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ABSTRACT

Symbolic logic allows practitioners to build systems that perform rule-based reason-
ing which is interpretable and which can easily be augmented with prior knowledge.
However, such systems are traditionally difficult to apply to problems involving
natural language due to the large linguistic variability of language. Currently, most
work in natural language processing focuses on neural networks which learn dis-
tributed representations of words and their composition, thereby performing well in
the presence of large linguistic variability. We propose to reap the benefits of both
approaches by applying a combination of neural networks and logic programming
to natural language question answering. We propose to employ an external, non-
differentiable Prolog prover which utilizes a similarity function over pretrained
sentence encoders. We fine-tune these representations via Evolution Strategies with
the goal of multi-hop reasoning on natural language. This allows us to create a
system that can apply rule-based reasoning to natural language and induce domain-
specific natural language rules from training data. We evaluate the proposed system
on two different question answering tasks, showing that it complements two very
strong baselines – BIDAF (Seo et al., 2016a) and FASTQA (Weissenborn et al.,
2017) – and outperforms both when used in an ensemble.

1 INTRODUCTION

We consider the problem of multi-hop reasoning on natural language input. For instance, consider
the statements Socrates was born in Athens and Athens belongs to Greece, together with the question
Where was Socrates born? There are two obvious answers following from the given statements:
Athens and Greece. While Athens follows directly from the single statement Socrates was born in
Athens, deducing Greece requires a reader to combine both provided statements using the knowledge
that a person that was born in a city, which is part of a country, was also born in the respective
country.

Most recent work that addresses such challenges leverages deep learning based methods (Sukhbaatar
et al., 2015; Peng et al., 2015; Seo et al., 2016b; Raison et al., 2018; Henaff et al., 2016; Kumar et al.,
2016; Graves et al., 2016; Dhingra et al., 2018), capable of dealing with the linguistic variability
and ambiguity of natural language text. However, the black-box nature of neural networks makes it
hard to interpret the exact reasoning steps leading to a prediction (local interpretation), as well as the
induced model (global interpretation).

Logic programming languages like Prolog (Wielemaker et al., 2012), on the other hand, are built
on the idea of using symbolic rules to reason about entities, which makes them highly interpretable
both locally and globally. The capability to use user-defined logic rules allows users to incorporate
external knowledge in a straightforward manner. Unfortunately, because of their reliance on symbolic
logic, systems built on logic programming need extensive preprocessing to account for the linguistic
variability that comes with natural language (Moldovan et al., 2003).

We introduce NLPROLOG, a system which combines a symbolic reasoner and a rule-learning method
with pretrained sentence representations to perform rule-based multi-hop reasoning on natural
language input.1 Like inductive logic programming methods, it facilitates both global as well as

1NLPROLOG and our evaluation code will be made open-source upon publication.
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local interpretation, and allows for straightforward integration of prior knowledge. Similarly to deep
learning based approaches, it can be applied to natural language text without the need to transforming
it to formal logic.

At the core of the proposed method is an external non-differentiable theorem prover which can take
similarities between symbols into account. Specifically, we modify a Prolog interpreter to support
weak-unification as proposed by Sessa (2002). To obtain similarities between symbols, we utilize
sentence encoders initialized with pretrained sentence embeddings (Pagliardini et al., 2017) and then
fine-tune these for a downstream question answering task via gradient-based optimization methods.
Since the resulting system contains non-differentiable components, we propose using Evolution
Strategies (ES) (Eiben et al., 2003) as a gradient estimator (Williams, 1992) for training the system –
enabling us to fine-tune the sentence encoders and to learn domain-specific logic rules (e.g. that the
relation is in is transitive) from natural language training data. This results in a system where training
can be trivially parallelized, and which allows to change the logic formalism by simply exchanging
the external prover without the need for an intricate re-implementation as an end-to-end differentiable
function.

In summary, our main contributions are: a) we show how Prolog-like reasoning can be applied to
natural language input by employing a combination of pretrained sentence embeddings, an external
logic prover, and fine-tuning using Evolution Strategies, b) we extend a Prolog interpreter with
weak unification based on distributed representations, c) we present Gradual Rule Learning (GRL),
a training algorithm that allows the proposed system to learn First-Order Logic (FOL) rules from
entailment, and d) we evaluate the proposed system on two different Question Answering (QA)
datasets and demonstrate that its performance is on par with state-of-the-art neural QA models in
many cases, while having different failure modes. This allows to build an ensemble of NLPROLOG
and a neural QA model that outperforms all individual models.

2 RELATED WORK

Our work touches in general on weak-unification based fuzzy logic (Sessa, 2002) and focuses on
multi-hop reasoning for QA, the combination of logic and distributed representations, and theorem
proving for question answering.

Multi-hop Reasoning for QA. One prominent approach for enabling multi-hop reasoning in neural
QA models is to iteratively update a query embedding by integrating information from embeddings
of context sentences, usually using an attention mechanism and some form of recurrency (Sukhbaatar
et al., 2015; Peng et al., 2015; Seo et al., 2016b; Raison et al., 2018). These models have achieved
state-of-the-art results in a number of reasoning-focused QA tasks. Henaff et al. (2016) employ
a differentiable memory structure that is updated each time a new piece of information (usually a
sentence) is processed. The memory slots can be used to track the state of various entities, which can
be considered as a form of temporal reasoning. Similarly, the Neural Turing Machine (Graves et al.,
2016) and the Dynamic Memory Network (Kumar et al., 2016), which are built on differentiable
memory structures, have been used to solve synthetic QA problems requiring multi-hop reasoning.
Dhingra et al. (2018) modify an existing neural QA model to additionally incorporate coreference
information provided by a coreference resolution model in a preprocessing step, which improves
performance on QA problems requiring multi-hop reasoning.

All of the methods above perform reasoning more or less implicitly by updating latent vector
representations, which makes an unambiguous interpretation of the exact reasoning steps difficult.
Additionally, it is not obvious how a strong prior, like user-defined inference rules, could be imposed
on the respective reasoning procedures. Besides, many of them have been evaluated only on artificially
generated data sets and thus it is unclear how they perform when on data that involves natural linguistic
variability.

Combination of FOL and Distributed Representations. Investigating the combination of formal
logic and distributed representations has a long tradition, which is reviewed by Besold et al. (2017).
Strongly related to our approach is the combination of Markov Logic Networks (Richardson &
Domingos, 2006), Probabilistic Soft Logic (Bach et al., 2017), and word embeddings, which has been
applied to Recognizing Textual Entailment (RTE) and Semantic Textual Similarity (STS) (Garrette
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et al., 2011; 2014; Beltagy et al., 2013; 2014), and improves upon baselines utilizing either only logic
or only distributed representations.

An area in which neural multi-hop reasoning models have been thoroughly investigated is Knowledge
Base Completion (Das et al., 2016; Cohen, 2016; Neelakantan et al., 2015; Das et al., 2017). While
QA could be in principle modeled as a KB-completion task, the construction of a densely connected
KB from text is far from trivial, due to the inherent ambiguity of natural language. Without any
preprocessing, even the moderately sized QA tasks considered in this work would produce a very
large and sparsely connected KB.

Closest to our approach is the Natural Theorem Prover (NTP) (Rocktäschel & Riedel, 2017), which
obtains the final proof score for a statement by constructing a neural network that represents all
possible proofs. The model is trained end-to-end using backward chaining and a differentiable
unification operator. Since the number of possible proofs grows exponentially with the number
of facts and rules, NTPs cannot scale even to moderately sized knowledge bases, and are thus not
applicable to natural language problems in its current form. We circumvent this issue by using a
non-differentiable prover and fine-tune the model using Evolution Strategies.

Theorem Proving for Question Answering. Our work is not the first to apply theorem proving to
QA problems. Angeli et al. (2016) employ a system based on Natural Logic to search a large KB for
a single statement that entails the candidate answer. This is somewhat orthogonal to our approach, as
we aim to learn rules that combine multiple statements to answer a question.

More traditional systems like Watson (Ferrucci et al., 2010) or COGEX (Moldovan et al., 2003) utilize
an integrated theorem prover, but require a transformation of the natural language input to logical
form. In the case of COGEX, this improves the accuracy of the underlying system by 30%, and
increases its interpretability. While this work is similar in spirit, we greatly simplify the preprocessing
step by replacing the transformation of natural language to logic with the simpler approach of taking
Open Information Extraction (Open IE) (Etzioni et al., 2008) textual patterns.

Fader et al. (2014) propose the OPENQA system that utilizes a mixture of handwritten and automati-
cally obtained operators that are able to parse, paraphrase and rewrite queries, which allows them
to perform large-scale QA on KBs that include Open IE triples. While this work shares the same
goal – answering questions using facts extracted by Open IE – we choose a completely different
approach to address the problem of linguistic variablity and focus on the combination of multiple
facts by learning logical rules.

3 BACKGROUND

In the following, we review the background relevant for the custom Prolog engine employed by
our method. Specifically, we briefly introduce Prolog’s backward chaining algorithm and unifica-
tion procedure (Russell & Norvig, 2016). We assume basic knowledge of formal logic and logic
programming.

In a nutshell, a Prolog program consists of a set of rules in the form of Horn clauses
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where h, pi are predicate symbols and f ij are either function (denoted in lower case) or variable
(upper case) symbols. The domain of function symbols is denoted by F and the domain of predicate
symbols by P . h(fh1 , . . . , f
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body of the rule. We call B the body size of the rule and rules with a body size of zero are named
atoms (short for atomic formula).2 If an atom does not contain any variable symbols it is termed fact.
As in related work (Sessa, 2002; Julián-Iranzo et al., 2009), we disregard negation and disjunction.

The central procedure of Prolog is unification. It receives two atoms and attempts to find
variable substitutions that make both atoms syntactically equal. For example, the input atoms
country(Greece, Socrates) and country(X,Y) result in the following variable substitution after unifi-
cation: {X/Greece, Y/Socrates}.

2For simplicity, we only consider function-free Prolog in our experiments, i.e., Datalog (Gallaire & Minker,
1978) programs where all function symbols have arity zero and are called entities. However, in principle
NLPROLOG also supports functions with higher arity.

3



Under review as a conference paper at ICLR 2019

The proof algorithm of Prolog is called backward-chaining. It starts from a goal atom g and attempts
to prove it by applying suitable rules, thereby generating subgoals that are proved next. To find
applicable rules, it attempts to unify g with the heads of all available rules. If this unification succeeds,
the resulting variable substitutions are applied to the atoms in the rule body and each of those atoms
becomes a new subgoal. For instance, the application of the rule country(X,Y )⇐ born_in(Y,X)
to the goal country(Greece, Socrates) would yield the subgoal born_in(Socrates,Greece). Then the
process is repeated for all subgoals until no subgoal is left, i.e., until all subgoals have been unified
with a fact. The result of this procedure is a set of rule applications and variable substitutions called
proof. Note, that the number of possible proofs is exponential in the number of predicate and entity
symbols, as every rule might be used in the proof of each subgoal. Pseudo code for weak unification
can be found in Appendix A.1 and we refer the reader to Russell & Norvig (2010) for more details. To
apply standard Prolog to a NLP problem like QA, one would have to account for semantic similarities
and ambiguities with extensive and error-prone preprocessing, e.g. when transforming the natural
language input to logical form.

4 NLPROLOG

Our aim is to apply Prolog to natural language question answering where the same entity or relation
can have different natural language surface forms. Thus, we replace the equality-based unification
operator with similarity-based weak unification (Sessa, 2002), which allows to unify two symbols x, y
if they are sufficiently similar, as judged by a similarity function ∼θ parameterized by θ. Then, the
result of unification also contains a proof success score S that is the result of the symbols’ similarity
and the previous success score S′: S = >(x ∼ y, S′), where > ∈ {min , ·} is an aggregation
function. The result of backward-chaining with weak unification are (possibly) multiple proofs, each
with an associated proof success score. NLPROLOG combines inference based on weak unification
and distributed representations to allow reasoning on natural language statements. The natural
language statements are first transformed to triples using Open IE (Etzioni et al., 2008). The symbols
occurring in these triples and in the rules are then embedded into a vector space, which in turn is used
to estimate similarities between symbols. The resulting similarity function is subsequently used to
perform a proof and consequently obtain a proof success score S. The proof success score is then
utilized as a training signal for ES. An illustration of the process can be found in Fig. 1, where we
visualize the interplay of the different components for our running example.

4.1 SIMILARITY COMPUTATION

We embed symbols using an encoder Eθ : F ∪ P 7→ Rd parametrized by θ for entity and predicate
symbols, where d denotes the embedding size. The resulting embeddings are used to induce ∼θ:
(F ∪ P)2 7→ R:

x ∼θ y =
1 + cos(Eθ(x), Eθ(y))

2
(1)

where cos denotes the cosine similarity between two vectors. There are alternative similarity functions
such as Euclidean distance or RBF kernel, but in preliminary experiments we found cosine simlarity
to work more robustly.

We use an encoder function that uses a embedding lookup table for predicate symbols and a different
one for entities. All embeddings representing natural language phrases are populated with sentence
vectors that were pretrained with SENT2VEC (Pagliardini et al., 2017). Additionally, we introduce
a third lookup table for the predicate symbols of rules and goals, because semantics of goal or rule
predicates might differ from the semantics of fact predicates even if they share the same surface
form. For instance, the query (X, parent,Y) could be interpreted either as (X, is the parent of,Y) or
as (X, has the parent,Y) which are fundamentally different things.

4.2 FINE-TUNING THE ENCODER TO A DOWNSTREAM TASK

We propose to fine-tune the similarity function on a downstream task by updating the symbol
embeddings. As NLPROLOG involves the non-differentiable proof search step, we cannot apply
backpropagation for optimization. Instead, we propose to employ Evolution Strategies in conjunction
with Adam (Kingma & Ba, 2014) to estimate the weight updates. ES recently showed good results
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Figure 1: Overview of NLPROLOG. The components of NLPROLOG are depicted as ellipses, while
inputs and outputs are drawn as squares. Phrases with red background are entities and blue ones are
predicates.

for Reinforcement Learning problems in Salimans et al. (2017); Mania et al. (2018). More formally,
the parameter update is computed as:

θt+1 = θt +
αt
NσtJ

N∑
k=1

εk∼N (0,σ)

[J(θt + εk)− J(θt − εk)] εk

where J(θ) is the reward obtained by θ, σtJ is the standard deviation of all rewards obtained at time t
as proposed by Mania et al. (2018), and αt are adaptive learning rates selected by ADAM (Kingma &
Ba, 2014). The standard deviation σ of the distribution that is generating the perturbations is treated
as a hyperparameter.

We train NLPROLOG with ES using a learning from entailment setting (Muggleton & Raedt, 1994),
in which the model is trained to decide whether a Prolog programR entails the truth of a candidate
triple c. The objective of the model is to assign high probabilities p(c|R; θ) to true candidate triples
and low probabilities to false triples. To achieve this, we model the reward as J(θ) = yp(c|R; θ),
where y ∈ {−1, 1} is the gold label. To estimate p(c|R; θ), we exhaustively search for all proofs
for the triple c, up to a given depth D which we treat as a hyperparameter. This search yields a
number of proofs each with a success score Si. We set p(c|R; θ) to be the maximum of these scores
Smax = maxi Si.

4.3 GRADUAL RULE LEARNING

The reasoning process of NLPROLOG crucially depends on rules that describe the relations between
predicates. While it is possible to write down rules in natural language, this approach is hardly
scalable. Thus, we follow Rocktäschel & Riedel (2017) and use rule templates to perform Inductive
Logic Programming (ILP) (Muggleton, 1991) which allows NLPROLOG to learn rules from training
data. For this, a user has to define a set of rules with a given structure as input. Then, NLPROLOG
randomly initializes the predicates of these rules. For instance, to induce a rule that can model
transitivity, one would add a rule template of the form p1(X,Z) ⇐ p2(X,Y ) ∧ p3(Y, Z), and
NLPROLOG would instantiate multiple rules with randomly initialized embeddings for p1, p2, and
p3. The exact number and structure of the rule templates is treated as a hyper-parameter. If not
explicitly stated otherwise, the experiments were performed with the same set of rule templates
containing two rules for each of the forms p1(X,Y ) ⇐ p2(X,Y ), p1(X,Y ) ⇐ p2(Y,X) and
p1(X,Z)⇐ p2(X,Y ) ∧ p3(Y,Z).
In preliminary experiments, we observed that unification with such randomly initialized embeddings
always leads to a stark drop of the proof success score. This implies in turn that proofs involving
rule templates rarely yield the highest score Smax and thus, might have no impact on the value of the
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reward function. Due to that, the expected gradient estimate for the rule embeddings is zero, and they
will remain close to their initialization.

The main reason for this behavior is that the monotonicity of the aggregation functions implies that
each sub-goal created by an application of a rule will only decrease the success score of the proof.
Thus, all other things being equal, rules with a small number of body atoms (and facts in particular)
will be preferred over more complex rules with a higher number of body atoms. Note that this
problem is particularly severe in our setting where rules are initialized randomly while the remaining
predicate symbols are instantiated using pretrained sentence embeddings.

We propose a Gradual Rule Learning (GRL) algorithm which counteracts this effect during training.
GRL segments the training process into Bmax + 1 phases, where Bmax is the maximum body size
of all available rules. In the k-th phase of GRL, only proofs which employ at least one rule with a
body size of Bmax + 1− k are considered to estimate p(t|F ; θ). Thus, it is guaranteed that in each
training step in phase k at least one rule with a body size of Bmax + 1− k receives a training signal.

5 EVALUATION

We evaluate our method on two different QA data sets: BABI-1K-STATIC (Weston et al., 2015) and
different subsets of WIKIHOP (Welbl et al., 2017). The used hyperparameter configurations can be
found in Section B.

5.1 SUBSETS OF WIKIHOP

We evaluate on different subsets of WIKIHOP (Welbl et al., 2017), each containing a single query
predicate. We consider the predicates publisher, developer, and country, because their semantics
ensure that the annotated answer is unique and they contain a relatively high amount of questions
that are annotated as requiring true multi-hop reasoning. For publisher, this yields 509 training and
54 validation questions, for developer 267 and 29, and for country 742 and 194. As the test set of
WIKIHOP is not publicly available, and splitting the small train set would lead to a far too small
validation set, we report scores for the validation set and refrain from hyperparameter optimization
and early stopping.

Each data point consists of a query p(q,X) where q is some query entity, X is the entity
that has to be predicted, C is a list of candidates entities, a ∈ C is an answer entity and
p ∈ {publisher, developer, country} is the query predicate. In addition, every query is accom-
panied by a set of support documents which can be used to decide which candidate is the correct
answer. To transform the support documents to natural language triples, we use the Open IE system
MINIE (Gashteovski et al., 2017). We use the publicly available version of MINIE3 in the dictionary
mode, and use a list of all WIKIHOP candidate entities as our dictionary of multi-token entities.

Following Welbl et al. (2017), we use the two neural QA models BIDAF (Seo et al., 2016a) and
FASTQA (Weissenborn et al., 2017) as baselines for the selected predicates of WIKIHOP. We employ
the implementation provided by the QA framework JACK4 (Weissenborn et al., 2018) with the same
hyperparameters as used by Welbl et al. (2017) and train a separate model for each predicate. In order
to compensate for the fact that both models are extractive QA models which cannot make use of the
candidate entities, we additionally evaluate modified versions which transform both the predicted
answer and all candidates to vectors using the wiki-unigrams model5 of SENT2VEC (Pagliardini et al.,
2017). Consequently, we return the candidate entity which has the highest cosine similarity to the
predicted entity.

5.2 BABI-1K-STATIC

We utilize a subset of BABI-1K to study the behavior of NLPROLOG in a very controlled environment.
Note however, that the experiments on WIKIHOP are much more significant, as they involve natural
linguistic variability. BABI-1K-STATIC consists of the tasks QA4,QA15,QA17, and QA18 from

3https://github.com/rgemulla/minie
4https://github.com/uclmr/jack
5https://drive.google.com/open?id=0B6VhzidiLvjSa19uYWlLUEkzX3c
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the BABI suite (Weston et al., 2015), each containing 1,000 training and 1,000 testing questions.
These tasks were selected because, unlike the other tasks of BABI, they do not require reasoning
about a dynamically changing world state, which is not supported by the current implementation of
NLPROLOG. We automatically transform all statements and queries of the respective tasks to triples
and use the resulting KB as input to NLPROLOG. We train and evaluate on each problem individually.
The tasks QA4 and QA15 require entities as an output, thus we consider every entity that occurs at
least once in any problem of the task as a candidate for all problems. Tasks QA17 and QA18 are
binary classification tasks, and thus we determine the optimal threshold on the training set, after the
training of NLPROLOG has finished.

We refrain from systematically comparing results on the individual BABI tasks to competing methods
like Seo et al. (2016b); Peng et al. (2015); Dhingra et al. (2018); Henaff et al. (2016); Sukhbaatar
et al. (2015), since our non-negligible preprocessing and evaluation on only four out of 20 tasks does
not allow us to match the relevant evaluation protocols. We therefore utilize BABI-1K-STATIC only
for ablation experiments, but note that NLPROLOG achieves similar or better accuracy values than
the mentioned methods in all instances we studied, except on QA4.

5.3 DEALING WITH CANDIDATES

All questions of WIKIHOP and some of BABI-1K-STATIC include a set of answer candidates C. For
those cases, we modify our reward function to leverage this information, taking inspiration from
Bayesian Personalized Ranking (Rendle et al., 2009):

J(θ) = p(a|R; θ)− max
c∈C\{a}

p(c|R; θ),

where a ∈ C is the true answer.

We observed that this reward function does not work well with the minimum aggregation function.
Therefore, we employ this modified reward only when using the product aggregation and utilize the
reward described in Section 4.2 with the minimum aggregation.

5.4 RESULTS

The results for the selected predicates of WIKIHOP can be found in Table 1. While there is no single
best performing model, NLPROLOG is outperformed by at least one neural QA model on every
predicate. For country, this only holds true when considering the versions of the neural models that
have been augmented to consider candidate entities. For all three predicates, only a single transitive
rule is utilized across all validation questions. Since we observe a more diverse set of induced rules on
BABI-1K, we partly attributed this lack of diverse rules to the multi-hop characteristic of the WIKIHOP
data. It seems that NLPROLOG struggles to find meaningful rules for the predicates developer and
publisher, which leads to very few proofs involving rules on the development set: 1 out of 54 for
publisher and 2 out of 29 for developer, compared with 159 out of 194 for country. We partially
attribute this to the fact, that the semantics of country suggest a straightforward rule (transitivity of
location), which is not true for developer or publisher. Additionally, the annotations regarding the
neccessity of multi-hop reasoning provided for the validation set (Welbl et al., 2017) suggest that
publisher and developer contain significantly fewer training examples involving multi-hop reasoning.

Exemplary proofs generated by NLPROLOG on the predicates developer and country can be found
in Fig. 3. As we are especially interested in assessing the capability for multi-hop reasoning, we
additionally evaluate on a subset of problems which have been unanimously labelled as requiring
multi-hop reasoning. On this subset of the development data, which is denoted as Countryhop (mh)
in Table 1, NLPROLOG outperforms all other single models.

5.5 NEURAL QA AND NLPROLOG ENSEMBLE

If the proof of NLPROLOG producing the prediction does not employ any rules, the prediction is
essentially the result of performing a simple nearest neighbor search among the embeddings of all
fact triples. We hypothesize that the neural QA models FASTQA and BIDAF are better suited for
finding the most predictive single support statement, which motivates an ensemble of a neural QA
model and NLPROLOG. We built a system which predicts the output of NLPROLOG when it used at
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Model publisher developer country country (mh)

BIDAF 66.67 65.52 53.09 53.19
FastQA 62.96 62.07 57.21 57.44

BIDAF-Sent2Vec 75.93 68.97 61.86 65.96
FastQA-Sent2Vec 75.93 58.62 64.95 65.96
NLProlog (ours) 51.85 48.28 63.92 68.09

BIDAF-Sent2Vec + NLProlog 77.78 72.41 65.46 70.21
FastQA-Sent2Vec + NLProlog 77.78 62.07 69.07 70.21

Table 1: Accuracy scores in percent for different predicates on the development set of WIKIHOP.
country (mh) only considers the problems that have been unanimously judged to require multi-hop
reasoning. The upper part lists single models and the bottom part ensembles.

least one rule and the output of the neural QA model otherwise. This allows to employ the multihop
reasoning of NLPROLOG when possible and to utilize the pattern matching capabilities of the neural
QA models in the remaining cases. The results for these ensembles are given in the bottom part of
Table 1. In all instances, ensembling a neural QA model with NLPROLOG improved upon all single
models, indicating that they complement each other well. We analyze reasons for the success of this
ensembling strategy in Section 5.6.

5.6 ERROR ANALYSIS

We conducted an extensive error analysis, in which we manually classified all errors of NLPROLOG
on the selected WIKIHOP predicates into predefined categories. The results are depicted in Figure 2.

For the developer predicate, in the majority of cases, errors were caused by OPENIE during the fact
extraction step: in all but one case, OPENIE did not produce the necessary facts, or a necessary facts
was not stated in the support text, or there were multiple correct candidates and NLPROLOG selected
the wrong one. As a consequence, for both the publisher and developer predicates, the majority of
queries would not answerable, even when the necessary rules were correctly induced. The predictive
accuracy was significantly higher for the country predicate, where errors were mostly due to entitities
not having SENT2VEC embeddings and a few missing rules.

Fig. 2 indicates that FASTQA can produce the correct answer, even if crucial information is missing
from the supporting documents. To analyze this further, we evaluated FASTQA and NLPROLOG
on a test set of the country predicate in which all documents mentioning the query entity were
removed. Remarkably, the accuracy of FASTQA increased by approximately 1%, while the accuracy
of NLPROLOG decreased by approx. 11%.

Furthermore, we evaluated both FASTQA and NLPROLOG on the hard subset of country as defined
by Sugawara et al. (2018): on these 62 problems which cannot be solved with a simple heuristic,
NLPROLOG achieved an accuracy of 51.61%, as opposed to 46.77% by FASTQA.

We conjecture that – besides NLPROLOG’s multi-hop reasoning capability – this is one reason why
the neural models and NLPROLOG complement each other nicely: neural models can compensate
for missing information, while NLPROLOG is less susceptible for spurious correlations between the
query and supporting texts. The complementary nature of both approaches is further supported by the
error analysis, described in Fig. 4.

5.7 ABLATION EXPERIMENTS

We perform experiments on BABI-1K-STATIC to investigate the effect of the GRL training procedure.
Specifically, we perform experiments on BABI-1K-STATIC with only the last phase of GRL (i.e.
training without GRL), with the last and the penultimate phase, and with all three phases, correspond-
ing to full GRL as we limit the rule complexity to two body atoms in rule templates. To maintain
comparability between runs, we keep the number of SGD steps constant across all experiments.
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Figure 2: Results of the error analysis. The y-axis shows the number of errors per category: O(penIE)
refers to a crucial information missing due to an error of the OpenIE tool, A(mbiguous) means that
multiple candidates were correct and NLProlog chose one which was not labeled as the correct one,
while I(nfo) refers to problems that are not answerable with the provided support texts. R(ule) means
that a required rule was not induced, and E(mbedding) implies that the answer was correctly deduced
but received a lower score than an erroneous deduction of another candidate.

QA4 QA15 QA17 QA18

GRL phase 3 (no) 56.4 37.1 62.8 90.9
GRL phase 2+3 88.8 33.5 66.7 94.7
GRL phase 1+2+3 (full) 88.0 100.0 67.6 97.6
Gold Rules (Untrained) 100.0 100.0 73.2 92.0
Gold Rules (Trained) 100.0 100.0 84.8 98.1
No Rules (Trained) 60.0 32.8 63.0 90.4
Ten Templates 88.1 100.0 61.9 89.4

Table 2: Accuracies in percent of ablation experiments on BABI-1K-STATIC. The upper half examines
the effectiveness of GRL, while the bottom results concern the effect of training and different choices
of rules.

Additionally, we experiment with manually defined rules, which we deem sufficient for solving each
of the four tasks. For these, we report results before and after training, as well as for a run without
any rule templates. The accuracy scores for all experiments on BABI are provided in Table 2.

To assess the impact of the choice of rule templates, we evaluate NLPROLOG on bAbI-1k-static with
a different set of rule templates containing two rules of the form p1(X,Y )⇐ p2(X,Y ), four with
the form p1(X,Y )⇐ p2(Y,X) and another four for p1(X,Z)⇐ p2(X,Y ) ∧ p3(Y, Z).
Clearly, the full GRL is necessary to obtain acceptable results in any of the problems. Interestingly,
phase 1 of GRL does not contribute anything for QA4, which is perfectly solvable using only rules
of body size 1. On the other hand, QA15 and QA18 both require a rule of body size 2, which makes
phase 1 strongly improve the results. Only for QA17 the results are inconclusive. Nevertheless, this
indicates that GRL works as intended, with the earlier phases encouraging the induction of rules with
a higher number of conjuncts in the body.

The results using manually defined rules suggest that even when sufficient rules are provided, training
with ES is helpful nevertheless. Interestingly, the model using no rules is able to solve over 90%
of the problems in QA18, indicating that this problem is not well suited for evaluating reasoning
capabilities of QA models.

Using ten instead of six templates leads to worse performance on all BABI problems but QA15, which
is solved perfectly with a much faster convergence rate. This result indicates that the choice of rule
templates might be an important hyperparameter which should be optimized for a given problem.

6 DISCUSSION AND FUTURE WORK

We have developed NLPROLOG, a system that is able to perform rule-based reasoning on natural
language input, and can learn domain-specific natural language rules from training data. To this end,
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Figure 3: Example proof trees generated by NLPROLOG. Each of the two trees shows an application
of a transitive rule, the first for the predicate developer and the second for the predicate country. The
rule templates are displayed with the most similar predicate. Note the noise introduced by the Open
IE process, e.g. QUANT_0_1 and that entities and predicates do not need to match exactly.

we have proposed to combine a symbolic prover with pretrained sentence embeddings and to train the
resulting system with Evolution Strategies. We have evaluated NLPROLOG on two different QA tasks,
showing that it can learn domain-specific rules and produce predictions which complement those of
the two strong baselines BIDAF and FASTQA. This allows to build an ensemble of a baseline and
NLPROLOG which outperforms all single models.

While we have focused on a subset of First Order Logic in this work, the expressiveness of NL-
PROLOG could be extended by incorporating a different symbolic prover. For instance, a prover for
temporal logic (Orgun & Ma, 1994) would allow to model temporal dynamics in natural language
and enable us to evaluate NLPROLOG on the full set of BABI tasks. We are also interested in
incorporating future improvements of symbolic provers, Open IE systems and pretrained sentence
representations to further enhance the performance of NLPROLOG. To study the performance of the
proposed method without the noise introduced by the Open IE step, it would be useful to evaluate it
on tasks like knowledge graph reasoning. Additionally, it would be interesting to study the behavior
of NLPROLOG in the presence of multiple WIKIHOP query predicates.
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A ALGORITHMS

A.1 WEAK UNIFICATION

fun unify(x, y, θ, S)
Input:
x: function f(. . .) | atom p(. . .) | variable | list x1 :: x2 :: . . . :: xn
y: function f ′(. . .) | atom p′(. . .) | variable | list y1 :: y2 :: . . . :: ym
θ: current substitutions, default = {}
S: current success score, default = 1.0
Output: (Unifying substitution θ′ or failure, Updated success score S′)
if θ = failure then return (failure, 0)
else if S < λ then return (failure, 0)
else if x = y then return (θ, S)
else if x is Var then return unify_var(x, y, θ, S)
else if y is Var then return unify_var(y, x, θ, S)
else if x is f(x1, . . . , xn), y is f ′(y1, . . . , yn), and f ∼ f ′ ≥ λ then

S′ := S ∧ f ∼ f ′
return unify(x1 :: . . . :: xn, y1 :: . . . :: yn, θ, S

′)
end
else if x is p(x1, . . . , xn), y is p′(y1, . . . , yn), and p ∼ p′ ≥ λ then

S′ := S ∧ f ∼ f ′
return unify(x1 :: . . . :: xn, y1 :: . . . :: yn, θ, S

′)
end
else if x is x1 :: . . . :: xn and y is y1 :: . . . :: yn then

(θ′, S′) := unify(x1, y1, θ, S)
return unify(x2 :: . . . :: xn, y2 :: . . . :: yn, θ

′, S′)
end
else if x is empty list and y is empty list then return (θ, S)
else return (failure, 0)

fun unify_var(v, o, θ, S)
if {v/val} ∈ θ then return unify(val, o, θ, S)
else if {o/val} ∈ θ then return unify(var, val, θ, S)
else return ({v/o}+ θ, S)

Algorithm 1: The weak unification algorithm in Spyrolog without occurs check

A.2 RUNTIME OF PROOF SEARCH

The worst case complexity vanilla logic programming is exponential in the depth of the proof (Russell
& Norvig, 2010). However, in our case this is a particular problem because weak unification requires
the prover to attempt unification between all entity/predicate symbols.

To keep things tractable, NLPROLOG only attempts to unify symbols with a similarity greater than
some user-defined threshold λ. Furthermore, in the search step for one statement q, for the rest
of the search, λ is set to λ := max(λ, S) whenever a proof for q with success score S is found.
Due to the monotonicity of the employed aggregation functions, this allows to prune the search tree
without losing the guarantee to find the proof yielding the maximum success score. We found this
optimization to be crucial to make the proof search scale for the studied wikihop predicates.

B HYPERPARAMETER CONFIGURATION

On BABI-1K we optimize the embeddings of predicate symbols of rules and query triples, as well
as of entities. WIKIHOP has a large number of unique entity symbols and thus, optimizing their
embeddings is prohibitive. Thus, we only train the predicate symbols of rules and query triples on this
data set. The embeddings for entities and predicate symbols of fact and query triples are initialized
using the WIKI-UNIGRAMS model of SENT2VEC, while the embeddings of rule predicates are
intialized by uniformly sampling from the interval [− 1√

600
, 1√

600
]. All experiments were performed
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with the same set of rule templates containing two rules for each of the forms p(X,Y )⇐ q(X,Y ),
p(X,Y )⇐ q(Y,X) and p(X,Z)⇐ q(X,Y ) ∧ r(Y,Z) and set the similarity threshold λ to 0.3. At
each optimization step, we evaluate 100 perturbations sampled from N (0, 0.04) on a mini-batch of
16 training problems and use all of the directions in the generation of the next weight vector. If not
stated otherwise, we use GRL with three phases training for 500 mini-batches in each phase. For the
predicates publisher and developer, we used 1,000 mini-batches in the final phase of GRL. To further
encourage rule usage, we use the minimum aggregation function in all but the last phases of GRL, in
which we switch to product.

C ERROR SETS

Figure 4: Venn diagram of the error sets per predicate.
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