
Linear Backprop in non-linear networks

Mehrdad Yazdani
Qualcomm Institute

University of California San Diego
La Jolla, CA 92093

myazdani@gmail.com

Abstract

Backprop is the primary learning algorithm used in many machine learning algo-
rithms. In practice, however, Backprop in deep neural networks is a highly sensitive
learning algorithm and successful learning depends on numerous conditions and
constraints. One set of constraints is to avoid weights that lead to saturated units.
The motivation for avoiding unit saturation is that gradients vanish and as a result
learning comes to a halt. Careful weight initialization and re-scaling schemes
such as batch normalization ensure that input activity to the neuron is within the
linear regime where gradients are not vanished and can flow. Here we investigate
backpropagating error terms only linearly. That is, we ignore the saturation that
arise by ensuring gradients always flow. We refer to this learning rule as Linear
Backprop since in the backward pass the network appears to be linear. In addi-
tion to ensuring persistent gradient flow, Linear Backprop is also favorable when
computation is expensive since gradients are never computed. Our early results
suggest that learning with Linear Backprop is competitive with Backprop and saves
expensive gradient computations.

1 Overview

It is has been long known that deep neural networks with non-polynomial and non-linear units are
universal function approximators [Leshno et al., 1993]. In the early days of neural network research,
however, it was not clear what learning algorithms would find the optimal set of synaptic weights for
effective learning. Rosenblatt’s pioneering work essentially only learned the weights at the output
layer of the Multi-Layer Perceptron and keeping the input-layer weights fixed at random while
Fukushima used Hebbian learning. Backprop as introduced into neural network research [Werbos,
1974; Rumelhart et al., 1986] has been enormously successful at learning diverse sets of tasks by
various deep neural architectures and as a result is by far the most used learning algorithm.

Although enormously successful, Backprop is a highly sensitive learning algorithm and numerous
tricks have been collected to make it work in practice [Baydin et al., 2016; Bottou, 2012]. Some of
these issues are: dead or saturated units, appropriate learning rates, batch sizes, number of epochs in
addition to many other issues. In particular, considerable effort has been placed into avoiding saturated
units. The primary problem with saturated neurons is that gradients vanish in these regions and hence
learning comes to a halt. As a result, considerable effort has been placed into ensuring that the input
activity to neurons are in the linear region. Some of these efforts are the introduction of regularization
such as l2 penalty (also referred to as weight decay) [Krogh and Hertz, 1992; Srivastava et al., 2014],
batch normalization [Ioffe and Szegedy, 2015], and careful weight initialization schemes [Glorot and
Bengio, 2010; Mishkin and Matas, 2015]. Other solutions is to consider activation functions that
have limited saturating regions to ensure gradient flows [Nair and Hinton, 2010; Klambauer et al.,
2017]. [Gulcehre et al., 2016] extensively study activation functions with non-saturating regions to
provide gradients.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



Since gradient flow is essential for learning, we investigate learning algorithms that ensure linear
gradient flow. The Linear Backprop algorithm (see Algorithm 2 below) ensures gradients flows for
all regions and can be used as an alternative for learning. Compared with Backprop as shown in
Algorithm 1 [Goodfellow et al., 2016], the forward pass in Linear Backprop is identical. The network
architecture is still highly non-linear with non-linear activation functions, but when we compute
the loss function we only consider linearly backpropagating errors. Since in Linear Backprop
the derivatives of the activation functions are not computed (highlighted in red), the savings in
computation in Linear Backprop compared to Backprop is O(ml).

Another way to think of our proposed learning rule is that we introduce a regularization term such that
when gradients are computed, all the non-linear components are cancelled and only linear gradients
persist. In other words, during inference we use a deep non-linear network however during training
the loss function essentially reduces to a deep linear neural network. The forward pass is computed
as usual but the backward pass only uses linear feedback terms.

Several recent investigations have considered variants to Backprop for biological plausibility [Baldi
and Sadowski, 2016; Lillicrap et al., 2016; Bartunov et al., 2018] . In particular, [Lillicrap et al., 2016]
showed that learning is also possible with random weights. [Baldi and Sadowski, 2016] exhaustively
considers many Hebbian and error back propagation learning algorithms. Linear Backprop also shares
many similarity with the Straight Through Estimator [Bengio et al., 2013], however we propose
applying the estimator to any activation function.

Instead we suggest that Linear Backprop saves considerable computational costs as gradients are
never computed. While further research is needed to understand random and alternative learning
rules, the Linear Backprop learning rule that we consider here is especially favorable for cases with
limited computing resources. Our empirical results suggest that Linear Backprop in certain conditions
can be competitive with Backprop.

Algorithm 1: Backprop
Require Network depth l
Require Activation function f(·)
Require Parameters W(i) for i ∈ {1, . . . , l}
Require Inputs x and targets y, loss function L
Compute ŷ, hidden activation’s a(i) and h(i)

(e.g. Algorithm 6.3 in Goodfellow et al. [2016])

g ← ∇ŷL(ŷ, y)
for k = l, l − 1, . . . , 1 do

g ← g � f ′(a(k))
∇W(k)L(ŷ, y) = gh(k−1)>

g ← W(k)>g

Algorithm 2: Linear Backprop
Require Network depth l
Require Activation function f(·)
Require Parameters W(i) for i ∈ {1, . . . , l}
Require Inputs x and targets y, loss function L
Compute ŷ, hidden activation’s a(i) and h(i)

(e.g. Algorithm 6.3 in Goodfellow et al. [2016])

g ← ∇ŷL(ŷ, y)
for k = l, l − 1, . . . , 1 do

g ← g � a(k)

∇W(k)L(ŷ, y) = gh(k−1)>

g ← W(k)>g

1.1 Synthetic data example

We begin by considering a synthetic data example to investigate the overfitting and generalization
capabilities of Linear Backprop. There has been considerable recent interest in the generalization
capabilities of deep neural networks [Zhang et al., 2016; Poggio et al., 2018]. The gist of the research
is how networks that have far more parameters than training data (often by many orders of magnitude)
generalize well to unseen data. Many experiments have shown that even when training loss is 0
(severe overfitting), there is still generalization [Zhang et al., 2016; Wu et al., 2017].

Here we reproduce the motivating example from [Wu et al., 2017] to understand if Linear Backprop
shares similar generalization properties. We consider learning the third-order polynomial y =
x3 − 3x2 − x+ 1 +N(0, 0.1). In this experiment, the training set consists of only 5 points and the
neural network is trained until the training error is small (for example, ≤ 1 × 10−6). The neural
network is a feed forward Multi-Layer Perceptron (MLP) with 4 hidden layers each with width of 50
ReLU units (over 7,000 parameters). For a problem with 5 points, this is a highly overparameterized
network.

2



Figure 1: (Left) The same MLP architecture overfitted on 5 samples with Backprop vs Linear
Backprop. As discussed in Wu et al. [2017], though the MLP is overparameterized for this simple
problem, Backprop still learns solutions that generalize well. Our results suggest that Linear Backprop
also generalizes. (Middle) We compute the MSE between the networks prediction and the target
function for 50 different random initializations of weights in the MLP using the same 5 points for
overfitting. (Right) The histogram of the unit activations after training with sigmoidal activation
functions. Since Linear Backprop still manages to learn with saturated regions, unit activations are
much higher. Similar results hold for different layers and ReLU activation functions.

We reproduce the result from [Wu et al., 2017] that such an overparameterized network overfits
the training data yet also generalizes gracefully to unseen data (see Figure 1). We also observe
similar generalization capability with the same architecture when trained with Linear Backprop. The
Linear Backprop also overfits on the training data and has similar generalization when trained with
Backprop.

1.2 VGG and ResNet Binarized Neural Networks on CIFAR-10

Figure 2: Learning curves for VGG19 on
CIFAR-10

We compare Backprop and Linear Backprop on the
CIFAR-10 data set using two different architecture:
the 19 layer VGG architecture [Simonyan and Zisser-
man, 2014] and a Binarized Neural Network [Cour-
bariaux et al., 2016] using the ResNet architecture
[Hubara, 2018]. For VGG architecture, we use tanh
activation functions with vanilla SGD and sweep the
learning rate in {10−3, 10−4, 10−5} and l2 penalty
in {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}. In all ex-
periments we use a batch size of 128 points, train
with 100 epochs, and evaluate on the same test set
and select the best leaning rate and l2 for Backprop
and Linear Backprop respectively. Figure 2 shows
the learning curves on the test set for the best learning
rate and l2 penalty for each learning rule. The tanh
activation function is in particular prone to vanishing
gradients since it has many saturating regions. By using Linear Backprop, however, we are able to
ensure that gradients flow to continue learning.

We also consider how learning changes when the architecture is changed. For the ResNet Binarized
Neural Network, we use the hard tanh activation function and the same ResNet architecture in
[Courbariaux et al., 2016]. We similarly use only vanilla SGD with sweeping the learning learning rate
in {10−3, 10−4, 10−5} and l2 in {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}. Again, in all experiments
we use a batch size of 128 points, train with 100 epochs, and evaluate on the same test set. We train
this architecture with both Backprop and Linear Backprop. At 100 epochs, the best Precision@5
validation error we find using Backprop is 28.11% whereas using Linear Backprop the best best
Precision@5 validation error is 18.43%. These networks are significantly slower to train and in our
investigation are are interested in knowing which learning algorithm is more favorable at the start of
training. Although these Precision levels are far from state-of-the-art, at only 100 epochs we find that
Linear Backprop is highly competitive with traditional Backprop and that further fine-tuning (longer
epochs and better batch size) will yield much better results.

3



Acknowledgments

This work was supported in part by NSF awards CNS-1730158, ACI-1540112, ACI-1541349, and
the University of California San Diego’s California Institute for Telecommunications and Information
Technology. We also thank Larry Smarr, Tom DeFanti, John Graham, and Dmitry Mishin for the
support and guidance provided.

References
Pierre Baldi and Peter Sadowski. A theory of local learning, the learning channel, and the optimality

of backpropagation. Neural Networks, 83:51–74, 2016.

Sergey Bartunov, Adam Santoro, Blake A Richards, Geoffrey E Hinton, and Timothy Lillicrap.
Assessing the scalability of biologically-motivated deep learning algorithms and architectures.
arXiv preprint arXiv:1807.04587, 2018.

Atılım Güneş Baydin, Barak A Pearlmutter, and Jeffrey Mark Siskind. Tricks from deep learning.
arXiv preprint arXiv:1611.03777, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages
421–436. Springer, 2012.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256, 2010.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Caglar Gulcehre, Marcin Moczulski, Misha Denil, and Yoshua Bengio. Noisy activation functions.
In International Conference on Machine Learning, pages 3059–3068, 2016.

Itay. Hubara. Binarized neural network (bnn) for pytorch. https://github.com/itayhubara/
BinaryNet.pytorch, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in Neural Information Processing Systems, pages 971–980, 2017.

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Advances in
neural information processing systems, pages 950–957, 1992.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural networks,
6(6):861–867, 1993.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications,
7:13276, 2016.

Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint arXiv:1511.06422, 2015.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–814,
2010.

4

https://github.com/itayhubara/BinaryNet.pytorch
https://github.com/itayhubara/BinaryNet.pytorch


Figure 3: (Left) Comparing learning CIFAR-10 using the ReLU activation function with Backprop
against using the tanh activation function using Linear Backprop. Learning ReLU with Backprop can
yield similar results to tanh with Linear Backprop, although it appears the variance with Backprop
learning is much higher.(Right) Similarly, we compare learning CIFAR-10 using the ReLU activation
function with Backprop against using the tanh activation function using Linear Backprop. Learning
ReLU with Backprop can yield similar results to tanh with Linear Backprop, although it appears the
variance with Backprop learning is much higher.

Tomaso Poggio, Qianli Liao, Brando Miranda, Andrzej Banburski, Xavier Boix, and Jack Hidary.
Theory iiib: Generalization in deep networks. arXiv preprint arXiv:1806.11379, 2018.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533, 1986.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Paul Werbos. Beyond regression:" new tools for prediction and analysis in the behavioral sciences.
Ph. D. dissertation, Harvard University, 1974.

Lei Wu, Zhanxing Zhu, et al. Towards understanding generalization of deep learning: Perspective of
loss landscapes. arXiv preprint arXiv:1706.10239, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

A Comparing Linear Backprop on ReLU activation functions on CIFAR-10
with VGG19

The ReLU activation function is designed to ensure that gradients flow maximally. For
this reason we compare how learning with ReLU activation functions compare with Lin-
ear Backprop. We again sweep the learning rate in {10−3, 10−4, 10−5} and l2 penalty in
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6} for 100 epochs and select the best learning rate and l2 for a
all activation function and learning algorithm combinations. Figure 3 (left) shows 1000 epochs of
learning comparing Linear Backprop with tanh and Backprop with ReLU.

Unlike Backprop with tanh shown in Figure 2, Backprop with ReLU is able to match learning with
tanh and Linear Backprop. However, the variance of Backprop learning with ReLU is significantly
higher. We see similar results when we compare Linear Backprop learning with ReLU and Backprop
learning with ReLU as shown in Figure 3 in the right.

5



Figure 4: (Left) Comparing Backprop and Linear Backprop learning curves on CIFAR-10 test
accuracy for fixed VGG architecture with varying learning rates and weight decay terms (higher is
better). Light and dark color markings indicate Backprop and Linear Backprop respectively, different
color indicate different weight decay rates. For large learning rate, to avoid unit saturation and stay in
linear regime of the neuron, larger weight decay is required for Linear Backprop as we expect.

B Sweeping different learning rates and weight decays for VGG19 on
CIFAR-10

In all our VGG19 experiments, we sweep the learning rate in {10−3, 10−4, 10−5} and l2 penalty
in {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} for 100 epochs. It is instructive to observe how learning
progresses for these different parameter settings. In Figure 4 we show the learning curves using the
tanh activation function compared with Backprop (lighter color) and Linear Backprop (darker color).
In the early stages of learning, Linear Backprop in particular performs favorably compared with
Backprop learning.

6


	Overview
	Synthetic data example
	VGG and ResNet Binarized Neural Networks on CIFAR-10

	Comparing Linear Backprop on ReLU activation functions on CIFAR-10 with VGG19
	Sweeping different learning rates and weight decays for VGG19 on CIFAR-10

