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Fake Sentence Detection as a Training Task for Sentence Encoding
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Abstract

Sentence encoders are typically trained on lan-
guage modeling tasks which enable them to
use large unlabeled datasets. While these mod-
els achieve state-of-the-art results on many
sentence-level tasks, they are difficult to train
with long training cycles. We introduce fake
sentence detection as a new training task for
learning sentence encodings. We automati-
cally generate fake sentences by corrupting
some original sentence and train the encoders
to produce representations that are effective at
detecting fake sentences. This binary classi-
fication task allows for efficient training and
forces the encoder to learn the distinctions in-
troduced by a small edit to sentences. We
train a basic BiLSTM encoder to produce
sentence representations and find that it out-
performs a strong sentence encoding model
trained on language modeling tasks, while also
training much faster on smaller amount of data
(20 hours instead of weeks). Further analy-
sis shows the learned representations capture
many syntactic and semantic properties ex-
pected from good sentence representations.

1 Introduction

Unsupervised sentence encoders are trained on
language modeling tasks where the encoded sen-
tence representations are used to either recon-
struct the input sentence (Hill et al., 2016) or gen-
erate neighboring sentences (Kiros et al., 2015;
Hill et al., 2016). This enables encoders to cre-
ate representations such that sentences that simi-
lar in meaning or topic are closer in the embed-
ded space. The trained representations achieve the
best performance on many sentence-level predic-
tion tasks (Hill et al., 2016).

However, this language modeling based train-
ing is problematic in two respects: 1) Training
a language model to predict over larger contexts
(neighboring sentences) requires large amounts of

training data and time. Predicting neighboring
sentences is a difficult and under-constrained task
as there can be many valid possibilities for nearby
sentences for any particular input sentence. 2)
There is nothing explicit in the training task to
force the encoder to learn fine grained distinctions
between sentences that are mostly similar, a re-
quirement often needed in downstream applica-
tions such as natural language inference (NLI).

In this paper we introduce an unsupervised dis-
criminative training task, fake sentence detection,
which is aimed at learning representations that
distinguish sentences that are mostly similar in
their words but may differ significantly in mean-
ing or structure. The main idea is to generate
fake sentences by corrupting an original sentence.
We use two methods to generate fake sentences:
word shuffling where we swap the positions of two
words at random and word dropping, where we
drop a word at random from the original sentence.

This training task formulation has two key ad-
vantages: (i) Corrupting a sentence can lead to
break in syntactic coherence (e.g. missing a verb)
leading to a malformed sentence or can cause a
big change in the semantics (e.g., swapping sub-
jects with object can be relevant for NLI) or a mi-
nor but meaningful distinction (e.g., dropping an
adjective can be relevant for sentiment). In ex-
tremely rare cases the meaning may not change
at all. Given that the sentences are going to be
mostly similar (every pair is within a edit distance
of two), for the encoder to be successful it must
learn to tease apart the compositional aspects of
meaning and explicitly learn to detect these small
but meaningful shifts. (ii) This binary classifica-
tion task can be modeled with fewer parameters in
the output layer and can be trained more efficiently
compared to the language modeling training tasks
where the output layer has many parameters de-
pending on the vocabulary size.
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Given a large unlabeled corpus, for every orig-
inal sentence, we add multiple fake sentences.
The training task is then to take any given sen-
tence as input and predict whether it is a real
or fake sentence. We train a bidirectional long
short term memory network (BiLSTM) encoder
that produces a representation of the input sen-
tence, which is then used by a three-layer feed-
forward network for prediction. We then evaluate
this trained encoder without any further tuning on
multiple sentence-level tasks and test for syntac-
tic and semantic properties which demonstrate the
benefits of fake sentence training.

In summary, this paper makes the following
contributions: 1) Introduces fake sentence detec-
tion as an unsupervised training task for learning
sentence encoders that can distinguish between
small changes in mostly similar sentences. 2) An
empirical evaluation on multiple sentence-level
tasks showing representations trained on the fake
sentence tasks outperform a strong baseline model
trained on language modeling tasks, even when
training on small amounts of data (1M vs. 64M
sentences) reducing training time from weeks to
within 20 hours.

2 Related Work

Previous sentence encoding approaches can be
broadly classified as supervised (Conneau et al.,
2017; Cer et al., 2018; Marcheggiani and Titov,
2017; Wieting et al., 2015), unsupervised (Kiros
et al., 2015; Hill et al., 2016) or semi-supervised
approaches (?Peters et al., 2018; Dai and Le, 2015;
Socher et al., 2011). The supervised approaches
train the encoders on tasks such as NLI and use
transfer learning to adapt the learned encoders to
different downstream tasks. The unsupervised ap-
proaches extend the skip-gram (Mikolov et al.,
2013) to the sentence level, and use the sen-
tence embedding to predict the adjacent sentences.
Skipthought (Kiros et al., 2015) uses a BiLSTM
encoder to obtain a fixed length embedding for a
sentence, and uses a BiLSTM decoder to predict
adjacent sentences. Training Skipthought model
is expensive, and one epoch of training on the
Toronto BookCorpus (Zhu et al., 2015) dataset
takes more than two weeks (Hill et al., 2016) on
a single GPU. FastSent (Hill et al., 2016) uses
embeddings of a sentence to predict words from
the adjacent sentences. A sentence is represented
by simply summing up the word representation

of all the words in the sentence. FastSent re-
quires less training time than Skipthought, but
FastSent has worse performance. Semi-supervised
approaches train sentence encoders on large unla-
beled datasets, and do a task specific adaptation
using labeled data.

In this work, we propose an unsupervised sen-
tence encoder that takes around 20 hours to train
on a single GPU, and outperforms Skipthought
and FastSent encoders on multiple downstream
tasks. Unlike the previous unsupervised ap-
proaches, we use the binary task of real versus fake
sentence classification to train a BiLSTM based
sentence encoder.

3 Training Tasks for Encoders

We propose a discriminative task for training sen-
tence encoders. The key bottleneck in training
sentence encoders is the need for large amounts of
labeled data. Prior work use language modeling
as a training task leveraging unlabeled text data.
Encoders are trained to produce sentence repre-
sentations which are effective at either generating
neighboring sentences (e.g., Skipthought (Kiros
et al., 2015) or at least effective at predict the
words in the neighboring sentences (Hill et al.,
2016).The challenge becomes one of balance be-
tween model coverage (i.e. the number of output
words it can predict) and model complexity (i.e.
the number of parameters need for prediction).

Rather address the language modeling chal-
lenges, we instead propose a simpler training task
that requires making a single prediction over an in-
put sentence. In particular, we propose to learn a
sentence encoder by training a sequential model
to solve the binary classification task of detect-
ing whether a given input sentence is fake or real.
This real-fake sentence classification task would
perhaps be trivial if the fake sentences look very
different from the real sentences. We propose
two simple methods to generate noisy sentences
which look mostly similar to real sentences. We
describe the noisy sentence generation strategies
in Section 3.1. Thus, we create a labeled dataset
of real and fake sentences, and train a sequential
model to distinguish between real and fake sen-
tences, which results in a model whose classifica-
tion layer has far fewer parameters than previous
language model based encoders. Our model archi-
tecture is described in Section 3.2.
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Figure 1: Figure shows the block diagram of the encoder and
fully connected layers. Encoder consists of a bidirectional
LSTM followed by a max pooling layer. For classification,
we use a MLP with two hidden layers.

3.1 Fake Sentence Generation

For a sentence X = w1, w2, . . . , wn comprising
of n words, we consider two strategies to generate
a noisy version of the sentence: 1) WordShuffle:
randomly sample two indices i and j correspond-
ing to words wi and wj in X , and shuffle the words
to obtain the noisy sentence X̂ . Noisy sentence X̂
would be of the same length as the original sen-
tence X . 2) WordDrop: randomly pick one in-
dex i corresponding to word wi and drop the word
from the sentence to obtain X̂ . Note there can be
many variants for this strategy but here we experi-
ment with this basic choice.

3.2 Real Versus Fake Sentence Classification

Figure 1 shows the proposed architecture of our
fake sentence classifier with an encoder and a
Multi-layer Perceptron(MLP) with 2 hidden lay-
ers. The encoder consists of a bidirectional LSTM
followed by a max pooling layer. At each time step
we concatenate the forward and backward hidden
states to get ui = (

−→
hi ,
←−
hi ). We apply max-pooling

to these concatenated hidden states to get a fixed
length representation (z), which we then use as in-
put to a MLP for classifying into real/fake classes.

4 Evaluation Setup

Downstream Tasks: We compare the sentence
encoders trained on a large collection (BookCor-
pus (Zhu et al., 2015)) by testing them on mul-
tiple sentence level classification tasks (MR, CR,
SUBJ, MPQA, TREC, SST) and one NLI task de-
fined over sentence-pairs (SICK). We also eval-
uate the sentence representations for image and
caption retrieval tasks on the COCO dataset (Lin
et al., 2014). We use the same evaluation protocol

and dataset split as (Karpathy and Fei-Fei, 2015;
Conneau et al., 2017). Table 1 lists the classifica-
tion tasks and the datasets. We also compare the
sentence representations for how well they capture
important syntactic and semantic properties using
probing classification tasks (Conneau et al., 2018).
For all downstream and probing tasks, we use the
encoders to obtain representation for all the sen-
tences, and train logistic regression classifiers on
the training split. We tune the L2-norm regularizer
using the validation split, and report the results on
the test split.

Name Size Task Classes
MR 11K Sentiment 2
CR 4K Product Review 2

TREC 11K Question type 6
SST 70K Sentiment 2

MPQA 11K Opinion Polarity 2
SUBJ 10K Subjectivity 2
SICK 10K NLI 3

COCO 123K Retrieval -

Table 1: Downstream tasks and datasets.
Training Corpus: The FastSent and

Skipthought encoders are trained on the full
Toronto BookCorpus of 64M sentences (Zhu
et al., 2015). Our models, however, train on a
much smaller subset of only 1M sentences.

Sentence Encoder Implementation: Our sen-
tence encoder architecture is the same as the
BiLSTM-max model (Conneau et al., 2017). We
represent words using 300-d pretrained Glove em-
beddings (Pennington et al., 2014). We use a
single layer BiLSTM model, with 2048-d hidden
states. The MLP classifier we use for fake sen-
tence detection has two hidden layers with 1024
and 512 neurons. We train separate models for
word drop and word shuffle. The models are
trained for 15 epochs with a batch size of 64 us-
ing SGD algorithm, when training converges with
a validation set accuracy of 87.2 for word shuffle.
The entire training completes in less than 20 hours
on a single GPU machine.

Baseline Approaches: We compare our results
with previous unsupervised sentences encoders,
Skipthought (Kiros et al., 2015) and FastSent (Hill
et al., 2016). We use the FastSent and Skipthought
results trained on the full BookCorpus as men-
tioned in (Conneau et al., 2017).

5 Results

Classification and NLI: Results are shown in
Table 2. Both fake sentence training tasks yield
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Model MR CR TREC SST MPQA SUBJ SICK COCO-Cap COCO-Img
FastSent 70.8 78.4 80.6 - 80.6 88.7 - - -
Skipthought (full) 76.5 80.1 92.2 82.0 87.1 93.6 82.3 72.2 66.2
Skipthought (1M) 65.2 70.9 79.2 66.9 81.6 86.1 75.6 - -
WordDrop 78.8 82.2 86.6 82.9 89.8 92.7 83.2 73.8 67.3
WordShuffle 79.8 82.4 88.4 82.4 89.8 92.6 82.3 74.2 67.3

Table 2: Results on downstream tasks: Bold face indicates best result and underlined results show when
fake sentence training is better than Skipthought (full). COCO-Cap and COCO-Img are caption and
image retrieval tasks on COCO. We report Recall@5 for the COCO retrieval tasks.

Model SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv
Skipthought (full) 85.4 79.6 41.1 82.5 69.6 90.4 85.6 83.6 53.9 69.1
Skipthought (1M) 54.7 33.9 30.0 60.7 58.9 85.3 76.4 70.9 51.9 61.4
WordDrop 86.7 90.1 48.0 81.9 73.2 87.7 87.3 82.7 59.2 70.6
WordShuffle 84.9 91.2 48.8 82.3 79.9 88.2 86.7 83.3 59.8 70.7

Table 3: Probing task accuracies. Tasks: SentLen: predict sentence length, WC: is word in sentence,
TreeDepth: depth of syntactic tree, TopConst: predict top-level constituent, BShift: is bigram in flipped
in sentence, Tense: predict tense of word, Subj(Obj)Num: singular or plural subject, SOMO: semantic
odd man out, CoordInv: is co-ordination is inverted.

better performance on five out of the seven lan-
guage tasks when compared to Skipthought (full),
i.e., even when it is trained on the full BookCor-
pus. Word drop and word shuffle performances are
mostly comparable. The Skipthought (1M) row
shows that training on a sentence-level language
modeling task can fare substantially worse when
trained on a smaller subset of data. FastSent, while
easier to train and has faster training cycles, is bet-
ter than Skipthought (1M) but is worse than the
full Skipthought model.

Image-Caption Retrieval: On both caption and
image retrieval tasks (last 2 columns of Ta-
ble 2), fake sentence training with word drop-
ping and word shuffle are better than the published
Skipthought results.

Probing Tasks: Table 3 compares sentence
encoders using the recently proposed probing
tasks (Conneau et al., 2018). The goal of each
task is to use the input sentence encoding to pre-
dict a particular syntactic or semantic property of
the original sentence it encodes (e.g., predict if
the sentence contains a specific word). Encodings
from fake sentence training score higher in six out
of the ten tasks. WordShuffle encodings are signif-
icantly better than Skipthought in some semantic
properties: tracking word content (WC), bigram
shuffles (BShift), semantic odd man out (SOMO).
Skipthought and WordShuffle are comparable on
syntactic properties: agreement (SubjNum, Ob-
jNum, Tense, and CoordInv). The only exception
is TreeDepth, where WordShuffle is substantially

Shuffled Sentence WS ST
It shone the in light . X ×
I seized the and sword leapt

X ×
to the window .
Once again Amadeus held out

X X
arm his .
When we get inside , I know that × X
I have to leave and Marceline find .

Table 4: Word shuffle (WS) and Skipthought (ST) perfor-
mance on BShift. Underlined positions are swapped.

better. Table 4 shows examples of the BShift task
and cases where the word shuffle and Skipthought
models fail. In general we find that word shuffle
works better when shifted bigrams involve prepo-
sitions, articles, or conjunctions.

6 Conclusions

Using language modeling tasks to learn sentence
representations is challenging because learning to
generate nearby sentences is a difficult under-
constrained task. This work introduced an un-
supervised training task, fake sentence detection,
where the sentence encoders are trained to produce
representations which are effective at detecting if
a given sentence is an original or a fake. This leads
to better performance on downstream tasks and is
able to represent semantic and syntactic proper-
ties, while also reducing the amount of training
needed. More generally the results suggest that
tasks which test for different syntactic and seman-
tic properties in altered sentences can be useful for
learning effective representations.
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