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Abstract
Individuals with type 1 diabetes (T1D) lack the
ability to produce the insulin their bodies need.
As a result, they must continually make decisions
about how much insulin to self-administer in order
to adequately control their blood glucose levels.
Longitudinal data streams captured from wear-
ables, like continuous glucose monitors, can help
these individuals manage their health, but cur-
rently the majority of the decision burden remains
on the user. To relieve this burden, researchers
are working on closed-loop solutions that com-
bine a continuous glucose monitor and an insulin
pump with a control algorithm in an ‘artificial
pancreas.’ Such systems aim to estimate and de-
liver the appropriate amount of insulin. Here,
we investigate the utility of reinforcement learn-
ing (RL) techniques for automated blood glucose
control. Through a series of experiments, we
compare the performance of different deep RL ap-
proaches to non-RL approaches. We find that the
RL approaches are competitive with the baselines
(achieving an average risk across three patients
of 8.56 vs. the baseline 8.48) and are better able
to handle latent behavioral patterns (improving
risk in one patient to 9.26 vs. the baseline 11.80).
These preliminary results suggest that RL could
be useful for improving blood glucose control
algorithms.

1. Introduction
Type 1 diabetes (T1D) is a chronic disease affecting 20-40
million people worldwide (You & Henneberg, 2016), and its
rate of occurrence is increasing (Tuomilehto, 2013). People
with T1D cannot produce insulin, a hormone that signals
cells to uptake glucose in the bloodstream. Without insulin,
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the body must metabolize energy in other ways that, when
relied on repeatedly, can lead to life-threatening conditions
(Kerl, 2001). Moreover, the accumulation of glucose in the
blood stream can lead to hyperglycemia, and this in turn
can lead to nerve, eye, heart, and kidney damage (DeFronzo
et al., 2015). Tight blood glucose control with insulin injec-
tions can help (Control et al., 1995), but intensive control
can increase risk of hypoglycemia (i.e., low blood sugar),
which in turn can lead to increased risk of heart disease,
seizures, and sudden death.

To safely and appropriately control blood glucose levels,
individuals with T1D must continually make decisions about
how much insulin to self-administer. This requires careful
measurement of glucose levels and carbohydrate intake,
resulting in at least 15-17 data points a day. If the individual
uses a continuous glucose monitor (CGM), this can increase
to over 300 data points, or a blood glucose reading every 5
minutes (Coffen & Dahlquist, 2009).

Combined with an insulin pump, a wearable device that
automates the delivery of insulin, CGMs present an oppor-
tunity for closed-loop control. Such a system, known as
an ‘artificial pancreas’ (AP), automatically anticipates the
amount of required insulin and delivers the appropriate dose.
This would be life-changing for many individuals, since
it would relieve the decision burden placed on those with
T1D. For many years, researchers have worked towards the
creation of an AP for blood glucose control (Kadish, 1964;
Bequette, 2005; Bothe et al., 2013). Though the technol-
ogy behind CGMs and insulin pumps has advanced, there
remains significant room for improvement when it comes
to the control algorithms (Bothe et al., 2013; Pinsker et al.,
2016). Current approaches cannot leverage latent behavioral
patterns, nor can they easily incorporate additional useful
signals (e.g., physical activity).

In this work, we investigate the utility of a reinforcement
learning (RL) based approach for blood glucose control
(Bothe et al., 2013). RL is particularly well-suited for this
task because it: i) can readily incorporate additional data
streams (as part of the state representation), ii) makes mini-
mal assumptions about the structure of the underlying pro-
cess, allowing the same system to adapt to different individ-
uals or to changes in individuals over time, and iii) can learn
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to leverage patterns such as regular meal times. Finally, it
can take advantage of existing FDA-approved simulators for
model training. Given that RL is a viable adaptive control
method across a variety of tasks (Silver et al., 2018; Ra-
jeswaran et al., 2018), we hypothesize that it can be used to
learn high-performance blood glucose control algorithms.

To test this hypothesis, we evaluate model-free RL algo-
rithms for blood glucose control. In our experiments, we
leverage an FDA-approved simulator for the glucoregula-
tory system that simulates 30 different patients (10 children,
10 adolescents, and 10 adults). We present empirical results
from three different RL-based approaches. In addition, we
compare to several non-RL baselines including a ‘basal-
bolus’ (BB) controller and a proportional-integral-derivative
(PID) control algorithm. Preliminary results suggest that at
least in some settings, RL can lead to better policies com-
pared to non-RL baselines (average risk 9.26 vs. 11.80).
Going forward, in the context of diabetes, RL could be used
to more effectively adapt to latent behavioral patterns.

2. Background and Related Works
In recent years, RL (and in particular deep RL) has had a
number of successes (e.g., Alpha Go (Silver et al., 2018)
and Atari (Mnih et al.)). Within an RL framework, one
seeks a mapping from some set of observations describing
the current state (e.g., current blood glucose and historical
insulin levels) to an action (e.g., bolus of insulin) that maxi-
mizes some notion of reward (e.g., precise glucose control).
Within healthcare and medicine, researchers have started
to explore the RL framework as a solution for matching
patients to treatment, since it naturally reframes the problem
from a diagnosis-based problem to an action-based problem
(Komorowski et al., 2018).

Despite its success in other domains, RL has yet to be fully
explored as a solution for a closed-loop AP system (Bothe
et al., 2013). RL is a promising approach to this task, as
it is well-suited to learning complex behavior that readily
adapts to changing domains (Clavera et al., 2018), but can
be limited by the amount of data required to learn effec-
tive policies. However, unlike many other disease settings,
there exist credible simulators for the glucoregulatory sys-
tem (Visentin et al., 2014). These simulators have been used
before for learning problems. Specifically, researchers have
investigated the use of off-policy evaluation for discovering
good open-loop control parameters in diabetes simulations
(Thomas & Brunskill, 2017). But, we are unaware of work
using these simulators to learn blood glucose control poli-
cies with deep RL.

2.1. Current AP algorithms

There have been three main branches of techniques used
to create APs: PID control (Steil, 2013), model predictive
control (MPC) (Bequette), and fuzzy logic (FL) (Atlas et al.,
2010). PID controllers are by far the most common (Steil,
2013), and as a result we focus on them here. The simplicity
of PID controllers make them easy to use, and in practice
they achieve strong results. For example, the Medtronic
Hybrid Closed-Loop system, one of the few commercially
available, is built on a PID controller (Garg et al., 2017;
Ruiz et al., 2012). The main weakness of a PID controller,
in the setting of blood glucose control, is their reactivity.
As they only respond to current glucose values (including
a derivative), they cannot respond fast enough to meals to
satisfactorily control postprandial excursions without meal
announcements (Garg et al., 2017), and without additional
safety modifications can overcorrect for these spikes, trig-
gering postprandial hypoglycemia (Ruiz et al., 2012). In
contrast, we hypothesize that an RL approach will be able
to leverage patterns associated with meal times, resulting in
better policies that can anticipate meals.

2.2. Glucose Models and Simulation

Models of the blood glucose system have long been seen as
an important component for the development and testing of
an AP (Cobelli et al., 1982). Models can be used as simula-
tion environments for testing the efficacy of control systems
(Kovatchev et al., 2009), as controllers for administering
insulin (Bequette), or as tools to gain a deeper understand-
ing of the physiological processes at work (Bergman, 1989).
Current models are built using a combination of rigorous
experimentation and expert knowledge of the underlying
physiological phenomena. Typical models are built on an
underlying multi-compartment model, with various sources
and sinks corresponding to physiological phenomena, in-
volving often dozens of patient-specific parameters. One
such simulator, the one we use in our experiments, is the
UVA/Padova model (Kovatchev et al., 2009). We explain
this simulator in greater detail in Section 3.1.

3. Methods
In this work, we examine the use of RL and non-RL con-
trol algorithms for blood glucose control. We begin by
formalizing the problem. We then present two baselines:
an analogue to human-control in the form of a basal-bolus
controller and a PID controller. Finally, we describe three
deep Q-network (DQN) implementations that vary in terms
of architecture and state representation.
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Figure 1. The risk function proposed in (Clarke & Kovatchev).
This shows the mapping between blood glucose values (in mg/dL,
x-axis) and Risk values (y-axis). The hypo- and hyperglycemic
thresholds are shown in vertical lines, they correspond to a risk
value of 7.75.

3.1. Problem Setup

We frame the problem of blood glucose control as a
Markov decision process (MDP) consisting of the 4-tuple
(S,A, P,R). Our precise formulation of this problem varies
depending on the method and setting. Here, we describe
the standard formulation, and explain further differences as
they arise. States st ∈ S consist of the previous 24 hours of
blood glucose and insulin data at the resolution of 5-minute
intervals: st = [bt, it] where:

bt = [bt−287, bt−286, . . . bt], i
t = [it−287, it−286, . . . it]

and bt ∈ N40:400, it ∈ R+, t ∈ N0:288 and represents a
time index for a day at 5-minute resolution.

Actions at ∈ A are real positive numbers, denoting the
size of the insulin bolus in medication units. The transition
function P consists of two elements: i) G : (at, ct) →
(bt+1, it+1), where ct ∈ R+ is the amount of carbohydrates
input at time t, G is a model of the glucoregulatory system,
its behavior is defined in accordance with the UVA/Padova
simulator (Kovatchev et al., 2009), ii) M : t → ct is the
meal schedule, and is defined according to Algorithm 1.
Note the specific numbers are largely derived from the im-
plementation of (Xie, 2018). The reward function R is
defined according to risk(bt+1)− risk(bt) where risk is
the asymmetric blood glucose risk function defined as:

risk(b) = 10 ∗ (1.509 ∗ log(b)1.084 − 5.381)

shown in Figure 1 (Clarke & Kovatchev). Note that our
implementation of the UVA/Padova simulator builds off the
open-source implementation of (Xie, 2018).

Briefly, the simulator models the glucoregulatory system
as a nonlinear multi-compartment system, where glucose is

Algorithm 1 Generate Meal Schedule
Input: body weight w, number of days n
MealOcc = [0.95, 0.3, 0.95, 0.3, 0.95, 0.3]
TimeLowerBounds = [5, 9, 10, 14, 16, 20] ∗ 12
TimeUpperBounds = [9, 10, 14, 16, 20, 23] ∗ 12
TimeMean = [7, 9.5, 12, 15, 18, 21.5] ∗ 12
TimeStd = [1, .5, 1, .5, 1, .5] ∗ 12
AmountMean = [0.7, 0.15, 1.1, 0.15, 1.25, 0.15] ∗ w
AmountStd = AmountMean ∗ 0.15
Days = []
for i ∈ [1, . . . , n] do
M = [0]288j=1

for j ∈ [1, . . . , 6] do
m ∼ Binomial(MealOcc[j])
lb = TimeLowerBounds[j]
ub = TimeUpperBounds[j]
µt = TimeMean[j]
σt = TimeStd[j]
µa = AmountMean[j]
σa = AmountStd[j]
if m then
t ∼ Round(TruncNormal(µt, σt, lb, ub))
c ∼ Round(max(0, Normal(µa, σa)))
M [t] = c

end if
end for
Days.append(M)

end for

generated through the liver and absorbed through the gut and
is controlled by externally administered insulin. A more de-
tailed explanation can be found in (Kovatchev et al., 2009).
The version of the UVA/Padova simulator we use comes
with 30 virtual patients, each of which consists of several
dozen parameters fully specifying the glucoregulatory sys-
tem. The patients are divided into three classes: children,
adolescents, and adults, each category with 10 patients.

3.2. Basal-Bolus Baseline

This baseline is designed to mimic human control and is
typical of how an individual with T1D currently controls
their blood glucose. In this setting, we modify the stan-
dard state representation to include a carbohydrate signal
and a cooldown signal (explained below), and to remove
all non-current measurements st = [bt, it, ct, cooldown].
Note that this inclusion means this is not a ‘closed-loop’
control scheme, as the burden to provide information on
carbohydrates falls on the individual. Each virtual patient
in the simulator comes with the parameters necessary to
calculate optimal basal insulin rates bas, a correction fac-
tor CF , and carbohydrate ratio CR. These three param-
eters, together with a glucose target bg define a policy
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π(st) = bas+(ct > 0) ∗ ( ct
CR + cooldown ∗ bt−bg

CF ) where
cooldown is 1 if there have been no meals in the past three
hours, otherwise it is 0. This ensures that each meal is only
corrected for once, otherwise meals close in time could lead
to over-correction and hypoglycemia.

3.3. PID Baseline

Variants of PID controllers are already used in commercial
AP applications (Garg et al., 2017). A PID controller oper-
ates by setting the control variable, here at, to the weighted
combination of three terms at = kPP (b)+kII(b)+kDD(b)
such that the process variable bt (where t is again the
time index) remains close to a specified setpoint bg. The
terms are calculated as follows: i) the proportional term
P (bt) = max(0, bt − bg) increases the control variable
proportionally to the distance from the setpoint, ii) the inte-
gral term I(bt) =

∑t
j=0(bj − bg) acts to correct long-term

deviations from the setpoint, and iii) the derivative term
D(bt) = |bt − bt−1| acts to control a basic estimate of
the future, here approximated by the rate of change. The
set point and the weights (also called gains) kP , kD, kI are
hyperparameters. In our experiments, we set these hyper-
parameters using multiple iterations of grid-search (using
training seeds for the environment) with exponential refine-
ment between iterations.

3.4. Q Learning

3.4.1. GENERAL FORMULATION

Within a Q-learning framework (Watkins & Dayan, 1992),
the state-action value function Q(s, a) is learned through
temporal-difference updates: Q(st, at) = R(st, at) + (1−
γ)maxa∗∈AQ(st+1, a

∗) where R is the reward function
described above. From this Q-function, one can extract the
optimal policy as π∗(st) = argmaxa∈AQ(st, a). Note that
this formulation requires discrete action bins. Here, we used
an action bin formulation based on the per-patient basal rate
used for the basal-bolus controller, bas. We discritized the
action space into three bins: {0, bas, 5 ∗ bas}. This could
disadvantage the Q-learning based approaches relative to
the baselines, which use a continuous action space. We
explored the use of policy-gradient methods which allow
for continuous control, but failed to achieve comparable
performance.

3.5. Oracle Q Learning

A deep RL approach to learning AP algorithms necessitates
two functioning parts: i) the representation learned by the
network must contain sufficient information to control the
system, and ii) an appropriate control algorithm must be
learned from interaction. As we are working with a simu-
lator, we first explore the difficulty of task (ii) in isolation,

by replacing the state st with the ground-truth state of the
simulator at time t, which is a 13-dimensional vector with
real valued elements representing glucose, carbohydrate,
and insulin values in different compartments of the body.
Though this representation is not available for real applica-
tions, it approximates an upper limit of performance with
our current learning framework. The Q network is a fully-
connected network with two hidden layers, each with 256
units.

3.6. Deep Q Learning

In our full Q-learning approach, we use our original defini-
tion of state, which includes the past 24 hours of CGM and
insulin data (note: no carbohydrate information). This setup
is both plausible for real-world applications, and allows for
fully closed-loop operation. We investigate using a 1d-CNN
and GRU for our deep Q network, as these types of architec-
tures have successfully been applied to blood glucose data
in the past (Fox et al.; Zhu et al., 2018).

3.7. Experimental Setup & Evaluation

To measure the utility of deep RL for the task of blood
glucose control, we learned policies using the approaches
described above, and tested these policies on simulated
data with different random seeds across several different
individuals.

We trained our models for 800 epochs (batch size 128)
with an experience replay buffer of size 30k and a discount
factor of 0.99. We trained our RL models using ε-greedy
exploration with ε = 0.05. We optimized the Huber loss
of our temporal difference predictions using Adam with a
learning rate of 10−3 for the CNN and 10−5 for the GRU
(chosen using performance on training seeds). Our networks
were initialized using PyTorch defaults.

Our network architectures were as follows:

Oracle-Q Network: A 2 layer fully connected network
with 256 units, batch norm, and ReLU nonlinearities.

CNN-Q: A 1-d CNN with two blocks, each consisting of 2
iterations of alternating width-3 32-channel convolutional
layers and batch norm/ReLU, followed by width-2 max
pooling. This is followed by a fully connected layer with
512 units with batch norm, ReLU, and dropout (with p =
0.2), and finally a fully connected output layer.

GRU-Q: Our GRU has 2 recurrent layers of size 128 fol-
lowed by a fully connected output layer.

We evaluated policies on 10 continuous simulation days
using average risk (see Figure 1). Due to computational
costs, we were unable to learn CNN-Q and GRU-Q networks
for all patients, thus in those experiments, we focused on a
subset of patients (one child, one adult, and one adolescent).
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Figure 2. The average risk over 10 days from different methods on different simulated patients. Each point corresponds to a different
random seed, that controls initialization, the meal schedule, and randomness in training. On average, the Oracle Q method does the best,
though it occasionally fails catastrophically by providing far too much insulin.

4. Results
We investigate the performance of different policies in sev-
eral stages. In the first stage, we compare the performance
of the ‘basal-bolus’ controller, the PID, and the oracle DQN
across all thirty patients. In the second stage, we compare to
the CNN-Q and GRU-Q on a subset of patients. Finally, we
show how the uncertainty of the meal schedule can affect
the performance of controllers in different ways.

4.1. Baseline Models vs. Oracle DQN

Results comparing the basal-bolus and PID baselines to
the oracle Q network are given in Figure 2. Each point
represents a different policy, resulting from a different ini-
tialization. Despite the variation across initializations, a
clear tread emerges: closed-loop control algorithms that can
deliver frequent small doses of insulin can significantly out-
perform a ‘basal-bolus’ controller (oracle Q outperforms in
82/90 runs). This suggests that, in addition to relieving deci-
sion burden, AP systems could lead to overall better blood
glucose control. In addition, the policy learned using the
oracle Q outperformed the simple PID controller, reducing
risk in 68/90 runs across the thirty patients. Recall, that the
Oracle Q network has access to the ground truth state, but
does not have access to the future (i.e., does not know when
a meal is coming until it sees it), so we do not expect perfect
control. The average risk for most individuals is above the
risk threshold for hyper/hypoglycemia of 7.75. This is far
from the optimal level of control. However, it is not the
case that all time is spent hypo/hyperglycemic. Across pa-
tients, approximately 60-80% of time is spent euglycemic.

If insulin is not given well in advance of meals, glucose can
increase significantly for a brief period of time, leading to
elevated average/mean risk. This skews the distribution of
risk towards hyperglycemia and therefore increased risk.

4.2. Baseline Models vs. DQN

To explore the ability of the DQN to learn the necessary rep-
resentations, we next compare the two non-oracle architec-
tures CNN-Q and GRU-Q to the oracle DQN in addition to
the other baselines. Again, we limit our evaluation to three
simulated patients ‘Adolescent 1’, ‘Adult 1’, and ‘Child 3.’
We selected Child 3 over Child 1, as a previous iteration of
the PID controller was unable to achieve stable performance
on Child 1 (this has since been corrected).

We present our results in terms of average risk across 10
heldout days of simulation in Table 1. Without additional
information, we do not observe that either non-oracle DQN
consistently outperforms the PID across the three patients.
The DQN using a GRU outperformed the CNN, slightly
outperforming the PID for Adolescent 1 (mean average risk
1.59 vs. 2.02) and performing slightly worse on Child 3 and
Adult 1 (respectively, mean average risk 11.53 vs. 11.11,
and mean average risk 12.55 vs. 12.30).

4.3. Ability to Adapt to Meals

One of the main potential advantages of RL is its ability to
adapt to underlying behavioral patterns. To investigate this
potential benefit, we explored changing the meal schedule
generation procedure outlined in Algorithm 1 for Adult 1.
We removed the ‘snack’ meals (those with occurrence prob-



Reinforcement Learning for Blood Glucose Control

Table 1. Average risk over 10 days of simulation. Each entry contains the result from three random seeds (sorted low to high). The
approach with the best average score is underlined, the second best is bolded. Across all patients the Oracle-Q network performs the best.
Among the realistic methods, the PID has the best average performance in Child 3 and Adult 1, and the GRU-Q has the best average
performance in Adolescent 1.

Person Child#003 Adolescent#001 Adult#001
BB 13.69, 14.38, 15.93 4.68, 4.83, 5.01 14.00, 15.51 , 15.61
PID 11.02, 11.08, 11.23 1.90, 2.04, 2.12 12.00, 12.39, 12.53
Oracle-Q 7.79, 7.81, 8.74 0.98, 1.01, 1.15 8.67, 8.94, 9.10
CNN-Q 11.45, 12.78, 13.32 2.08, 3.45, 4.38 12.20, 12.45, 15.95
GRU-Q 9.83, 11.41, 13.38 1.46, 1.62, 1.70 12.20, 12.56, 12.88

abilities of 0.3) and set all meal occurrence probabilities
to 1 and meal amount standard deviations to 0, leaving us
with 3 fixed sized meals occurring at variable times through-
out the day. We then evaluated both the PID model and the
CNN-based DQN model on 3 variations of this environment,
characterized by the standard deviation of the meal times
(either 0.1, 1, or 10 hours). The results are presented in
Figure 3. We observe that the PID outperforms the DQN
at baseline, but it is unable to leverage the information con-
tained in the more regular meal schedule. The DQN is able
to do this, and as a result outperforms the PID when meal
time standard deviation is 0.1 hours. Note that for these ad-
ditional experiments, the DQN was trained to fewer epochs
(200) than presented in Table 1.
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Meal Time Standard Deviation (X*60 minutes)
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Figure 3. Average risk over 10 days for Adult 1 using different
meal schedules. The x-axis is meal time standard deviation in
multiples of 60 minutes, at lower values meals occur at more
predictable times.

5. Discussion and Conclusion
In this work, we examined the use of deep model-free RL for
learning automated blood glucose control algorithms. When
given information about the ground truth state a deep Q net-

work (DQN) was able to outperform baseline approaches.
Furthermore, even without access to the ground-truth state, a
DQN outperformed the baselines, when there were clear pat-
terns in the meal schedule that could be exploited. Though
promising, the DQN approaches did not consistently outper-
form the PID controller across all settings.

There are several factors that could be contributing to the
poor performance including: the discretization of the action
space, how we define the reward, and finally potential noise
in the input signal. First, Q-learning requires a discretized
action space; this could result in the over administration (or
under administration) of insulin in some cases. In the future,
we plan to investigate policy gradient methods that can take
advantage of a continuous action space. Second, we define
a reward function based on risk. Though, optimizing this
risk function should lead to tight glucose control, it could
lead to excess insulin utilization (as its use is unpenalized).
Future work could consider resource-aware variants of this
reward. Third, it should be noted that blood glucose data
collected by CGMs are only noisy approximations of actual
blood glucose levels. Recent advances in CGM technology
has helped to reduce this noise (Shah et al., 2018), but it
is still a concern. Our simulation includes CGM sensor
noise, though in practice, we do not find that it drastically
affects performance. Nonetheless, additional preprocessing,
applied before the data are used as input to the algorithm,
could improve performance.

Beyond the performance of the learned policies, across our
experiments, we found that well over a thousand days of
simulation data were required when training our deep ap-
proaches. While this is not an issue in the simulated envi-
ronment, it would be infeasible to apply such approaches
to real individuals. Model-based RL could be explored as
a more sample efficient alternative to model-free RL. This
is particularly promising given the existence of reasonable
blood glucose models to serve as a starting point.

Finally, we emphasize that blood glucose control is a safety-
critical application. An incorrect dose of insulin could lead
to life-threatening situations. Importantly, the proposed
approach, though promising, is not ready for deployment.
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As shown by the worst-case performance of the Oracle Q
method in Figure 2, our current approach can fail catas-
trophically. Going forward, there are several approaches
that could be investigated to guarantee acceptable worst-
case performance. Using the notion of ‘shielding’ from
(Alshiekh et al., 2018), hard limits on insulin informed
by blood glucose levels could prevent catastrophic hypo-
glycemia. Though this, in turn, could limit controller ef-
fectiveness in response to rapidly increasing glucose levels.
Additionally, approaches that incrementally modify existing
safe policies can limit worst-case performance and lead to
safer control (Berkenkamp et al., 2017).
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