∈{h,v} F (∇d)F (∇d)
)



 ,

(9)

where F (·) and F−1(·) denote the Fourier and inverse

Fourier transforms; F (·) is the complex conjugate opera-

tor; ∇h and ∇v are the horizontal and vertical differential

operators, respectively.

Given the latent image I , we solve g and u by:

min
g

α ‖∇I − g‖
2
2 + µ‖g‖0, (10)

min
u

β ‖I − u‖
2
2 + λf(u). (11)

We solve (10) following the strategy of Pan et al. [26] and

use the back-propagation approach to compute the deriva-

tive of f(·). We update u using the gradient descent method:

u(s+1) = u(s) − η

[

β
(

u(s) − I
)

+ λ
df(u(s))

du(s)

]

, (12)

where η is the step size. We summarize the main steps for

solving (12) in Algorithm 1.

4.2. Solving k

In order to obtain more accurate results, we estimate the

blur kernel using image gradients [4, 26, 27]:

min
k

‖∇I ⊗ k −∇B‖
2
2 + γ ‖k‖

2
2 , (13)

which can also be efficiently solved by the Fast Fourier

Transform (FFT). We then set the negative elements in k
to 0 and normalize k so that the sum of all elements is equal

to 1. We use the coarse-to-fine strategy with an image pyra-

mid [26, 27] to optimize (4). At each pyramid level, we

alternatively solve (5) and (13) with itermax iterations. The

main steps are summarized in supplemental materials.

5. Extension to Non-Uniform Deblurring

The proposed discriminative image prior can be easily

extended for non-uniform motion deblurring. Based on the

geometric model of camera motion [33, 35], we represent
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(a) Results on dataset [15] (b) Results on dataset [32]

Figure 3. Quantitative evaluations on benchmark datasets [15]

and [32].

the blurred images as the weighted sum of a latent clear

image under geometry transformations:

B =
∑

t

ktHtI+ n, (14)

where B, I and n are the blurred image, latent image and

noise in the vector forms, respectively; t denotes the index

of camera pose samples; kt is the weight of the t-th camera

pose satisfying kt ≥ 0,
∑

t kt = 1; Ht denotes a matrix de-

rived from the homography [35]. We use the bilinear inter-

polation when applying Ht on a latent image I. Therefore,

we simplify (14) to:

B = KI+ n = Ak+ n, (15)

where K =
∑

t ktHt, A = [H1I, H2I, . . . , HtI] and

k = [k1, k2, . . . , kt]
T . We solve the non-uniform deblur-

ring problem by alternatively minimizing:

min
I

‖KI−B‖
2
2 + λf(I) + µ‖∇I‖0 (16)

and

min
k

‖Ak−B‖
2
2 + γ ‖k‖

2
2 . (17)

The optimization methods of (16) and (17) are similar to

those used for solving (5) and (6). The latent image I and

the weight k are estimated by the fast forward approxima-

tion [9].

6. Experimental Results

We evaluate the proposed algorithm on natural image

datasets [15, 32] as well as text [26], face [25], and low-

illumination [11] images. In all the experiments, we set

λ=µ=0.004, γ=2, and η=0.1. To balance the accuracy

and speed, we empirically set itermax = 5 and smax = 10.

Unless specially mentioned, we use the non-blind method

in [26] to recover the final latent images after estimating

blur kernels. All the experiments are carried out on a desk-

top computer with an Intel Core i7-3770 processor and 32

GB RAM. The source code and the datasets used in the pa-

per are publicly available on the authors’ websites. More

experimental results are included in supplemental material.

(a) Blurred image (b) Krishnan et al. [16] (c) Xu et al. [38]

(d) Pan et al. [26] (d) Pan et al. [27] (e) Ours

Figure 5. Deblurred results on a real blurred image. Our result is

sharper with less artifacts.

6.1. Natural images

We first evaluate the proposed algorithm on the natural

image dataset of Köhler et al. [15], which contains 4 latent

images and 12 blur kernels. We compare with the 5 generic

image deblurring methods [4, 36, 35, 27, 40]. We follow the

protocol of [15] to compute the PSNR by comparing each

restored image with 199 clear images captured along the

same camera motion trajectory. As shown in Figure 3 (a),

our method achieves the highest PSNR on average. Figure 4

shows the deblurred results of one example. Our method

generates clearer images with less ringing artifacts.

Next, we evaluate our algorithm on the dataset provided

by Sun et al. [32], which consists of 80 clear images and 8

blur kernels from Levin et al. [19]. We compare with the 6

optimization-based deblurring methods [20, 16, 38, 36, 32,

27] (solid curves) and one learning-based method [3] (dot-

ted curve). For fair comparisons, we apply the same non-

blind deconvolution [43] to restore the latent images. We

measure the error ratio [19] and plot the results in Figure 3

(b), which demonstrates that the proposed method performs

competitively against the state-of-the-art algorithms.

We also test our method on real-world blurred im-

ages. Here we use the same non-blind deconvolution al-

gorithm [26] for fair comparisons. As shown in Figure 5,

our method generates clearer images with fewer artifacts

compared with the methods [16, 38, 26]. And our result

is comparable to the method [27].

6.2. Domain­specific images

We evaluate our algorithm on the text image dataset [26],

which consists of 15 clear text images and 8 blur ker-

nels from Levin et al. [19]. We show the average PSNR

in Table 1. Although the text deblurring approach [26]

has the highest PSNR, the proposed method performs fa-
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(a) Blurred image (b) Cho and Lee [4] (c) Yan et al. [40] (d) Pan et al. [27] (e) Ours

Figure 4. A challenging example from dataset [15]. The proposed algorithm restores more visually pleasing results with less ringing

artifacts.

Table 1. Quantitative evaluations on text image dataset [26]. Our

method performs favorably against generic image deblurring ap-

proaches and is comparable to the text deblurring method [26].

Methods Average PSNRs

Cho and Lee [4] 23.80

Xu and Jia [36] 26.21

Levin et al. [20] 24.90

Xu et al. [38] 26.21

Pan et al. [27] (Dark channel) 27.94

Pan et al. [26] (Text deblurring) 28.80

Ours 28.10

vorably against state-of-the-art generic deblurring algo-

rithms [4, 36, 20, 38, 27]. Figure 6 shows the deblurred

results on a blurred text image. The proposed method gen-

erates much sharper results with clearer characters.

Figure 7 shows an example of the low-illumination im-

age from the dataset of Hu et al. [11]. Due to the influ-

ence of large saturated regions, the natural image deblur-

ring methods fail to generate clear images. In contrast, our

method generates a comparable result with Hu et al. [11],

which is specially designed for the low-illumination im-

ages.

Figure 8 shows the deblurred results on a face image.

Our result has less ringing artifacts compared with the state-

of-the-art methods [38, 40]. We note that the proposed

method learns a generic image prior but is effective to de-

blur domain-specific blurred images.

6.3. Non­uniform deblurring

We demonstrate the capability of the proposed method

on non-uniform deblurring in Figure 9. Compared with

state-of-the-art non-uniform deblurring algorithms [35, 38,

27], our method produces comparable results with sharp

edges and clear textures.

7. Analysis and Discussion

In this section, we analyze the effectiveness of the pro-

posed image prior on distinguishing clear and blurred im-

ages, discuss the relation with L0-regularized priors, and

(a) Blurred image (b) Pan et al. [27] (c) Pan et al. [26] (d) Ours

Figure 6. Deblurred results on a text image. Our method pro-

duces sharper deblurred image with more clearer characters than

the state-of-the-art text deblurring algorithm [26].

(a) Blurred (b) Hu et al. [11]

(c) Xu et al. [38] (d) Ours

Figure 7. Deblurred results on a low-illumination image. Our

method yields comparable results to Hu et al. [11], which is spe-

cially designed for deblurring low-illumination images.

(a) Blurred image (b) Xu et al. [38] (c) Yan et al. [40] (d) Ours

Figure 8. Deblurred results on a face image. Our method produces

more visually pleasing results.
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(a) Blurred image (b) Whyte et al. [35] (c) Xu et al. [38]

(d) Pan et al. [27] (e) Ours (d) Our kernels

Figure 9. Deblurred results on a real non-uniform blurred image.

We extend the proposed method for non-uniform deblurring and

provide comparable results with state-of-the-art methods.

analyze the speed, convergence and the limitations of the

proposed method.

7.1. Effectiveness of the proposed image prior

We train the binary classification network to predict

blurred images as 1 and clear images as 0. We first use

the image size of 200 × 200 for training and evaluate the

classification accuracy using the images from the dataset of

Köhler et al. [15], where the size of images is 800 × 800.

To test the performance of the classifier on different sizes

of images, we downsample each image by a ratio between

[1, 1/16] and plot the classification accuracy in Figure 10

(green curve). When the size of test images is larger or

close to the training image size, the accuracy is near 100%.

However, the accuracy drops significantly when images are

downscaled by more than 4×. As the downsampling re-

duces the blur effect, it becomes difficult for the classifier

to distinguish blurred and clear images.

To overcome this issue, we adopt a multi-scale training

strategy by randomly downsampling each batch of images

between 1× and 4×. As shown in the red curve of Fig-

ure 10(a), the performance of the classifier becomes more

robust to different sizes of input images. The binary clas-

sifier with our multi-scale training strategy is more suitable

to be applied in the coarse-to-fine MAP framework.

Figure 11 shows the activation of one feature map from

the C9 layer (i.e., the last convolutional layer before the

global average pooling) in our classification network. While

the blurred image has a high response on the entire image,

the activation of the clear image has a much lower response

except for smooth regions, e.g., sky.

7.2. Relation with L0­regularized priors

Several methods [26, 38] adopt the L0-regularized priors

in blind image deblurring due to the strong sparsity of the

L0 norm. State-of-the-art approaches [27, 40] enforce the

L0 sparsity on the extreme channels (i.e., dark and bright

(a) (b)

Figure 10. Effectiveness of the proposed CNN prior. (a) Classifi-

cation accuracy on dataset [15] (b) Ablation studies on dataset [19]

(a) (b) (c) (d)

Figure 11. Activations of a feature map in our binary classification

network. We show the activation from the C9 layer. The clear

image has much lower responses than that of the blurred images.

(a) Blurred image (b) Activation of blurred image (c) Clear image

(d) Activation of clear image

channels) as the blur process affects the distribution of the

extreme channels. The proposed approach also includes

the L0 gradient prior for regularization. The intermediate

results in Figure 12 show that the methods based on L0-

regularized prior on extreme channels [27, 40] fail to re-

cover strong edges when there are not enough dark or bright

pixels. Figure 12(g) shows that the proposed method with-

out the learned discriminative image prior (i.e., use L0 gra-

dient prior only) cannot well reconstruct strong edges for

estimating the blur kernel. In contrast, our discriminative

image prior restores more sharp edges in the early stage of

the optimization and improve the blur kernel estimation.

To better understand the effectiveness of each term

in (4), we conduct an ablation study on the dataset of

Levin et al. [19]. As shown in Figure 10(b), while the L0

gradient prior helps to preserve more image structures, the

integration with the proposed CNN prior leads to state-of-

the-art performance.

7.3. Runtime and convergence property

Our algorithm is based on the efficient half-quadratic

splitting and gradient decent methods. We test the state-

of-the-art methods on different sizes of images and report

the average runtime in Table 2. The proposed method runs

competitively with state-of-the-art approaches [27, 40]. In

addition, we quantitatively evaluate convergence of the pro-

posed optimization method using images from the dataset

of Levin et al. [19]. We compute the average kernel sim-

ilarity [12] and the values of the objective function (4) at

the finest image scale. Figure 13 shows that our algorithm

converges well whithin 50 iterations.
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(a) Input (b) Pan et al. [27] (c) Yan et al. [40] (d) Ours

(e) Intermediate results of Yan et al. [40]

(f) Intermediate results of Pan et al. [27]

(g) Intermediate results of our method without using discriminative prior

(h) Intermediate results of our method using discriminative prior

Figure 12. Deblurred and intermediate results. We compare the de-

blurred results with state-of-the-art methods [40, 27] in (a)-(d) and

illustrate the intermediate latent images over iterations (from left

to right) in (e)-(h). Our discriminative prior recovers intermediate

results with more strong edges for kernel estimation.

(a) Kernel similarity (b) Energy function

Figure 13. Convergence analysis of the proposed optimization

method. We analyze the kernel similarity [12] and the objective

function (4) at the finest image scale. Our method converges well

within 50 iterations.

7.4. Limitations

As our classification network is trained on image inten-

sity, the learned image prior might be less effective when

input images contain significant noise and outliers. Fig-

ure 14 shows an example with salt and pepper noise in the

input blurred image. In this case, our classification network

Table 2. Runtime comparisons. We report the average runtime

(seconds) on three different sizes of images.

Method 255 × 255 600 × 600 800 × 800

Xu et al. [38] (C++) 1.11 3.56 4.31

Krishnan et al. [16] (MATLAB) 24.23 111.09 226.58

Levin et al. [20] (MATLAB) 117.06 481.48 917.84

Pan et al. [27] (MATLAB) 134.31 691.71 964.90

Yan et al. [40] (MATLAB) 264.78 996.03 1150.48

Ours (MATLAB) 109.27 379.52 654.65

(a) (b) (c)

Figure 14. Limitations of the proposed method. Our learned im-

age prior is not effective on handling images with salt and pepper

noise. (a) Blurred image (b) Our deblurred results (c) Our de-

blurred results by first applying a median filter on blurred image.

cannot differentiate the blurred image (f(B) ≃ 0) due to

the influence of salt and pepper noise. Therefore, the pro-

posed prior cannot restore the image well as shown in Fig-

ure 14(b). A simple solution is to first apply a median filter

on the input image before adopting our approach for deblur-

ring. As shown in Figure 14(c), although we can reconstruct

a better deblurred result, the details of the recovered images

are not preserved well. Future work will consider joint de-

blurring and denoising in a principal way.

8. Conclusions

In this paper, we propose a data-driven discriminative

prior for blind image deblurring. We learn the image prior

via a binary classification network based on a simple crite-

rion: the prior should favor clear images over blurred im-

ages on various of scenarios. We adopt a global average

pooling layer and a multi-scale training strategy to make the

network more robust to different sizes of images. We then

embed the learned image prior into a coarse-to-fine MAP

framework and develop an efficient half-quadratic splitting

algorithm for blur kernel estimation. Our prior is effec-

tive on several types of images, including natural, text, face

and low-illumination images, and can be easily extended

to handle non-uniform deblurring. Extensive quantitative

and qualitative comparisons demonstrate that the proposed

method performs favorably against state-of-the-art generic

and domain-specific blind deblurring algorithms.
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