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ABSTRACT

We study the problem of deep reinforcement learning where the agent’s action
sequences are constrained, e.g., prohibition of dithering or overactuating action
sequences that might damage a robot, drone, or other physical device. Our model
focuses on constraints that can be described by automata such as DFAs or PDAs.
We then propose multiple approaches to augment the state descriptions of the
Markov decision process (MDP) with summaries of recent action histories. We
empirically evaluate these methods applying DQN to three Atari games, training
with reward shaping. We found that our approaches are effective in significantly
reducing, and even eliminating, constraint violations while maintaining high reward.
We also observed that the total reward achieved by an agent can be highly sensitive
to how much the constraints encourage or discourage exploration of potentially
effective actions during training, and, in addition to helping ensure safe policies,
the use of constraints can enhance exploration during training.

1 INTRODUCTION

Deep reinforcement learning (DRL) shows great potential in learning decision-making agents with
application to many areas, including safety-critical ones such as credential identification, autonomous
vehicles, finance, and healthcare. Problematically, the inner workings of DRL models are very
difficult to understand, control, or make verifiable claims about. This leads to the problem of how
to ensure safe behavior in a learned agent. We propose a method using reward shaping (Ng et al.,
1999; Pecka and Svoboda, 2014) and MDP state augmentation to bias the training process away from
unsafe behaviors that have been defined in formal languages.

We describe a general framework for incorporating constraints in deep reinforcement learning (DRL)
that are expressed as formal languages over an agent’s action space. We explore several strategies
for augmenting the state of the agent so as to maximize rewards subject to constraint satisfaction. To
illustrate, consider the no-1D-dithering constraint in Figure 1 defined over an Atari Breakout agent
with four actions: fire (f ), no move (n), move left (`), and move right (r). The figure’s minimized
deterministic finite state automaton (DFA) accepts strings ending in (` r)2 and judges them to be
constraint violations. Negative rewards can be applied whenever a violation is detected to drive DRL
to avoid that behavior, but the effectiveness of such reward shaping will depend on the ability of the
agent to correlate the negative rewards with features of the state. The features that are relevant to
formal language constraints are inherently history-based and they may not be present in the original
agent state.

A straightforward state augmentation might add a finite action history. For the example property, a
history of 3 or more actions would permit the DRL agent to “see” the structure of violating suffixes,
but such an approach would not be effective for constraints that restrict sequences like (` f∗ r)2, since
there may be arbitrarily many f actions in a violating suffix.

Generally speaking, formal languages provide a rich set of representations that can be exploited for
augmenting agent state. For a DFA, a natural approach is to monitor the action history recording the
current DFA state and adding it to the agent’s input state of the MDP. Referring to Figure 1, if the
current DFA state were q3, then when an agent takes the r-action, DRL has the chance to relate the
detected violation with the agent’s augmented input state.
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Figure 1: No-1D-dithering constraint: .∗ (` r)2

While we restrict our attention here to con-
straints expressed as regular languages de-
fined over agent actions, the approach can
be extended to richer formal languages,
e.g., pushdown automata where the aug-
mented state includes automata and stack
embeddings, and to settings where the
MDP state conditions the constraint.

Our contributions include: (1) a model for
constraining RL with respect to action se-
quences, represented by automata such as
DFAs; (2) methods that augment the MDP
state descriptions with representations of
action sequences in order to learn to avoid constraint violations while maximizing discounted reward;
and (3) experimental results comparing our approaches (trained with reward shaping) to a baseline
method trained without knowledge of the constraints. We found that our approaches are effective in
significantly reducing, and even eliminating, constraint violations while maintaining high reward.
We also observed that the total reward achieved by an agent can be highly sensitive to how much the
constraints encourage or discourage exploration of potentially effective actions during training. For
example, training to avoid violating the no-1D-dithering constraint in the game Breakout significantly
negatively impacts the reward the agent receives in game play. In contrast, imposing a generalization
of this constraint (no-2D-dithering) when learning Seaquest can significantly increase reward dur-
ing game play. This is because in Breakout, a dithering action is in fact a useful tactic (increasing the
effective size of the paddle) whereas in Seaquest, dithering is ineffective, so the constraint during
training encourages exploration of alternate actions. We feel that, in addition to helping ensure safe
policies, the use of constraints can enhance exploration during training, particularly when training
time is too limited to explore effectively.

The rest of our paper is as follows. Section 2 gives related work. Section 3 presents our constrained
RL model, and Section 4 describes our approaches. We present our experimental results in Section 5
and conclude in Section 6.

2 RELATED WORK

Safety in reinforcement learning is an active research area. The notion of safety during exploration
was proposed by Geibel and Wysotzki (2005). It is concerned with the visiting of undesirable states.
Some safe exploration methods require a priori knowledge of varying degrees. Garcia and Fernandez
(2012) utilize a known backup policy to improve on a predefined safe baseline policy while avoiding
catastrophic states. Turchetta et al. (2016) expand an initial set of known safe states on regularity
assumptions about safety of neighboring states. Others eliminate the need for a priori knowledge.
Moldovan and Abbeel (2012) emphasize the impossibility of visiting other states from a catastrophic
state and consider safety in terms of ergodicity. They optimize δ-safe policies which take the agent to
start of exploration with probability at least δ. Krakovna et al. (2018) address ergodicity in dynamic
environments and in presence of irreversible actions. Others use a learned a state safety function
and a backup policy to revert to a safe state (Hans et al., 2008) or a backup sequence that brings
the agent to close proximity of a state discovered to be safe (Mannucci et al., 2018). Lipton et al.
(2016) propose a model that remembers previously visited catastrophic states by use of a buffer and a
trained safety predictor model. Jansen et al. (2018) use constraint specifications given in probabilistic
computation tree logic (PCTL) to assess safety of possible actions for each state. In contrast, our
model is neither trained to avoid states nor predicts safe actions given a state. Rather, our model uses
state descriptions augmented with information about action history using constraints.

Numerous policy gradient methods that aim at zero-constraint violation during exploration have
been proposed. Achiam et al. (2017) proposed a constrained policy optimization method that builds
on Trust Region Policy Optimization (TRPO) (Schulman et al., 2015). The policy is kept feasible
by using a recovery policy that decreases the constraint value and projects the policy to a feasible
set. Chow et al. (2015) also propose a policy optimization method where the objective is a trade-
off between return and risk. Lyapunov functions have been used in assessing safety of regions
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(Berkenkamp et al., 2017) and guaranteeing global safety of agent’s policy. Contrary to the policy
optimization works cited so far that consider state-action pair constraints, Dalal et al. (2018) consider
constraints that are state-based. Their approach approximates a change in the constraint value of
a state based on the previous state and action. In contrast, our constraints are sequence-based and
implemented using DFAs instead of scalar-valued functions.

In an agent versus environment game setting, Wen et al. (2015) use linear temporal logic formulas to
define permissive strategies. Bou-Ammar et al. (2015) incorporated physical constraints to a safe
on-line lifelong multi-task policy gradient learner operating in an adversarial framework. Lee et al.
(2018) infer constraints from the actions of a demonstrator on the assumption that states visited by a
demonstrator should be safe. Recently, Koller et al. (2018) proposed a Gaussian process (GP)-based
RL that can make multi-step ahead safety predictions guarantee safe trajectories that satisfy system
constraints. Aoude et al. (2013) propose a real-time GP-based path planning framework that can
predict dynamic obstacles. Safe exploration techniques for reinforcement learning have been applied
to practical problems. A robotic arm was trained using TRPO and a QP solver (Pham et al., 2017)
and by teacher demonstrations where safety is maintained by updating a library of dangerous actions
(Martínez et al., 2015). Zhou and Li (2018) incorporate safety specifications expressed in a PCTL
formula to the learning phase and use counterexamples to guide policy search in case of PCTL
violations in learning from teacher demonstrations. Orseau and Armstrong (2016) consider the cases
where an agent might learn to avoid (or seek) human intervention, thus limiting exploration and
showing that Q-learning is safely interruptible, i.e., an agent can’t learn to avoid (or seek) interruptions.
Mhamdi et al. (2017) address the same problem for multi-agent systems in both the joint-action and
independent learners’ frameworks. Cizelj et al. (2011) and Cizelj and Belta (2012) consider safe
vehicle driving in an environment with static and dynamic adversaries using PCTL formulas which
describes mission objectives. Held et al. (2017) address the problem of simultaneously maximizing
the expected return and managing expected damage for robot operation by adjusting the unsafety
rate of a policy and the upper limit of physical (state-based) constraints that can incur damage, such
as torque. In contrast to state-based constraints, Shen et al. (2018), similar to our model, address
action-based constraints in an interactive e-learning setting. However, their approach doesn’t directly
address constraining action sequences. Rather, they constrain the total number of certain kinds of
actions taken. Mazumder et al. (2018) use observed state-action pairs to predict the permissibility of
actions given a state. However, their predictor doesn’t handle action sequences.

State space augmentation was used by Oh et al. (2016) to predict future frames who applied an
attention mechanism to the raw observations (pixel values) and augmented this with past state
information retrieved from memory. Dosovitskiy and Koltun (2016) augmented high-dimensional
state information with lower-dimensional “measurement information” relevant to the agent’s state. In
contrast, our model uses direct or encoded information about action history for state augmentation.

3 OUR MODEL

We assume that our agent operates in a Markov decision process (S,A,R, P, µ) with state space
S, action space A, reward function R : S × A × S → R, transition probability function P :
S × A × S → [0, 1], and initial state distribution µ : S → [0, 1]. As usual, its goal is to learn a
policy π : S → A to maximize expected discounted cumulative reward from any starting state s ∈ S:
E
[
rt + γrt+1 + γ2rt+2 + · · ·

]
, for discount factor γ < 1. As with Mnih et al. (2015), we learn π

via Q-learning, though our model can work with other training methods.

The agent’s choice of action is restricted by one or more constraints. A constraint C ⊂ A∗ is defined
as a set of prohibited sequences of actions over A. In our work so far, we assume that the set can
be described as a regular language, which we represent internally as a DFA1 M = (Q,A, δ, q0, F ),
where Q is the finite set of the DFA’s states, the MDP’s action space A serves as M ’s alphabet,
δ : Q×A→ Q is the DFA’s transition function, q0 ∈ Q is the DFA’s start state, and F ⊆ Q is the set
of accept states. As the agent chooses actions, an external monitor steps through M via δ. Whenever
an accept state from F is reached, then we say that a violation of C has occurred.

1Ongoing work is to generalize our approaches to handle constraints represented as, e.g., deterministic
pushdown automata.
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In our model, a constraint can operate in full reset, partial reset, or no reset mode. In full reset
mode, at a constraint violation, both the DFA and the MDP are reset, i.e., M resets to initial state q0
and the episode begins anew in a state chosen according to µ. In partial reset mode, the episode does
not reset, but the DFA does. In no reset mode, neither the episode nor the DFA resets. In all three
modes, a finite punishment is applied whose magnitude correlates with the severity of the violation.

In our learning model, we assume that each constraint is made available in some form to the learner
by a benevolent teacher (e.g., a software developer with direct knowledge of the agent’s constraints).
In our approaches, this information is provided to the agent as a function f(·) applied to the agent’s
action sequence. In two of our methods, f(·) provides specific context of the agent’s action history
with respect to the DFA describing the constraint. This allows us to use this context to augment the
state description.

4 OUR METHODS

All four of our methods use reward shaping (Ng et al., 1999) to train agents in our model to deter
constraint violations. Our first approach (No Augmentation) directly applies reward shaping, but
does not otherwise modify the learning problem (i.e., using f(·) = ∅ below). Our remaining three
methods enable an agent to track its action history to help avoid constraint violations. We explore
three approaches of augmenting the MDP state st ∈ S. In each approach, at time step t the agent
receives 〈st, f(at)〉, a concatenation of current MDP state st and some function f(·) evaluated on
action sequence at = 〈a1, a2, . . . , at〉 ∈ A∗. We consider three forms of f(·):

1. Size-k Action History: f(a) = 〈at−k+1, at−k+2, . . . , at−1, at〉, where at is a one-hot
encoding of the action taken at time t. In our experiments, we set k = 10.

2. DFA State One-Hot Encoding: f(a) = u ∈ {0, 1}|Q|, where ui = 1 if the monitor
indicates that the DFA is in state qi ∈ Q and 0 otherwise. u is a one-hot encoding of the
current DFA state.

3. DFA State Embedding: f(a) = v ∈ Rd, where v is the embedding of DFA state qi learned
by node2vec (Grover and Leskovec, 2016). Node2vec trains its embeddings via random
walks started at each node, allowing the embeddings to represent each node’s context
(e.g., neighborhood or reachability). In our experiments, we set d = 3 and performed 200
iterations of 200 random walks of each DFA, each of length 80. Our context window size
was 5, and our random walks were a combination of BFS and DFS, setting p = q = 1.

Figure 2: Architecture used in experiments.

Our approaches are meant to learn policies that try
to avoid constraint violations. If violations at run
time must absolutely be avoided, then we ensure this
by modifying the learned policy π by a constraint
enforcer that guarantees constraint compliance as
follows. If the policy’s chosen action a does not
violate the constraint, then the enforcer allows a to be
executed in the environment. Otherwise (if a would
cause a violation), then the enforcer asks π for its next
most preferred action, and checks it. This process
repeats until π’s chosen action a′ does not violate the
constraint. The enforcer then executes a′ in the environment. In our experiments, we evaluate all our
methods with and without the use of the enforcer.

The architecture we used to implement our methods is the same as in Mnih et al. (2015), with an
additional input for augmenting the MDP state with action history, as summarized in Figure 2 and
detailed in Figure 6 in the Appendix. We concatenate this action history (denoted “Action Sequence
Augmentation” in Figure 2) to the penultimate fully connected layer. We used ReLU activation for
all layers except the final fully-connected layer. The final fully-connected layer outputs the Q values.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In our experiments, we focused on three Atari games: Breakout, Space Invaders, and Seaquest (Mnih
et al., 2015), which have diverse action spaces and high-reward game play strategies. For each game
we considered two generic constraints. Each constraint is applicable to each of the games. However,
depending on the game, each constraint either coincides or conflicts with effective play strategy. We
express these constraints below as regular expressions2. These constraints were chosen to reflect ones
that might be imposed on a real physical system, e.g., to avoid excessive stress on a robot arm.

1. No-dithering: In general, a no-dithering constraint prohibits movements in small, tight
patterns that cover very small areas. In one dimension, we define no-1D-dithering as having
a violation as

.∗ (` r)2

i.e., never move left then right then left then right; here “.∗” is any sequence over actions
from A. In games with larger action spaces such as Seaquest, we generalize this to no-2D-
dithering, which extends to vertical and diagonal moves and constrains actions that take the
agent back to where it started in at most four steps.3

2. No-overactuating: In general, a no-overactuating constraint prohibits repeated movements
in the same direction over a long period of time. In one dimension, a violation is

.∗ (`4 ∪ r4)

i.e., never move left four times in a row or right four times in a row. In two dimensions,
this is extended to include vertical move groups: .∗ (L4 ∪R4 ∪ U4 ∪D4). Each of left (L),
right (R), up (U ) and down (D) groups contains the primary direction it’s named after and
diagonal moves that contain the primary direction, e.g., L = ` ∪ `+u ∪ `+d, where “`+u” is
the atomic left-up diagonal action.

For each game/constraint pair, we evaluated the four approaches from Section 4. As a baseline,
we also trained a model with no knowledge of the constraints during training (i.e., standard DQN
training for the Atari games), but tested with the constraints present. In all experiments, the learned
policies were evaluated in partial reset mode, reporting total reward and total number of violations
per episode.

Our loss function and optimizer were mean absolute error and Adam with a learning rate of 2.5×10−4.
Our discount future reward γ = 0.99 and we used ε-greedy as an exploration policy with ε decreasing
from 1 to 0.1 over 10M steps. We set the experience replay memory limit to 1M samples. Every state
of the game is represented with 4 frames. We trained the network with random mini-batches of size
32 from the replay memory in every 4 steps. The target network is updated every 10K steps. For each
approach of Section 4 and our baseline methods, we trained the agent for 10M steps for 10 different
training seeds. We tested each of our 10 trained agents for 10 different test seeds. Each test case
includes 100 game episodes running to completion. Our reward shaping signal was −1000.

5.2 EXPERIMENTAL RESULTS

Figures 3, 4, and 5 present average number of violations and average reward (reward only; no shaping)
per test episode. In each plot, “baseline” denotes performance of an agent trained without any state
augmentation or reward shaping, i.e., the same approach as Mnih et al. (2015). “No augmentation”
denotes an agent trained with reward shaping but no state augmentation. “Action history” denotes
augmenting the state with a one-hot encoding of the previous k = 10 actions. “DFA one-hot” denotes
augmenting the state with a one-hot encoding of the current DFA state. Finally, “dfa embedding”
denotes augmenting the state with a node2vec-learned embedding of the current DFA state.

In each figure, vertical and horizontal error bars indicate 95% confidence intervals. Each symbol
without a circle around it denotes performance when the learned policy is tested as-is. A symbol

2For Seaquest and Space Invaders, movement actions with and without fire are treated as identical.
3The regex describing this constraint is 7320 characters long and is thus omitted.
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with a circle around it denotes performance when the learned policy π was modified by a constraint
enforcer as described in Section 4.

Figure 3 shows test results on the game Breakout using the no-dithering and the no-overactuating
constraints. The no-dithering constraint can be easily complied with, since all approaches except
baseline are effective at reducing constraint violations, and all of them get nearly zero violations.
Further, we see that simply training without any shaping (baseline) and then applying the enforcer
greatly outperforms everything else in terms of reward. Similar things can be said of the no-
overactuating constraint, except compliance with it is more difficult to learn: every approach save
action history has several violations (though significantly fewer than baseline), and the enforcer
reduces reward more significantly for baseline. However, baseline with the enforcer still outperforms
everything else with both constraints. We attribute this to both constraints being antithetical to
good game play: dithering increases Breakout’s effective paddle size and overactuation allows more
flexibility in how the paddle can be moved into position to hit the ball. Since the shaping signal
applied during training discouraged these actions, exploration was inhibited and poorly performing
non-violating actions were learned by our methods.

Figure 4 shows test results on the game Space Invaders using the no-dithering and no-overactuating
constraints. We see that the no-dithering constraint is difficult to learn to completely comply with,
since every method had a positive number of violations without the enforcer’s help. While none of
the methods eliminated violations completely, dfa one-hot and dfa embedding were able to reduce
violations to less than 10% of that of baseline. We also note that baseline, no augmentation, and dfa
embedding each took significant hits in reward when the enforcer was applied. In contrast, action
history and (particularly) dfa one-hot saw little drop in reward when the enforcer was applied, so
their policies’ first non-violating choices were on average nearly as good as their top (violating)
actions when a violation was imminent. This suggests that they learned to avoid situations in which a
violating action is the only quality option that it has.

Space Invaders with no-overactuation is a different case, where all approaches reduced violations to
less than 20% of that of baseline and application of the enforcer slightly improved reward for all
approaches, save dfa embedding. This is an example of a constraint that is not antithetical to good
game play, and in fact seems to encourage exploration during training.

Figure 5 shows test results on the game Seaquest using the no-2D-dithering and no-overactuation
constraints. These results are similar to those with Space Invaders no-overactuation in that application
of the enforcer can increase reward, especially with no augmentation, action history, and dfa
embedding. A key difference between this game and the other ones is that baseline had significantly
lower reward than some other approaches, particularly dfa one-hot. The use of these constraints
during training seems to encourage exploration of better policies. For example, moving in a tight
pattern and ending up where one started would not be a good policy for game play. Since this is
prohibited by no-2D-dithering, arguably this constraint is forcing the agent to explore alternatives,
and hence discover better policies.
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Figure 3: Results for Breakout: (left) no-1D-dithering; (right) no-overactuating.
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Figure 4: Results for Space Invaders: (left) no-1D-dithering; (right) no-overactuation.
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Figure 5: Results for Seaquest: (left) no-2D-dithering; (right) no-overactuation.

5.3 DISCUSSION

We draw two broad conclusions from our experimental results, which can be described in the
dimensions of violations and of rewards. First, the ability to learn to avoid constraint violations
without the enforcer’s help unsurprisingly depends on the complexity of the constraint. Among our
approaches, dfa one-hot was overall the most effective in minimizing violations, followed by (in most
cases) dfa embedding and then action history.

The second dimension of analysis regards rewards. Specifically, among the violation-free policies
(particularly those where the enforcer was applied), the reward achieved was closely related with
how the constraint conflicts with good game play. When a constraint discouraged actions that
would normally yield higher reward (both constraints in Breakout), we saw that training without any
constraint knowledge (baseline) and then applying the enforcer returned the most reward. However,
when a constraint discouraged unhelpful actions (both constraints in Seaquest), exploration was
encouraged during training and testing reward was high, even with the enforcer in place. Further, when
the agent did not learn to avoid constraint violations very well, applying the enforcer significantly
increased the total reward (no augmentation, action history, and dfa embedding on both constraints in
Seaquest).

These conclusions suggest that careful consideration is necessary when training agents subject to
such constraints. In particular, one should consider how the constraint(s) align with the actions of
effective policies. If they would inhibit the learning of a good policy, then care is needed during
training, e.g., via delaying the application of the shaping signal (or increasing it over time), or by
a hybrid training approach that combines our methods with the unconstrained baseline approach.
Further, whether or not safety-based constraints apply to the learning problem, one should consider
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using constraints to focus exploration during training away from actions that are known to be less
effective, i.e., use constraints to encode human-defined game play tactics. This could be particularly
helpful in cases where training time is too limited for the agent to consider less useful actions.

6 CONCLUSION

We proposed a model for constraining RL by using reward shaping and MDP state augmentation to
bias the agents to avoid unsafe action sequences that are defined by formal languages. We applied our
methods to three Atari games with very different action spaces and performed a thorough empirical
study. Our findings revealed that all four approaches are effective in reducing or even eliminating
constraint violations while maintaining and at times increasing reward. Furthermore, we found
that constraints can not only be used to avoid unsafe behaviors, but also be defined to encourage
exploration to aid agents to learn faster.

One major avenue of future work is to better characterize the relationships between constraints
(defined as formal languages) and effective policies (defined as functions from states to actions).
A thorough understanding of such relationships will inform the definition of constraints and the
learning approaches used to optimize the policies. It will also help in defining constraints to enhance
exploration during training.

There are many more avenues of future work for this project. First, in Section 3 we define a constraint
C to be a subset of A∗, i.e., sequences of actions. It would be natural to instead define C ⊂ A∗ × S∗,
so the constraints can restrict actions only in certain MDP states, if desired. One way to keep the
sizes of the DFAs manageable in this case is to define C ⊂ A∗ × S′∗, where S′ is an alphabet where
distinct symbols describe distinct equivalence classes of states in S. E.g., symbol m ∈ S′ might
denote all states in S where a mother ship appears in Space Invaders. It would also be interesting to
describe constraints via, e.g., deterministic pushdown automata rather than DFAs.

The dfa embedding approach did not perform as well as we thought that it would. It is possible that
this can be improved by modifying the random walk approach to be more appropriate for this task,
e.g., to incorporate how close a state is to an accept state.

Application of the constraint enforcer during game play eliminated constraint violations, but the
reward of the adjusted policies depended on the quality of the first non-violating choices that the
policies made. Future work is to incorporate the enforcer into training to try to increase the expected
reward of not only the top choice, but also the top choice that is compliant.
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A ARCHITECTURE DETAILS

Figure 6 presents a detailed view of our architecture. Part of our architecture is the same as in Mnih et al. (2015),
using a convolutional stack that processes four 84× 84 frames at a time. To this stack we add an input layer for
augmenting DFA state.

Figure 6: Architecture used in our experiments.
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