
Published as a conference paper at ICLR 2019

PROBABILISTIC PLANNING WITH
SEQUENTIAL MONTE CARLO METHODS

Alexandre Piché∗12, Valentin Thomas∗12, Cyril Ibrahim 2, Yoshua Bengio 13, Chris Pal 1245

1 Mila, Université de Montréal
2 Element AI
3 CIFAR Senior Fellow
4 Mila, Polytechnique Montréal
5 Canada CIFAR AI Chair

ABSTRACT

In this work, we propose a novel formulation of planning which views it as a
probabilistic inference problem over future optimal trajectories. This enables us
to use sampling methods, and thus, tackle planning in continuous domains using
a fixed computational budget. We design a new algorithm, Sequential Monte
Carlo Planning, by leveraging classical methods in Sequential Monte Carlo and
Bayesian smoothing in the context of control as inference. Furthermore, we show
that Sequential Monte Carlo Planning can capture multimodal policies and can
quickly learn continuous control tasks.

1 INTRODUCTION

To exhibit intelligent behaviour machine learning agents must be able to learn quickly, predict the
consequences of their actions, and explain how they will react in a given situation. These abilities
are best achieved when the agent efficiently uses a model of the world to plan future actions. To
date, planning algorithms have yielded very impressive results. For instance, Alpha Go (Silver et al.,
2017) relied on Monte Carlo Tree Search (MCTS) (Kearns et al., 2002) to achieve super human
performances. Cross entropy methods (CEM) (Rubinstein & Kroese, 2004) have enabled robots
to perform complex nonprehensile manipulations (Finn & Levine, 2017) and algorithms to play
successfully Tetris (Szita & Lörincz, 2006). In addition, iterative linear quadratic regulator (iLQR)
(Kalman et al., 1960; Kalman, 1964; Todorov & Li, 2005) enabled humanoid robots tasks to get up
from an arbitrary seated pose (Tassa et al., 2012).

Despite these successes, these algorithms make strong underlying assumptions about the environment.
First, MCTS requires a discrete setting, limiting most of its successes to discrete games with
known dynamics. Second, CEM assumes the distribution over future trajectories to be Gaussian, i.e.
unimodal. Third, iLQR assumes that the dynamics are locally linear-Gaussian, which is a strong
assumption on the dynamics and would also assume the distribution over future optimal trajectories to
be Gaussian. For these reasons, planning remains an open problem in environments with continuous
actions and complex dynamics. In this paper, we address the limitations of the aforementioned
planning algorithms by creating a more general view of planning that can leverage advances in
deep learning (DL) and probabilistic inference methods. This allows us to approximate arbitrary
complicated distributions over trajectories with non-linear dynamics.

We frame planning as density estimation problem over optimal future trajectories in the context of
control as inference (Dayan & Hinton, 1997; Toussaint & Storkey, 2006; Toussaint, 2009; Rawlik
et al., 2010; 2012; Ziebart, 2010; Levine & Koltun, 2013). This perspective allows us to make
use of tools from the inference research community and, as previously mentioned, model any
distribution over future trajectories. The planning distribution is complex since trajectories consist of
an intertwined sequence of states and actions. Sequential Monte Carlo (SMC) (Stewart & McCarty,
1992; Gordon et al., 1993; Kitagawa, 1996) methods are flexible and efficient to model such a

∗both authors contributed equally.

1

Published as a conference paper at ICLR 2019

distribution by sequentially drawing from a simpler proposal distribution. From the SMC perspective,
the policy can be seen as the proposal and a learned model of the world as the propagation distribution.
This provides a natural way to combine model-free and model-based RL.

Contribution. We depict the problem of planning as one of density estimation that can be estimated
using SMC methods. We introduce a novel planning strategy based on the SMC class of algorithms,
in which we treat the policy as the proposed distribution to be learned. We investigate how our
method empirically compares with existing model-based methods and a strong model-free baseline
on the standard benchmark Mujoco (Todorov et al., 2012).

2 BACKGROUND

2.1 CONTROL AS INFERENCE

We consider the general case of a Markov Decision Process (MDP) {S,A, penv, r, γ, µ} where S and
A represent the state and action spaces respectively. We use the letters s and a to denote states and
actions, which we consider to be continuous vectors. Further notations include: penv(s′|s,a) as the
state transition probability of the environment, r(s,a) as the reward function, and γ ∈ [0, 1) as the
discount factor. µ denotes the probability distribution over initial states.

This work focuses on an episodic formulation, with a fixed end-time of T . We define a trajectory as a
sequence of state-action pairs xt:T = {(st,at), . . . , (sT ,aT)}, and we use the notation π for a policy
which represents a distribution over actions conditioned on a state. Here π is parametrized by a neural
network with parameters θ. The notation qθ(x1:T) = µ(s1)

∏T−1
t≥1 penv(st+1|st,at)

∏T
t≥1 πθ(at|st)

denotes the probability of a trajectory x1:T under policy πθ.

Latent a1

s1

a2

s2

a3

s3

at

st

Observed O1 O2 O3 Ot

.

Figure 2.1: Ot is an observed optimality variable
with probability p(Ot|st,at) = exp(r(st,at)).
xt = (st,at) are the state-action pair variables
considered here as latent.

Traditionally, in reinforcement learning (RL)
problems, the goal is to find the optimal
policy that maximizes the expected return
Eqθ [

∑T
t=1 γ

trt]. However, it is useful to frame
RL as an inference problem within a probabilis-
tic graphical framework (Rawlik et al., 2012;
Toussaint & Storkey, 2006; Levine, 2018).
First, we introduce an auxiliary binary random
variable Ot denoting the “optimality“ of a pair
(st,at) at time t and define its probability1 as
p(Ot = 1|st,at) = exp(r(st,at)). O is a
convenience variable only here for the sake of
modeling. By considering the variables (st,at)
as latent and Ot as observed, we can construct
a Hidden Markov Model (HMM) as depicted
in figure 2.1. Notice that the link s→ a is not
present in figure 2.1 as the dependency of the optimal action on the state depends on the future
observations. In this graphical model, the optimal policy is expressed as p(at|st,Ot:T).

The posterior probability of this graphical model can be written as2:

p(x1:T |O1:T) ∝ p(x1:T ,O1:T) = µ(s1)

T−1∏
t=1

penv(st+1|at, st) exp
(T∑
t=1

r(st,at) + log p(at)
)
.

(2.1)

It appears clearly that finding optimal trajectories is equivalent to finding plausible trajectories
yielding a high return.

1as in Levine (2018), if the rewards are bounded above, we can always remove a constant so that the
probability is well defined.

2Notice that in the rest of the paper, we will abusively remove the product of the action priors
∏T

t=1 p(at) =

exp
(∑T

t=1 log p(at)
)

from the joint as in Levine (2018). We typically consider this term either constant or
already included in the reward function. See Appendix A.2 for details.

2

Published as a conference paper at ICLR 2019

Many control as inference methods can be seen as approximating the density by optimizing its
variational lower bound: log p(O1:T) ≥ Ex1:T∼qθ [

∑T
t=1 r(st,at) − log πθ(at|st)] (Rawlik et al.,

2012; Toussaint, 2009). Instead of directly differentiating the variational lower bound for the whole
trajectory, it is possible to take a message passing approach such as the one used in Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) and directly estimate the optimal policy p(at|st,Ot:T) using the
backward message, i.e a soft Q function instead of the Monte Carlo return.

2.2 SEQUENTIAL MONTE CARLO METHODS

Since distributions over trajectories are complex, it is often difficult or impossible to directly draw
samples from them. Fortunately in statistics, there are successful strategies for drawing samples from
complex sequential distributions, such as SMC methods.

For simplicity, in the remainder of this section we will overload the notation and refer to the target
distribution as p(x) and the proposal distribution as q(x). We wish to draw samples from p but we
only know its unnormalized density. We will use the proposal q to draw samples and estimate p. In
the next section, we will define the distributions p and q in the context of planning.

Importance sampling (IS): When x can be efficiently sampled from another simpler distribution q
i.e. the proposal distribution, we can estimate the likelihood of any point x under p straightforwardly
by computing the unnormalized importance sampling weights w(x) ∝ p(x)

q(x) and using the identity

p(x) = w̄(x)q(x) where w̄(x) = w(x)∫
w(x)q(x)dx

is defined as the normalized importance sampling

weights. In practice, one draws N samples from q: {x(n)}Nn=1 ∼ q; these are referred to as particles.
The set of particles {x(n)}Nn=1 associated with their weights {w(n)}Nn=1 are simulations of samples
from p. That is, we approximate the density p with a weighted sum of diracs from samples of q:

p(x) ≈
N∑
n=1

w̄(n)δx(n)(x), withx(n) sampled from q

where δx0(x) denotes the Dirac delta mass located as x0.

Sequential Importance Sampling (SIS): When our problem is sequential in nature x = x1:T ,
sampling x1:T at once can be a challenging or even intractable task. By exploiting the sequential
structure, the unnormalized weights can be updated iteratively in an efficient manner: wt(x1:t) =

wt−1(x1:t−1)p(xt|x1:t−1)
q(xt|x1:t−1)

. We call this the update step. This enables us to sample sequentially

xt ∼ q(xt|x1:t−1) to finally obtain the set of particles {x(n)
1:T } and their weights {w(n)

T } linearly in
the horizon T .

Sequential Importance Resampling (SIR): When the horizon T is long, samples from q usually
have a low likelihood under p, and thus the quality of our approximation decreases exponentially
with T . More concretely, the unnormalized weights w(n)

t converge to 0 with t→∞. This usually
causes the normalized weight distribution to degenerate, with one weight having a mass of 1 and the
others a mass of 0. This phenomenon is known as weight impoverishment.

One way to address weight impoverishment is to add a resampling step where each particle is
stochastically resampled to higher likelihood regions at each time step. This can typically reduce the
variance of the estimation from growing exponentially with t to growing linearly.

3 PLANNING AS PROBABILISTIC INFERENCE

In the context of control as inference, it is natural to see planning as the act of approximating a
distribution of optimal future trajectories via simulation. In order to plan, an agent must possess a
model of the world that can accurately capture consequences of its actions. In cases where multiple
trajectories have the potential of being optimal, the agent must rationally partition its computational
resources to explore each possibility. Given finite time, the agent must limit its planning to a finite
horizon h. We, therefore, define planning as the act of approximating the optimal distribution over

3

Published as a conference paper at ICLR 2019

trajectories of length h. In the control-as-inference framework, this distribution is naturally expressed
as p(a1, s2, . . . sh,ah|O1:T , s1), where s1 represents our current state.

3.1 PLANNING AND BAYESIAN SMOOTHING

As we consider the current state s1 given, it is equivalent and convenient to focus on the planning
distribution with horizon h: p(x1:h|O1:T). Bayesian smoothing is an approach to the problem of
estimating the distribution of a latent variable conditioned on all past and future observations. One
method to perform smoothing is to decompose the posterior with the two-filter formula (Bresler,
1986; Kitagawa, 1994):

p(x1:h|O1:T) ∝ p(x1:h|O1:h) · p(Oh+1:T |xh) (3.1)

This corresponds to a forward-backward messages factorization in a Hidden Markov Model as
depicted in figure 3.1. We broadly underline in orange forward variables and in blue backward
variables in the rest of this section.

x1 xh−1 xh xh+1 xT

O1 Oh−1 Oh Oh+1 OT

p(x1:h|O1:h) p(Oh+1:T |xh)

Figure 3.1: Factorization of the HMM into for-
ward (orange) and backward (blue) messages. Esti-
mating the forward message is filtering, estimating
the value of the latent knowing all the observations
is smoothing.

Filtering is the task of estimating p(x1:t|O1:t):
the probability of a latent variable conditioned
on all past observations. In contrast, smoothing
estimates p(x1:t|O1:T): the density of a latent
variable conditioned on all the past and future
measurements.

In the belief propagation algorithm for HMMs,
these probabilities correspond to the forward
message αh(xh) = p(x1:h|O1:h) and back-
ward message βh(xh) = p(Oh+1:T |xh) , both
of which are computed recursively. While in
discrete spaces these forward and backward
messages can be estimated using the sum-
product algorithm, its complexity scales with
the square of the space dimension making it
unsuitable for continuous tasks. We will now
devise efficient strategies for estimating reliably
the full posterior using the SMC methods covered in section 2.2.

3.2 THE BACKWARD MESSAGE AND THE VALUE FUNCTION

The backward message p(Oh+1:T |xh) can be understood as the answer to: “What is the probability
of following an optimal trajectory from the next time step on until the end of the episode, given
my current state?”. Importantly, this term is closely related to the notion of value function in RL.
Indeed, in the control-as-inference framework, the state- and action-value functions are defined as
V (sh) , log p(Oh:T |sh) and Q(sh,ah) , log p(Oh:T |sh,ah) respectively. They are solutions of a
soft-Bellman equation that differs a little from the traditional Bellman equation (O’Donoghue et al.,
2016; Nachum et al., 2017; Schulman et al., 2017; Abdolmaleki et al., 2018). A more in depth
explanation can be found in (Levine, 2018). We can show subsequently that:

p(Oh+1:T |xh) = Esh+1|xh
[
exp

(
V (sh+1)

)]
(3.2)

Full details can be found in Appendix A.3. Estimating the backward message is then equivalent to
learning a value function. This value function as defined here is the same one used in Maximum
Entropy RL (Ziebart, 2010).

3.3 SEQUENTIAL WEIGHT UPDATE

Using the results of the previous subsections we can now derive the full update of the sequential im-
portance sampling weights. To be consistent with the terminology of section 2.2, we call p(x1:h|O1:T)

4

Published as a conference paper at ICLR 2019

the target distribution and qθ(x1:h) the proposal distribution. The sequential weight update formula
is in our case:

wt = wt−1 ·
p(xt|x1:t−1,O1:T)

qθ(xt|x1:t−1)

∝ wt−1
1

qθ(xt|x1:t−1)

p(x1:t|O1:t)

p(x1:t−1|O1:t−1)

p(Ot+1:T |xt)
p(Ot:T |xt−1)

∝ wt−1 · Est+1|st,at [exp
(
A(st,at, st+1)

)
]

Where
A(st,at, st+1) = rt − log πθ(at|st) + V (st+1)− logEst|st−1,at−1

[exp
(
V (st)

)
] (3.3)

is akin to a maximum entropy advantage function. The change in weight can be interpreted as
sequentially correcting our expectation of the return of a trajectory.

The full derivation is available in Appendix A.4. Our algorithm is similar to the Auxilliary Particle
Filter (Pitt & Shephard, 1999) which uses a one look ahead simulation step to update the weights.
Note that we have assumed that our model of the environment was perfect to obtain this slightly
simplified form. This assumption is made by most planning algorithms (LQR, CEM . . .): it entails
that our plan is only as good as our model is. A typical way to mitigate this issue and be more robust
to model errors is to re-plan at each time step; this technique is called Model Predictive Control
(MPC) and is commonplace in control theory.

3.4 SEQUENTIAL MONTE CARLO PLANNING ALGORITHM

We can now use the computations of previous subsections to derive the full algorithm. We consider the
root state of the planning to be the current state st. We aim at building a set of particles {x(n)

t:t+h}Nn=1

and their weights {w(n)
t+h}Nn=1 representative of the planning density p(xt:t+h|O1:T) over optimal

trajectories. We use SAC (Haarnoja et al., 2018) for the policy and value function, but any other
Maximum Entropy policy can be used for the proposal distribution. Note that we used the value
function estimated by SAC as a proxy the optimal one as it is usually done by actor critic methods.

Algorithm 1 SMC Planning using SIR

1: for t in {1, . . . , T} do
2: {s(n)t = st}Nn=1

3: {w(n)
t = 1}Nn=1

4: for i in {t, . . . , t+ h} do
5: // Update
6: {a(n)i ∼ π(a

(n)
i |s

(n)
i)}Nn=1

7: {s(n)i+1, r
(n)
i ∼ pmodel(·|s(n)i ,a

(n)
i)}Nn=1

8: {w(n)
i ∝ w(n)

i−1 · exp
(
A(s

(n)
i ,a

(n)
i , s

(n)
i+1)

)
}Nn=1

9: // Resampling
10: {x(n)

1:i }Nn=1 ∼ Mult(n;w
(1)
i , . . . , w

(N)
i)

11: {w(n)
i = 1}Nn=1

12: end for
13: Sample n ∼ Uniform(1, N).
14: // Model Predictive Control
15: Select at, first action of x(n)

t:t+h

16: st+1, rt ∼ penv(·|st,at)
17: Add (st,at, rt, st+1) to buffer B
18: Update π, V and pmodel with B
19: end for

We summarize the proposed algorithm in Al-
gorithm 1. At each step, we sample from the
proposal distribution or model-free agent (line
6) and use our learned model to sample the next
state and reward (line 7). We then update the
weights (line 8). In practice we only use one
sample to estimate the expectations, thus we
may incur a small bias. The resampling step
is then performed (line 10-11) by resampling
the trajectories according to their weight. After
the planning horizon is reached, we sample one
of our trajectories (line 13) and execute its first
action into the environment (line 15-16). The
observations (st,at, rt, st+1) are then collected
and added to a buffer (line 17) used to train the
model as well as the policy and value function of
the model-free agent. An alternative algorithm
that does not use the resampling step (SIS) is
highlighted in Algorithm 2 in Appendix A.6.

A schematic view of the algorithm can also be
found on figure 3.2.

3.5 OPTIMISM BIAS AND CONTROL AS INFERENCE

We now discuss shortcomings our approach to planning as inference may suffer from, namely
encouraging risk seeking policies.

5

Published as a conference paper at ICLR 2019

• • • •

1

(a) Configuration at time t − 1:
we have the root white node st−1,
the actions a(n)

t−1 are black nodes
and the leaf nodes are the s

(n)
t .

We have one particle on the left-
most branch, two on the central
branch and one on the rightmost
branch.

• • • •

1

(b) Update: New actions and
states are sampled from the pro-
posal distribution and model. The
particle sizes are proportional to
their importance weight wt.

• • • •

1

(c) Resampling: after sampling
with replacement the particles rel-
atively to their weight, the less
promising branch was cut while
the most promising has now two
particles.

Figure 3.2: Schematic view of Sequential Monte Carlo planning. In each tree, the white nodes
represent states and black nodes represent actions. Each bullet point near a state represents a particle,
meaning that this particle contains the total trajectory of the branch. The root of the tree represents
the root planning state, we expand the tree downward when planning.

Bias in the objective: Trajectories having a high likelihood under the posterior defined in Equa-
tion 2.1 are not necessarily trajectories yielding a high mean return. Indeed, as logEp

[
expR(x)

]
≥

Ep
[
R(x)

]
we can see that the objective function we maximize is an upper bound on the quantity

of interest: the mean return. This can lead to seeking risky trajectories as one very good outcome
in logE exp could dominate all the other potentially very low outcomes, even if they might hap-
pen more frequently. This fact is alleviated when the dynamics of the environment are close to
deterministic (Levine, 2018). Thus, this bias does not appear to be very detrimental to us in our
experiments 4 as our environments are fairly close to deterministic. The bias in the objective also
appears in many control as inference works such as Particle Value Functions (Maddison et al., 2017a)
and the probabilistic version of LQR proposed in Toussaint (2009).

Bias in the model: A distinct but closely related problem arises when one trains jointly the policy
πθ and the model pmodel, i.e if q(x1:T) is directly trained to approximate p(x1:T |O1:T). In that case,
pmodel(st+1|st,at) will not approximate penv(st+1|st,at) but penv(st+1|st,at,Ot:T) (Levine, 2018).
This means the model we learn has an optimism bias and learns transitions that are overly optimistic
and do no match the environment’s behavior. This issue is simply solved by training the model
separately from the policy, on transition data contained in a buffer as seen on line 18 of Algorithm 1.

4 EXPERIMENTS

4.1 TOY EXAMPLE

In this section, we show how SMCP can deal with multimodal policies when planning. We believe
multimodality is useful for exploring since it allows us to keep a distribution over many promising
trajectories and also allows us to adapt to changes in the environment e.g. if a path is suddenly
blocked.

We applied two version of SMCP: i) with a resampling step (SIR) ii) without a resampling step (SIS)
and compare it to CEM on a simple 2D point mass environment 4.1. Here, the agent can control
the displacement on (x, y) within the square [0, 1]2, a = (∆x,∆y) with maximum magnitude
||a|| = 0.05. The starting position (•) of the agent is (x = 0, y = 0.5), while the goal (?) is
at g = (x = 1, y = 0.5). The reward is the agent’s relative closeness increment to the goal:

6

Published as a conference paper at ICLR 2019

(a) Sequential Importance Re-
sampling (SIR): when resam-
pling the trajectories at each time
step, the agent is able to focus
on the promising trajectories and
does not collapse on a single
mode.

(b) Sequential Importance Sam-
pling (SIS): if we do not perform
the resampling step the agent
spends most of its computation
on uninteresting trajectories and
was not able to explore as well.

(c) CEM: here the agent samples
all the actions at once from a
Gaussian with learned mean and
covariance. We needed to update
the parameters 50 times for the
agent to find one solution, but it
forgot the other one.

Figure 4.1: Comparison of three methods on the toy environment. The agent (•) must go to the goal
(?) while avoiding the wall (|) in the center. The proposal distribution is taken to be an isotropic
gaussian. Here we plot the planning distribution imagined at t = 0 for three different agents. A
darker shade of blue indicates a higher likelihood of the trajectory. Only the agent using Sequential
Importance Resampling was able to find good trajectories while not collapsing on a single mode.

rt = 1− ||st+1−g||2
||st−g||2 . However, there is a partial wall at the centre of the square leading to two optimal

trajectories, one choosing the path below the wall and one choosing the path above.

The proposal is an isotropic normal distribution for each planning algorithm, and since the environ-
ment’s dynamics are known, there is no need for learning: the only difference between the three
methods is how they handle planning. We also set the value function to 0 for SIR and SIS as we
do not wish to perform any learning. We used 1500 particles for each method, and updated the
parameters of CEM until convergence. Our experiment 4.1 shows how having particles can deal with
multimodality and how the resampling step can help to focus on the most promising trajectories.

4.2 CONTINUOUS CONTROL BENCHMARK

The experiments were conducted on the Open AI Gym Mujoco benchmark suite (Brockman et al.,
2016; Todorov et al., 2012). To understand how planning can increase the learning speed of RL agents
we focus on the 250000 first time steps. The Mujoco environments provide a complex benchmark
with continuous states and actions that requires exploration in order to achieve state-of-the-art
performances.

The environment model used for our planning algorithm is the same as the probabilistic neural
network used by Chua et al. (2018), it minimizes a gaussian negative log-likelihood model:

LGauss(θ) = 1
2

N∑
n=1

[µθ(sn,an)−(sn+1−sn)]>Σ−1θ (sn,an)[µθ(sn,an)−(sn+1−sn)]+log detΣθ(sn,an),

where Σθ is diagonal and the transitions (sn,an, sn+1) are obtained from the environment. We added
more details about the architecture and the hyperparameters in the appendix A.5.

We included two popular planning algorithms on Mujoco as baselines: CEM (Chua et al., 2018) and
Random Shooting (RS) (Nagabandi et al., 2017). Furthermore, we included SAC (Haarnoja et al.,
2018), a model free RL algorithm, since i) it has currently one of the highest performances on Mujoco
tasks, which make it a very strong baseline, and ii) it is a component of our algorithm, as we use it as
a proposal distribution in the planning phase.

Our results suggest that SMCP does not learn as fast as CEM and RS initially as it heavily relies
on estimating a good value function. However, SMCP quickly achieves higher performances than
CEM and RS. SMCP also learns faster than SAC because it was able to leverage information from
the model early in training.

7

Published as a conference paper at ICLR 2019

Figure 4.2: Training curves on the Mujoco continuous control benchmarks. Sequential Monte
Carlo Planning both with resampling (SIR) (pink) and without (SIS) (orange) learns faster than the
Soft Actor-Critic model-free baseline (blue) and achieves higher asymptotic performances than the
planning methods (Cross Entropy Methods and Random Shooting). The shaded area represents the
standard deviation estimated by bootstrap over 20 seeds as implemented by the Seaborn package.

Note that our results differ slightly from the results usually found in the model-based RL literature.
This is because we are tackling a more difficult problem: estimating the transitions and the reward
function. We are using unmodified versions of the environments which introduces many hurdles.
For instance, the reward function is challenging to learn from the state and very noisy. Usually, the
environments are modified such that their reward can be computed directly from the state e.g. Chua
et al. (2018) 3.

As in Henderson et al. (2017), we assess the significance of our results by running each algorithm
with multiple seeds (20 random seeds in our case, from seed 0 to seed 19) and we perform a statistical
significance test following Colas et al. (2018). We test the hypothesis that our mean return on the
last 100k steps is higher than the one obtained by SAC. Our results are significant to the 5% for
HalfCheetah and Walker2d. See Appendix A.7 for additional details.

We also report some additional experimental results such as effective sample size and model loss in
Appendix A.8.

5 RELATED WORK

Planning as inference: Seeing planning as an inference problem has been explored in cognitive
neuroscience by Botvinick & Toussaint (2012) and Solway & Botvinick (2012). While shedding
light on how Bayesian inference could be used in animal and human reasoning, it does not lead to
a practical algorithm usable in complex environments. In the reinforcement learning literature, we
are only aware of Attias (2003) and Toussaint & Goerick (2007) that initially framed planning as an
inference problem. However, both works make simplifying assumptions on the dynamics and do not
attempt to capture the full posterior distribution.

Control and planning: In the control theory literature, particle filters are usually used for inferring
the true state of the system which is then used for control (Andrieu et al., 2004). Kantas et al. (2009)
also combined SMC and MPC methods. While their algorithm is similar to ours, the distribution they
approximate is not the Bayesian posterior, but a distribution which converges to a Dirac on the best
trajectory. More recently, Kurutach et al. (2018) achieved promising results on a rope manipulation
task using generative adversarial network (Goodfellow et al., 2014) to generate future trajectories.

Model based RL: Recent work has been done in order to improve environment modeling and account
for different type of uncertainties. Chua et al. (2018) compared the performance of models that
account for both aleatoric and epistemic uncertainties by using an ensemble of probabilistic models.
Ha & Schmidhuber (2018) combined the variational autoencoder (Kingma & Welling, 2013) and
a LSTM (Hochreiter & Schmidhuber, 1997) to model the world. Buckman et al. (2018) used a
model to improve the target for temporal difference (TD) learning. Note that this line of work is

3https://github.com/kchua/handful-of-trials/tree/e1a62f217508a384e49ecf7d16a3249e187bcff9/
dmbrl/env

8

https://github.com/kchua/handful-of-trials/tree/e1a62f217508a384e49ecf7d16a3249e187bcff9/dmbrl/env
https://github.com/kchua/handful-of-trials/tree/e1a62f217508a384e49ecf7d16a3249e187bcff9/dmbrl/env

Published as a conference paper at ICLR 2019

complementary to ours as SMCP could make use of such models. Other works have been conducted
in order to directly learn how to use a model (Guez et al., 2018; Weber et al., 2017; Buesing et al.,
2018).

Particle methods and variational inference: Gu et al. (2015) learn a good proposal distribution for
SMC methods by minimizing the KL divergence with the optimal proposal. It is conceptually similar
to the way we use SAC (Haarnoja et al., 2018) but it instead minimizes the reverse KL to the optimal
proposal. Further works have combined SMC methods and variational inference (Naesseth et al.,
2017; Maddison et al., 2017b; Le et al., 2017) to obtain lower variance estimates of the distribution
of interest.

6 CONCLUSION AND FUTURE WORK

In this work, we have introduced a connection between planning and inference and showed how
we can exploit advances in deep learning and probabilistic inference to design a new efficient and
theoretically grounded planning algorithm. We additionally proposed a natural way to combine
model-free and model-based reinforcement learning for planning based on the SMC perspective. We
empirically demonstrated that our method achieves state of the art results on Mujoco. Our result
suggest that planning can lead to faster learning in control tasks.

However, our particle-based inference method suffers some several shortcomings. First, we need
many particles to build a good approximation of the posterior, and this can be computationally
expensive since it requires to perform a forward pass of the policy, the value function and the model
for every particle. Second, resampling can also have adverse effects, for instance all the particles
could be resampled on the most likely particle, leading to a particle degeneracy. More advanced SMC
methods dealing with this issue such as backward simulation (Lindsten et al., 2013) or Particle Gibbs
with Ancestor Sampling (PGAS) (Lindsten et al., 2014) have been proposed and using them would
certainly improve our results.

Another issue we did not tackle in our work is the use of models of the environment learned from
data. Imperfect model are known to result in compounding errors for prediction over long sequences.
We chose to re-plan at each time step (Model Predictive Control) as it is often done in control to
be more robust to model errors. More powerful models or uncertainty modeling techniques can
also be used to improve the accuracy of our planning algorithm. While the inference and modeling
techniques used here could be improved in multiple ways, SMCP achieved impressive learning speed
on complex control tasks. The planning as inference framework proposed in this work is general
and could serve as a stepping stone for further work combining probabilistic inference and deep
reinforcement learning.

ACKNOWLEDGMENTS

The authors would like to thank Julien Cornebise, Philippe Beaudoin and Alexandre Bouchard-Côté
for their interest and useful discussions. The authors would like to thank Stephanie Long, Anqi
Xu, Kris Sankaran, Adrien Ali-Taı̈ga, Rémi Le Priol, and Christian Rupprecht for reviewing an
earlier version of the paper. The authors want to thank the Open Philanthropy Project, NSERC,
Canada Research Chairs, CIFAR AI Chairs, National Science Foundation awards EHR-1631428 and
SES-1461535 as well as NVIDIA for equipment.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Christophe Andrieu, Arnaud Doucet, Sumeetpal S Singh, and Vladislav B Tadic. Particle methods
for change detection, system identification, and control. Proceedings of the IEEE, 92(3):423–438,
2004.

Hagai Attias. Planning by probabilistic inference. In AISTATS. Citeseer, 2003.

Matthew Botvinick and Marc Toussaint. Planning as inference. Trends in cognitive sciences, 16(10):
485–488, 2012.

9

Published as a conference paper at ICLR 2019

Yoram Bresler. Two-filter formulae for discrete-time non-linear bayesian smoothing. International
Journal of Control, 43(2):629–641, 1986.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-efficient
reinforcement learning with stochastic ensemble value expansion. arXiv preprint arXiv:1807.01675,
2018.

Lars Buesing, Theophane Weber, Sébastien Racanière, S. M. Ali Eslami, Danilo Jimenez Rezende,
David P. Reichert, Fabio Viola, Frederic Besse, Karol Gregor, Demis Hassabis, and Daan Wierstra.
Learning and querying fast generative models for reinforcement learning. CoRR, abs/1802.03006,
2018. URL http://arxiv.org/abs/1802.03006.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114,
2018.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How many random seeds? statistical power
analysis in deep reinforcement learning experiments. arXiv preprint arXiv:1806.08295, 2018.

Peter Dayan and Geoffrey E Hinton. Using expectation-maximization for reinforcement learning.
Neural Computation, 9(2):271–278, 1997.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pp. 2786–2793. IEEE, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-gaussian
bayesian state estimation. In IEE Proceedings F-radar and signal processing, volume 140, pp.
107–113. IET, 1993.

Shixiang Gu, Zoubin Ghahramani, and Richard E Turner. Neural adaptive sequential monte carlo. In
Advances in Neural Information Processing Systems, pp. 2629–2637, 2015.

Arthur Guez, Théophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan Wierstra,
Rémi Munos, and David Silver. Learning to search with mctsnets. arXiv preprint arXiv:1802.04697,
2018.

David Ha and Jürgen Schmidhuber. World models. CoRR, abs/1803.10122, 2018. URL http:
//arxiv.org/abs/1803.10122.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Rudolf Emil Kalman. When is a linear control system optimal? Journal of Basic Engineering, 86(1):
51–60, 1964.

Rudolf Emil Kalman et al. Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana,
5(2):102–119, 1960.

Nikolas Kantas, JM Maciejowski, and A Lecchini-Visintini. Sequential monte carlo for model
predictive control. In Nonlinear Model Predictive Control, pp. 263–273. Springer, 2009.

10

http://arxiv.org/abs/1802.03006
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122

Published as a conference paper at ICLR 2019

Michael Kearns, Yishay Mansour, and Andrew Y Ng. A sparse sampling algorithm for near-optimal
planning in large markov decision processes. Machine learning, 49(2-3):193–208, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Genshiro Kitagawa. The two-filter formula for smoothing and an implementation of the gaussian-sum
smoother. Annals of the Institute of Statistical Mathematics, 46(4):605–623, 1994.

Genshiro Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state space models.
Journal of computational and graphical statistics, 5(1):1–25, 1996.

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart Russell, and Pieter Abbeel. Learning plannable
representations with causal infogan. arXiv preprint arXiv:1807.09341, 2018.

Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood. Auto-encoding sequential
monte carlo. arXiv preprint arXiv:1705.10306, 2017.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Sergey Levine and Vladlen Koltun. Variational policy search via trajectory optimization. In Advances
in Neural Information Processing Systems, pp. 207–215, 2013.

Fredrik Lindsten, Thomas B Schön, et al. Backward simulation methods for monte carlo statistical
inference. Foundations and Trends R© in Machine Learning, 6(1):1–143, 2013.

Fredrik Lindsten, Michael I Jordan, and Thomas B Schön. Particle gibbs with ancestor sampling.
The Journal of Machine Learning Research, 15(1):2145–2184, 2014.

Chris J Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Arnaud Doucet, Andriy Mnih,
and Yee Whye Teh. Particle value functions. arXiv preprint arXiv:1703.05820, 2017a.

Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih,
Arnaud Doucet, and Yee Teh. Filtering variational objectives. In Advances in Neural Information
Processing Systems, pp. 6573–6583, 2017b.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 2775–2785, 2017.

Christian A Naesseth, Scott W Linderman, Rajesh Ranganath, and David M Blei. Variational
sequential monte carlo. arXiv preprint arXiv:1705.11140, 2017.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynam-
ics for model-based deep reinforcement learning with model-free fine-tuning. arXiv preprint
arXiv:1708.02596, 2017.

Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Combining policy
gradient and q-learning. arXiv preprint arXiv:1611.01626, 2016.

Michael K Pitt and Neil Shephard. Filtering via simulation: Auxiliary particle filters. Journal of the
American statistical association, 94(446):590–599, 1999.

Vitchyr Pong. rlkit. https://github.com/vitchyr/rlkit/, 2018.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. An approximate inference approach to
temporal optimization in optimal control. In Advances in neural information processing systems,
pp. 2011–2019, 2010.

11

https://github.com/vitchyr/rlkit/

Published as a conference paper at ICLR 2019

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. In Robotics: science and systems, volume 13, pp.
3052–3056, 2012.

RY Rubinstein and DP Kroese. A unified approach to combinatorial optimization, monte-carlo
simulation, and machine learning. Springer-Verlag New York, LLC, 2004.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-learning.
arXiv preprint arXiv:1704.06440, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Alec Solway and Matthew M Botvinick. Goal-directed decision making as probabilistic inference: a
computational framework and potential neural correlates. Psychological review, 119(1):120, 2012.

Leland Stewart and Perry McCarty. Use of bayesian belief networks to fuse continuous and discrete
information for target recognition, tracking, and situation assessment. In Signal Processing, Sensor
Fusion, and Target Recognition, volume 1699, pp. 177–186. International Society for Optics and
Photonics, 1992.

István Szita and András Lörincz. Learning tetris using the noisy cross-entropy method. Neural
computation, 18(12):2936–2941, 2006.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pp. 4906–4913. IEEE, 2012.

Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal feedback
control of constrained nonlinear stochastic systems. In American Control Conference, 2005.
Proceedings of the 2005, pp. 300–306. IEEE, 2005.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Marc Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of the
26th annual international conference on machine learning, pp. 1049–1056. ACM, 2009.

Marc Toussaint and Christian Goerick. Probabilistic inference for structured planning in robotics.
In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp.
3068–3073. IEEE, 2007.

Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous state
markov decision processes. In Proceedings of the 23rd international conference on Machine
learning, pp. 945–952. ACM, 2006.

Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al.
Imagination-augmented agents for deep reinforcement learning. arXiv preprint arXiv:1707.06203,
2017.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010.

12

Published as a conference paper at ICLR 2019

A APPENDIX

A.1 ABBREVIATION AND NOTATION

Table A.1: Abbreviation

SMCP: Sequential Monte Carlo Planning.
SAC: Soft Actor Critic.

CEM: Cross Entropy Method.
RS: Random Shooting.

MCTS: Monte Carlo Tree Search.
SMC: Sequential Monte Carlo.

SIR: Sequential Importance Resampling.
SIS: Sequential Importance Sampling.

IS: Importance Sampling.
MPC: Model Predictive Control

Table A.2: Notation

x1:T , {si,ai}Ti=1 the state-action pairs.

V , value function.

Ot , Optimality variable.

p(Ot|st,at) , exp(r(st,at)) Probability of a pair state action of being optimal.

penv , Transition probability of the environment. Takes state and action (st,at)
as argument and return next state and reward (st+1, rt).

pmodel , Model of the environment. Takes state and action (st,at) as argument
and return next state and reward (st+1, rt).

wt , Importance sampling weight.

p(x) , Density of interest.

q(x) , Approximation of the density of interest.

t ∈ {1, . . . T} , time steps.

n ∈ {1, . . . N} , particle number.

h , horizon length.

A.2 THE ACTION PRIOR

The true joint distribution 2.1 in section 2.1 should actually be written:

p(x1:T ,O1:T) = µ(s1)

T−1∏
t=1

penv(st+1|at, st)
T∏
t=1

p(at) exp
(T∑
t=1

r(st,at)
)

= µ(s1)

T−1∏
t=1

penv(st+1|at, st) exp
(T∑
t=1

r(st,at) + log p(at)
)

In Mujoco environments, the reward is typically written as

r(st,at) = f(st)− α||at||22

13

Published as a conference paper at ICLR 2019

where f is a function of the state (velocity for HalfCheetah on Mujoco for example). The part α||at||22
can be seen as the contribution from the action prior (here a gaussian prior). One can also consider the
prior to be constant (and potentially improper) so that is does not change the posterior p(x1:T |O1:T).

A.3 VALUE FUNCTION: BACKWARD MESSAGE

p(Ot+1:T |xt) =

∫
xt+1

p(Ot+1:T ,xt+1|xt)dxt+1

=

∫
xt+1

p(xt+1|xt,Ot+1:T)p(Ot+1:T |xt+1)dxt+1

=

∫
st+1

penv(st+1|st,at)
[∫

at+1

p(at+1|st+1,Ot+1:T) expQ(st+1,at+1)dat+1

]
dst+1

=

∫
st+1

penv(st+1|st,at) exp
(
V (st+1)

)
dst+1

= Est+1|st,at [exp
(
V (st+1)

)
] (A.1)

By definition of the optimal value function in (Levine, 2018).

A.4 RECURSIVE WEIGHTS UPDATE

wt =
p(x1:t|O1:T)

q(x1:t)

=
p(x1:t−1|O1:T)

q(x1:t−1)

p(xt|x1:t−1,O1:T)

q(xt|x1:t−1)

= wt−1 ·
p(xt|x1:t−1,O1:T)

q(xt|x1:t−1)

= wt−1
1

q(xt|x1:t−1)

p(x1:t|O1:T)

p(x1:t−1|O1:T)

We use there the forward-backward equation 3.1 for the numerator and the denominator

∝ wt−1
1

q(xt|x1:t−1)

p(x1:t|O1:t)

p(x1:t−1|O1:t−1)

p(Ot+1:T |xt)
p(Ot:T |xt−1)

= wt−1
p(xt|x1:t−1)

q(xt|x1:t−1)
p(Ot|xt)

p(Ot+1:T |xt)
p(Ot:T |xt−1)

= wt−1
penv(st|st−1,at−1)

pmodel(st|st−1,at−1)

exp(rt)

πθ(at|st)
Est+1|st,at [exp

(
V (st+1)

)
]

Est|st−1,at−1
[exp

(
V (st)

)
]

= wt−1
penv(st|st−1,at−1)

pmodel(st|st−1,at−1)
Est+1|st,at [exp

(
rt − log πθ(at|st) + V (st+1)− logEst|st−1,at−1

[exp
(
V (st)

)
]
)
]

(A.2)

A.5 EXPERIMENT DETAILS

Random samples: 1000 transitions are initially collected by a random policy to pretrain the model
and the proposal distribution. After which the agents start following their respective policy.

Data preprocessing: We normalize the observations to have zero mean and standard deviation 1.

Model Predictive Control: The model is used to predict the planning distribution for the horizon
h of N particles. We then sample a trajectory according to its weight and return the first action of this
trajectory. In our experiments, we fix the maximum number of particles for every method to 2500.
For SMCP, the temperature and horizon length are described in Table A.3.

14

Published as a conference paper at ICLR 2019

Soft Actor Critic: We used a custom implementation with a Gaussian policy for both the SAC
baseline and the proposal distribution used for both versions of SMCP. We used Adam (Kingma &
Ba, 2014) with a learning rate of 0.001. The reward scaling suggested by Haarnoja et al. (2018) for
all experiments and used an implementation inspired by Pong (2018). We used a two hidden layers
with 256 hidden units for the three networks: the value function, the policy and the soft Q functions.

Model: We train the model pmodel to minimize the negative log likelihood of p(st+1|st +
∆t(st, at), σt(st, at)). The exact architectures are detailed in Table A.3. We train the model to
predict the distribution of the change in states and learn a deterministic reward function from the
current state and predict the change in state. Additionally, we manually add a penalty on the action
magnitude in the reward function to simplify the learning. At the end of each episode we train the
model for 10 epochs. Since the training is fairly short, we stored every transitions into the buffer. The
model is defined as:

∆st ∼ p(·|st, at) (A.3)

rt = g(st,∆st)− α‖a‖2 (A.4)

where α was taken from the Mujoco gym environments. We used Adam (Kingma & Ba, 2014) with a
learning rate of 0.001 and leaky ReLU activation function.

Environment Temperature Horizon length Number of Dense Layers Layer Dimension

Hopper-v2 1 10 3 256
Walker2d-v2 10 20 3 256
HalfCheetah-v2 10 20 3 256

Table A.3: Hyperparameters for the experiments.

A.6 SEQUENTIAL IMPORTANCE SAMPLING PLANNING

Algorithm 2 SMC Planning using SIS

1: for t in {1, . . . , T} do
2: {s(n)t = st}Nn=1

3: {w(n)
t = 1}Nn=1

4: for i in {t, . . . , t+ h} do
5: // Update
6: {a(n)i ∼ π(a

(n)
i |s

(n)
i)}Nn=1

7: {s(n)i+1, r
(n)
i ∼ pmodel(·|s(n)i ,a

(n)
i)}Nn=1

8: {w(n)
i ∝ w(n)

i−1 · exp
(
A(s

(n)
i ,a

(n)
i , s

(n)
i+1)

)
}Nn=1

9: end for
10: Sample n ∼ Categorical(w(1)

t+h, . . . , w
(N)
t+h).

11: // Model Predictive Control
12: Select at, first action of x(n)

t:t+h

13: st+1, rt ∼ penv(·|st,at)
14: Add (st,at, rt, st+1) to buffer B
15: Update π, V and pmodel with B
16: end for

15

Published as a conference paper at ICLR 2019

A.7 SIGNIFICANCE OF THE RESULTS

The significance of our results is done following guidelines from Colas et al. (2018). We test the
hypothesis that the mean return of our method is superior to the one of SAC. We use 20 random seeds
(from 0 to 19pro) for each method on each environment.

For this we look at the average return from steps 150k to 250k for SIR-SAC and SAC, and conduct a
Welch’s t-test with unknown variance. We report the p-value for each environment tested on Mujoco.
A pval < 0.05 usually indicates that there is strong evidence to suggest that our method outperforms
SAC.

• HalfCheetah-v2: pval = 0.003. There is very compelling evidence suggesting we
outperform SAC.
• Hopper-v2: pval = 0.09. There is no significant evidence suggesting we outperform SAC.
• Walker2d-v2: pval = 0.03. There is compelling evidence suggesting we outperform

SAC.

A.8 ADDITIONAL EXPERIMENTAL RESULTS

A.8.1 EFFECTIVE SAMPLE SIZE

0.0 0.5 1.0 1.5 2.0 2.5
step 1e5

0.10

0.12

0.14

0.16

0.18

es
s

HalfCheetah-v2

algo
sir_sac

Figure A.1: Effective sample size for HalfCheetah. The shaded area represents the standard deviation
over 20 seeds.

The values reported on Figure A.1 are the harmonic mean of the ratio of the effective sample size by
the actual number of particles.

More precisely the values are

yt =
(h∏
i=1

ESSi(t)/N
)1/h

where i is the depth of the planning, N is the number of particles and

ESSi(t) =
(
∑N
n=1 w

(n)
t+i)

2∑N
n=1(w

(n)
t+i)

2

We can see that as the proposal distribution improves the ESS also increases. The ESS on HalfCheetah
is representative of the one obtained on the other environments. While these values are not high, we
are still around 15% thus we do not suffer heavily from weight degeneracy.

A.8.2 MODEL LOSS

We also report the negative log likelihood loss of the environment’s model during the training on
Figure A.2.

16

Published as a conference paper at ICLR 2019

0.0 0.5 1.0 1.5 2.0 2.5
step 1e5

1.2

1.0

0.8

0.6

0.4

0.2

m
od

el
 lo

g
lik

el
ih

oo
d

HalfCheetah-v2

algo
sir_sac

Figure A.2: Negative log likelihood for the model on HalfCheetah. The shaded area represents the
standard deviation over 20 seeds.

17

	Introduction
	Background
	Control as inference
	Sequential Monte Carlo methods

	Planning as probabilistic inference
	Planning and Bayesian smoothing
	The backward message and the value function
	Sequential weight update
	Sequential Monte Carlo Planning Algorithm
	Optimism bias and control as inference

	Experiments
	Toy example
	Continuous Control Benchmark

	Related Work
	Conclusion and Future Work
	Appendix
	Abbreviation and Notation
	The action prior
	Value function: backward message
	Recursive weights update
	Experiment Details
	Sequential Importance Sampling Planning
	Significance of the results
	Additional experimental results
	Effective Sample Size
	Model loss

