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ABSTRACT

Dealing with sparse rewards is one of the most important challenges in reinforce-
ment learning (RL), especially when a goal is dynamic (e.g., to grasp a moving
object). Hindsight experience replay (HER) has been shown an effective solution
to handling sparse rewards with fixed goals. However, it does not account for dy-
namic goals in its vanilla form and, as a result, even degrades the performance of
existing off-policy RL algorithms when the goal is changing over time.
In this paper, we present Dynamic Hindsight Experience Replay (DHER), a novel
approach for tasks with dynamic goals in the presence of sparse rewards. DHER
automatically assembles successful experiences from two relevant failures and can
be used to enhance an arbitrary off-policy RL algorithm when the tasks’ goals are
dynamic. We evaluate DHER on tasks of robotic manipulation and moving ob-
ject tracking, and transfer the polices from simulation to physical robots. Exten-
sive comparison and ablation studies demonstrate the superiority of our approach,
showing that DHER is a crucial ingredient to enable RL to solve tasks with dy-
namic goals in manipulation and grid world domains.

1 INTRODUCTION

Deep reinforcement learning has been shown an effective framework for solving a rich repertoire
of complex control problems. In simulated domains, agents have been trained to perform a diverse
array of challenging tasks (Mnih et al., 2015; Lillicrap et al., 2015; Duan et al., 2016). In order to
train such agents, it is often the case that one has to design a reward function that not only reflects
the task at hand but also is carefully shaped (Ng et al., 1999) to guide the policy optimization.
Unfortunately, many of the capabilities demonstrated by reward engineering are often limited to
specific tasks. Moreover, it requires both RL expertise and domain-specific knowledge to reshape
the reward functions. For situations where we do not know what admissible behavior may look
like, for example, using LEGO bricks to build a desired architecture, it is difficult to apply reward
engineering. Therefore, it is essential to develop algorithms which can learn from unshaped and
usually sparse reward signals.

Learning with sparse rewards is challenging, especially when a goal is dynamic. Dynamic goals are
common in games and planning problems, often addressed using reward shaping or search (Kael-
bling, 1993; Mnih et al., 2015; Di Rocco et al., 2013). However, the difficulty posed by a sparse
reward is exacerbated by the complicated environment dynamics in robotics (Andrychowicz et al.,
2017). For instance, system dynamics around contacts are difficult to model and induce sensitivity in
the system to small errors. Many robotic tasks also need executing multiple steps successfully over
a long horizon, involve enormous search space, and require generalization to varying task instances.
Policy gradient methods are breakthroughs in the challenging environments, such as PPO (Heess
et al., 2017; Schulman et al., 2017), ACER (Wang et al., 2016), TRPO (Schulman et al., 2015) and
so on. They are used in environments, where an agent tries to reach a target, learns to walk, runs, and
so on. Recently, sampling-efficient learning is introduced and demonstrates a significant increase in
performance for off-policy actor-critic DQN (Mnih et al., 2015) and DDPG (Lillicrap et al., 2015)
algorithms. Hindsight experience replay (HER) is very effective for improving the performance
of off-policy RL algorithms in solving goal-based tasks with sparse rewards (Andrychowicz et al.,
2017). Similar to UVFA (Schaul et al., 2015a), it takes a goal state as part of input. However, it
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Figure 1: The framework of DHER. DHER is a kind of experience replay method. It searches
relevant failed experiences and then assembles them into successful experiences.

assumes the goal is fixed. As a result, this assumption actually impedes the learning of RL agents in
the environments of moving goals.

In this paper, we address this challenge with a new method, Dynamic Hindsight Experience Re-
play (DHER), for accomplishing tasks with moving goals. We follow the multi-goal setting in
UVFA (Schaul et al., 2015a) and HER (Andrychowicz et al., 2017). It assumes that the goal being
pursued does not influence the environment dynamics. We also need to have the knowledge of goal
similarity. For example, in manipulation or grid world domains, we can use Euclidean distance
between positions to measure the goal similarity. HER turns a failed episode to a success by com-
posing a new task whose goal is achieved by that episode. Our idea allows an agent to learn from
the failure one step further than HER: the agent not only sets a new goal but also hallucinates how to
reach the original goal from the new one. Take playing frisbee for instance. When an agent jumps to
catch the frisbee and yet misses it, the agent receives no positive feedback under the sparse reward
setting. Using HER, the agent could set the end of its episode as the new goal — position of the
frisbee; with DHER, however, the agent finds a trajectory from its past experiences as the imagined
path of the frisbee, and thereby extrapolates towards the original goal.

In particular, we do the following for DHER. To finish the tasks with dynamic goals needs to explore
experience and understand multiple goals. DHER uses replay buffers to allow the agent to learn from
a couple of failures by assembling new ‘experience’ from different episodes. The proposed method
retrieves memories to find the connection between the experience of different episodes. It largely
improves the sample efficiency in dynamic goal task settings. More importantly, this strategy makes
it possible to learn in the setting that both sparse rewards and dynamic goals exist.

We evaluate our method along with the state-of-the-art baselines on new environments and manipu-
lation tasks, which have sparse rewards and dynamic goals. Our results demonstrate that DHER is
clearly better than others for these tasks. We also transfer policies trained in our simulation based
on DHER to a physical robot and show that DHER can be applied to solving real-world robotics
problems.

We summarize our main contributions as follows: (1) We demonstrate that, both in simulation and
real worlds, DHER succeeds in continuous control with a moving target. To our knowledge, this is
the first empirical result on manipulation tasks that demonstrates model-free learning methods can
tackle tasks of this complexity. (2) We show that with assembling new experience from two failures,
the sample complexity can be reduced dramatically. We attribute this to global knowledge learning
in a set of failed experience which breaks the constraint of local one-episode experience towards
more robust strategies. (3) We design and implement a set of new environments and continuous
tasks with dynamic goals, which would be of interest to researchers at the intersection of robotics
and reinforcement learning.1

1Our code and environments are available at https://github.com/mengf1/DHER.
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2 RELATED WORK

Recent works in deep RL have shown impressive results in different domains, such as games (Belle-
mare et al., 2013; Silver et al., 2016), simulated control tasks (Brockman et al., 2016) and so on.
There have been several proposed RL methods for playing Atari games, including DQN (Mnih
et al., 2015), UVFA (Schaul et al., 2015b) and so on. UVFA trains a single neural network approx-
imating multiple value functions for state and goal. For the continuous control, DDPG (Lillicrap
et al., 2015) is a popular actor-critic algorithm that has shown impressive results in continuous con-
trol tasks. Dynamic goals appear in games and planning, often addressed by rewards shaping or
search (Kaelbling, 1993; Mnih et al., 2015; Di Rocco et al., 2013). When the rewards are sparse,
there is few work studying the dynamic goals to the best of our knowledge.

Curriculum learning is also used for reinforcement learning scenarios. The idea is that solving easier
problems first has advantages to learn more complex goals later and thus that learning can be opti-
mized by presenting the problems in an optimal order, a curriculum (Bengio et al., 2009). Narvekar
et al. (2017) and Florensa et al. (2018) proposed methods to automatically produce subtasks or sub-
goals for a given target. Narvekar et al. (2017) produce subtasks according to predefined tasks of
a given domain problem. Florensa et al. (2018) use a Generative Adversarial Network (GAN) to
produce goals with different difficulties. Different from these methods, our approach produces a
series of goals for an episode from failed experience.

Experience replay is an important technique and introduced to break temporal correlations by mix-
ing more and less recent experience for updating policies (Lin, 1992). It was demonstrated for its
efficiency in DQN (Mnih et al., 2015). Prioritized experience replay improves the speed of training
by considering prioritizing transitions in the replay buffer (Schaul et al., 2015b). HER considers
modifying experience in the replay buffer for continuous control (Andrychowicz et al., 2017). By
contrary, our approach assembles successful experience from two failures. Comparing with these
methods, which do not consider dynamic goals, our approach uses a series of goals to assemble
successful experience. As a result, our method is able to accomplish the tasks with sparse rewards
and dynamic goals.

3 METHODOLOGY

We first review how HER works (Andrychowicz et al., 2017), followed by details of the proposed
DHER for dealing with dynamic goals.

HER is a simple and effective method of manipulating the replay buffer used in off-policy RL
algorithms that allows it to learn policies more efficiently from sparse rewards. It assumes the
goal being pursued does not influence the environment dynamics. After experiencing an episode
{s0, s1, · · · , sT }, every transition st → st+1 along with the goal for this episode is usually stored in
the replay buffer. Some of the saved episodes fail to reach the goal, providing no positive feedback
to the agent. However, with HER, the failed experience is modified and also stored in the replay
buffer in the following manner. The idea is to replace the original goal with a state visited by the
failed episode. As the reward function remains unchanged, this change of goals hints the agent how
to achieve the new goal in the environment. HER assumes that the mechanism of reaching the new
goal helps the agent learn for the original goal.

3.1 DYNAMIC GOALS

Dynamic goals are not static and change at every timestep. We follow the multi-goal setting of
Andrychowicz et al. (2017). The goals are part of the environment and do not influence the en-
vironment dynamics. We also assume that a dynamic goal gt ∈ G moves by following some law
gt = g(t; γ), where γ parameterizes the law (e.g., acceleration in Newton’s law of motion), and yet
its underlying moving law is unknown to the agent.

Moreover, we need to have some basic knowledge of goals, i.e., the measure of goal similarity on G.
We assume that gt ∈ G corresponds to some predicate fgt : S → {0, 1} and that the agent’s goal is
to achieve any state s that satisfies fgt(s) = 1. We use S = G and define fgt(s) := [s = gt], which
can be considered as a measure of goal similarity between gt and s. The goals can also specify only
some properties of the state. Take manipulation tasks for instance: G = R3 corresponds to the 3D
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Algorithm 1 Dynamic Hindsight Experience Replay with Experience Assembling

Require: an off-policy RL algorithm A, replay buffer R, a reward function r
1: Initialize A and replay buffer R
2: for episode = 1, 2, · · · ,M do
3: Sample an initial goal g0 and an initial state s0
4: for t = 0, · · · , T − 1 do
5: Sample an action at using the behavioral policy from A:
6: at ← π(st|gt)
7: Execute the action at and observe a new state st+1 and a new goal gt+1

8: end for
9: for t = 0, · · · , T − 1 do

10: rt := r(st, at, gt+1)
11: Store the transitions (st|gt, at, rt, st+1|gt+1) in R (Standard experience replay)
12: end for
13: Collect failed episodes to E
14: for Ei ∈ E do
15: Search another Ej(i 6= j) ∈ E where gaci,p = gdej,q
16: if Ej 6= Ø then
17: Clone a goal trajectory {g′0, · · · , g′m}m=min{p,q} in which g′t = gdej,q−m+t from Ej

18: for t = {0, · · · ,m− 1} do
19: r′t := r(si,p−m+t, ai,p−m+t, g

′
t+1)

20: Store the transition (si,p−m+t|g′t, ai,p−m+t, r
′
t, si,p−m+t+1|g′t+1) in R (DHER)

21: end for
22: end if
23: end for
24: for t = 1, · · · , N do
25: Sample a minibatch B from the replay buffer R
26: Optimize A using the minibatch B
27: end for
28: end for

positions of an object sobj about which the observation could include additional properties of the
object. For a more concrete example, consider pushing a block towards a moving target position.
The success of a task is defined as f(st, gt) = 1condition(‖sobj

t − gt‖ ≤ ε), where sobj
t is the position

of the object in the state st and ε denotes a tolerance by the environment. 1condition is an indicator
function. The agent aims to achieve any state st that satisfies f(st, gt) = 1. It receives a sparse
reward rt := r(st, at, gt+1) = −1condition(f(st+1, gt+1) 6= 1) upon making an action at.

It is worth discussing the main difference between the implications of the dynamic goals and the
static ones. Expressing a static goal in the following way, gstatic

t = gstatic,∀t, highlights the key chal-
lenge of dealing with the dynamic goal. Namely, the agent has no access to the underlying law of the
dynamic goal in our setting, whereas the law of being static is known to the agent in Andrychowicz
et al. (2017). In other words, the agent has no clue at all how to construct a new dynamic goal that
is admissible by the environment.

3.2 DYNAMIC HINDSIGHT EXPERIENCE REPLAY

At the first glance, we shall compose a new dynamic goal gdynamic = {sobj
t0 , s

obj
t1 , · · · , s

obj
tT ′} from a

failed episode s0, s1, · · · , sT in order to apply HER (Andrychowicz et al., 2017) to our problem
setting. However, per the discussion above, this new dynamic goal gdynamic may be inadmissible by
the environment, leading to no positive feedback to the agent at all.

We tackle the challenge by drawing the following two observations. One is that many episodes
fail in the replay buffer, implying that the agent can actually build a new goal upon more than one
episodes. The other is that the more failed experience the agent has, the more possible for the agent
to use the connection between achieved goals in an episode and desired goals in some other episode.
Take the example of a moving object that the agent must reach, desired goals are the positions of
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Dy-Reaching Dy-Pushing Dy-SnakeDy-Circling
Figure 2: The proposed tasks with dynamic goals (red objects). Arrow indicates the movement of a
goal. The first row indicates initial states. The second row indicates final states.

the moving object and achieved goals are the positions of a gripper (controlled by the agent). There
may exist some positions that both the object and the gripper have ever reached respectively.

After experiencing some episode s0, s1, · · · , sT , we store in the replay buffer every transition
st → st+1 for this episode, defined as (st, at, rt, st+1), where st indicates a state st at timestep
t, and at indicates an action and rt indicates a reward. Thus before t, there are a series of records
{(s0, a0, r0, s1) · · · , (st, at, rt, st+1)}. A state consists of three parts: observation ot, desired goal
gdet and achieved goal gact , define as st =

〈
ot, g

ac
t , g

de
t

〉
, where normally gdet = gt and gact indicates

goals that the agent has achieved.

We reuse the failed experience from the replay buffer with inverse simulation to create success-
ful rewards for the agent, as shown in Algorithm 1 (lines 13-23). Our inverse simulation contains
two main steps: First, given a failed episode, for its achieved goal trajectory, we try to find a de-
sired goal trajectory from other episodes that could match it (line 15). Second, we assemble a new
episode by matching the achieved goal trajectory of the given episode to the desired goal trajec-
tory of the founded one (lines 17-21). Let gaci,q indicate the achieved goal of the agent at timestep
q in episode i and gdej,p indicate the desired goal at timestep p in episode j. Given a set of failed
experience {E0, E1, E2, · · · }, we search and draw two failed episodes Ei and Ej (i 6= j), where
∃i, j, p, q, s.t. gaci,p = gdej,q . If we find two such failed episodes, we combine the two experience by
replacing the desired goals in Ei by {gdej,t}, where j indicates Ej and t ≤ min{p, q}. Based on
this, we end up assembling a new experience E′i based on Ei with a new “imagined” goal trajectory
{gdej,0, · · · , gdej,t} where t ≤ min{p, q}.
More details of the complete RL+DHER method are shown in Algorithm 1. Unlike HER, our DHER
needs to search all failed experiences to compose a “imagined” goal trajectory. Hence, the efficiency
of searching the memory is important. In our implementation, we use two hash tables to store the
trajectories of achieved goals and desired goals, respectively.

4 EXPERIMENT

We run extensive experiments to examine the proposed DHER for moving goals and compare it
with some competing baselines. We first introduce the environments and tasks that we want to
address, followed by the experimental results. Demo videos from our experiments are available at
https://sites.google.com/view/dher.
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(a) Dy-Reaching with a straight-
line goal.
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(b) Dy-Circling with a goal that
moves in a circle.
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(c) Dy-Pushing with a straight-line
goal.

Figure 3: Results on different environments.

4.1 ENVIRONMENTS

Whereas grasping moving targets are fairly common in robotic applications, there are rarely existing
environments featuring dynamic goals. We modify the robotic manipulation environments created
by OpenAI (Brockman et al., 2016) for our experiments. As shown in Figure 2, we assign certain
rules to the goals so that they accordingly move in the environments while an agent is required to
control the robotic arm’s grippers to reach the goal that moves along a straight line (Dy-Reaching),
to reach the goal that moves in a circle (Dy-Circling), or to push a block to the goal that moves along
a straight line (Dy-Pushing). In addition, we also develop a new GREEDY SNAKE environment (Dy-
Snake), in which the goal moves from one discrete cell to another. The greedy snake aims to reach
the goal (and eat it). No matter what actions are taken by the agent, the underlying rule of changing
the goals’ positions remain the same. We assume that the law of the goal’s motion is unknown to
the agent. More details of the tasks are described in the appendix.

For the first three tasks, we follow the basic settings of OpenAI robotics environments (Brockman
et al., 2016). States are read from the MuJoCo physics engine. An observation consists of relative
positions of the object and the target (grippers are blocked) Goals are positions in the 3D world
coordinate system with a fixed tolerance (we use ε = 0.01 for the tolerance). Note the goals are
able to move in our tasks. The velocity we use is v = 0.011. 1 epoch indicates 100 episodes. The
start positions of the goals are randomly chosen. Rewards are binary and sparse: r(st, at, gt) =

−1condition(|sobj
t+1 − gt+1| ≥ ε) where st+1 and gt+1 are respectively the state and dynamic goal

after the execution of the action at in the state st. Two positions are overlapped if they are close
within the tolerance ε. We use 3-dimensional actions, in which three dimensions correspond to the
desired relative gripper position at the next timestep.

For the last task, it is very similar to the standard snake game. There is a 2D plane grid whose
size is 30 × 40. A snake and a goal (food) both move in this grid. We use a 1 × 1 square as the
body of the snake and do not allow the snake to grow any longer as it moves. The states of the
system are represented by using the positions of the snake and food. Goals are the positions of
the food. The snake has to move itself such that it resides in the same cell as the food at a certain
timestep. The velocity of the goal is set to (0, 1). The start positions of the goal are set randomly
in different episodes of the game, so are the start positions of the snake. Rewards are binary and
sparse: r(st, at, gt+1) = −1condition(|ssnake

t+1 −gt+1| 6= 0) where st+1 and gt+1 are the environment’s
state and goal after the agent executes action at in the state st. Observations are represented by the
positions of the snake and food. We also add to the state the distance between the snake and food.
Actions allowed in the game are the following: move up, move down, move left, and move right, for
one cell per timestep.

4.2 BASELINES

For the first three tasks which call for continuous control, we consider two competing baselines:2

2https://github.com/openai/baselines
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Figure 4: Low velocity: 0.001.
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Figure 5: High velocity: 0.016.

• DDPG, which is a model-free RL algorithm for continuous control (Lillicrap et al., 2015).
It learns a deterministic policy by using a stochastic counterpart to explore in the training.

• DDPG + HER, which improves the replay buffer of DDPG by the hindsight experience
replay (Andrychowicz et al., 2017).

• DDPG (dense), which employs the negative distance (−d) as dense rewards.

• DDPG (dense-2), which employs the negative distance (−d) as dense rewards if d ≥ ε.
However, if d < ε (i.e., success) it uses (−d+ 1.0) as rewards. 1.0 is a bonus.

For the last task of discrete control, we use the following baselines in the experiments: DQN (Mnih
et al., 2015) and DQN + HER, which uses HER to enhance the replay in DQN.

• DQN, which is a powerful model-free RL algorithm for discrete action spaces (Mnih et al.,
2015).

• DQN + HER, which uses HER to enhance the replay in DQN.

• DQN (dense), which uses the negative distance (−d) as dense rewards.

• DQN (dense-2), which uses the negative distance (−d) as dense rewards. However, if
d = 0.0 (i.e., success) it uses (−d+ 1.0) as rewards instead. 1.0 is a bonus.

4.3 COMPARISON RESULTS ON THE ROBOTIC ENVIRONMENTS

For the continuous control, we present three sets of comparison results in Figure 3 for the first three
tasks, respectively. Consistently, the results show our DHER algorithm outperforms the others. The
two baselines are not able to catch up even after we train them for thousands of iterations. Vanilla
DDPG is slightly better than the version with HER. HER does not benefit DDPG in these tasks
because the goals in HER are fixed, fundamentally misleading the agent in the attempt of solving
the tasks with dynamic goals. The results of DDPG (dense) and DDPG (dense-2) suggest that even
the dense rewards do not work well as they are agnostic to the task of interest. A good reward
shaping may give rise to better performance by carefully tuning it for the task of dynamic goals.

Comparing Figure 3a and Figure 3b with Figure 3c, we find that DHER learns faster in Dy-Reaching
and Dy-Circling than Dy-Pushing probably because Dy-Reaching and Dy-Circling are easier tasks
than Dy-Pushing. In Dy-Pushing, all the algorithms take a fairly big amount of time to explore
without receiving any positive feedback. However, the more failed experiences the agent encounters,
the better change our algorithm is able to identify relevant episodes from them for assembling useful
dynamic goals. As a result, DHER is able to pick up the momentum and learns faster and better than
the baselines after a certain point. In Figure 3a, the performance decreases a little. The reason may
be that as successful experience increases, some assembled experience is inconsistent with these
successful experience.

4.3.1 COMPARISON USING DIFFERENT VELOCITIES OF GOALS

To show the performance of our method on more complex tasks with different velocities, we study
different methods in Dy-Reaching environment as shown in Figures 4 and 5 with the same physical
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Figure 6: Snake with dynamic goals.
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Figure 7: Special: HER+ knows how goals move.

properties as the previous experiments. Overall the results show our method is much better than
DDPG and HER. As a reminder, the threshold for calculating rewards we used is 0.01. In Figure 4,
the task becomes an easier task because of the slower velocity. It shows that our method quickly
achieves to a good result around 5 epoch. Comparing with Figure 3a, it shows that the performance
with v = 0.001 is better than the performance with v = 0.011 and get 15% improvements. However,
it also shows the performance with v = 0.016 is worse than the performance with v = 0.011. Both
DDPG and DDPG+HER failed when v = 0.016 and their performance is 0. This performance is
consistent because the task becomes more difficult when the velocity increases.

4.4 COMPARISON ON THE DYNAMIC SNAKE ENVIRONMENT

In the Dy-Snake environment, which is a discrete control environment, we present the results of the
chasing food task in Figure 6. The results show that the proposed algorithm works best. DQN is
better than HER. HER fails for this task. That HER fails for this task shows just using achieved
goals is not enough for the tasks with dynamic goals and can lead wrong direction. The results
also show that around 800 episodes, the performance of DQN and DHER is close and DHER is
slightly better than DQN. This is because the chasing food task is a simple task. The action space
is very small and just 4 types of actions. After enough exploration, DQN also has competitive
performance. However, at the beginning, DHER quickly achieves very good performance. It shows
that assembling experience from two failures improves the performance very efficiently in this task.
DQN (dense) and DQN (dense-2) help learn the policy at the early stage. However, in the long run,
it does not lead to any particular benefits.

4.5 SIM TO REAL ADAPTATION

We used policies for Dy-Circling task and a new Pouring task trained in our simulator 3 to deploy
them on a physical robot. As shown in Figure 8, the policies were trained by using DHER and
adapted to the real robot without any finetuning. However, the policy requires accurate localizations
of the gripper and the goal. For Dy-Circling task, the robot’s gripper was blocked. There were a
toy turntable, whose speed is unknown, and a blue block on the turntable. We set the position 1cm
above the block as the target position. The position of the block was predicted based on traditional
contour shape analysis using camera images. For Pouring task, the robot gripped a can. A man held
a cup and moved it. The cup was set as the target and with a green marker. We used the marker to
estimate its position.

Our policies were transferred successfully for both tasks. With the accurate positions, we have 100%
success rate for 5 trials. It was observed that the robot had learned to not only follow the current
target but also step forward to the future target position. Demo videos about the experiments are
available at https://sites.google.com/view/dher.

3We developed a new simulator according to our hardware. More details on our hardware setup are available
in the appendix.
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Sim: Dy-Circling Real: Dy-CirclingTransfer Sim: Pouring Real: PouringTransfer

Figure 8: Adapting the policies trained based on DHER from our simulation to a real robotic arm.

4.6 SPECIAL CASE: HOW ABOUT IF HER KNOWS THE LAW OF THE MOTION OF A GOAL

We use Dy-Snake to demonstrate the experimental results for a special case that the law of the
motion of the target (food) is known to agents. Because the motion of the food is very simple
and controllable in Dy-Snake environment. We develop a direct extension of HER, called HER+,
that modifies desired goals at every timestep based on the law of the motion of the food to create
successful experience. More details of HER+ are described in the appendix.

We show the results in Figure 7. DHER and HER+ are both better than DQN at the beginning.
DHER is slightly better than HER+, which shows the efficiency of DHER is comparable in this
simple task.

5 CONCLUSION

We introduced a novel technique that assembles successful experience from a couple of failures.
With this technique, our proposed algorithm called DHER ( Dynamic Hindsight Experience Replay)
is able to address the tasks with sparse rewards and dynamic goals. Our technique can be combined
with an arbitrary off-policy RL algorithm and we experimentally demonstrated that with DQN and
DDPG. As far as we know, it is the first time that an agent is allowed to learn from assembled
experience from two failures.
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APPENDIX

TASKS WITH DYNAMIC GOALS

We have created four tasks as described below and illustrated by Figure 2. The first three tasks are
based on the robotic environments. The last is based on the GREEDY SNAKE environment.

• Dy-Reaching: The task is to control the robotic arm so that its gripper can reach the target
position. The target position moves from one point to another along a straight line with a
constant velocity.

• Dy-Circling: The task is to control the robotic arm so that its gripper can reach the target
position. The target position moves along a circle with a constant velocity.

• Dy-Pushing: in this task, a box is placed on a table in front of the robotic arm. The robot is
required to move the box to the target location on the table. The target location moves from
one position to another with a fixed velocity. Note that the robot’s grippers are locked to
prevent it from grasping. The learned behavior is actually a mixture of pushing and rolling.

• Dy-Snake: in this task, a snake and food are placed on a rectangle map and the task is to
control the snake to eat the food. The food is moving from one position to another position
with a fixed velocity.

HARDWARE

We use the Universal Robots UR10 with a gripper. We use a RealSense Camera SR300 to track the
position of objects. The gripper is blocked. We use a marker on the gripper for camera calibration.
During adapting the robot, for the position of the target, we use the camera to estimate it.

SIMULATION

We simulate the physical system using the MuJoCo physics engine (Todorov et al., 2012) and also
use MuJoCo to render the images. In our tasks, we use positions provided by MuJoCo for training
policies in the simulation.

In Figure 9, we demonstrate our simulation and the physics environment.

Simulation Physics environment

Figure 9: Our simulation and the physics environment.

A SPECIAL AND SIMPLER CASE - HER+

The paper considers a general situation that the law of the motion of goals is invisible to an agent.
However, we relax this assumption and assume that in some situations the law of the motion of goals
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is easy to obtain, i.e., the parameters of g(t; γ) are known. For example, it is able to calculate the
velocity of an object by observing the trajectories of the object.

In this situation, we do not need to search failed experience. With the knowledge of the velocity of
an object, it is straightforward that we can calculate any trajectory of desired goals. Thus for every
failed experience, at any time step t, based on the achieved goal gact , we calculate new desired goals
gdet = g(t) corresponding to the achieved goals in order to construct successful experience.

The details of HER+ are described in Algorithm 2. HER+ can be seen as a direct extension of
HER. HER and HER+ can modify any failed experience to successful experience because they both
assume the law of the motion of goals is known.

Algorithm 2 Hindsight Experience Replay Plus

Require: an off-policy RL algorithm A, replay buffer R, a reward function r
1: Initialize A and replay buffer R
2: for episode = 1, 2, · · · ,M do
3: Sample an initial goal g0 and an initial state s0
4: for t = 0, · · · , T − 1 do
5: Sample an action at using the behavioral policy from A:
6: at ← π(st|gt)
7: Execute the action at and observe a new state st+1 and a new goal gt+1

8: end for
9: for t = 0, · · · , T − 1 do

10: rt := r(st, at, gt+1)
11: Store the transitions (st|gt, at, rt, st+1|gt+1) in R (Standard experience replay)
12: Sample a set of the achieved goals of Ei as additional goals for reply G′
13: for g′p ∈ G′ do
14: Calculate a goal trajectory {g′0, · · · , g′p} where g′t = g(t; γ) (HER+)
15: for t = {0, · · · , p− 1} do
16: r′t := r(si,t, ai,t, g

′
t+1)

17: Store the transition (si,t|g′t, ai,t, r′t, si,t+1|g′t+1) in R
18: end for
19: end for
20: end for
21: end for
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