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ABSTRACT

Neural networks could misclassify inputs that are slightly different from their
training data, which indicates a small margin between their decision boundaries
and the training dataset. In this work, we study the binary classification of lin-
early separable datasets and show that linear classifiers could also have decision
boundaries that lie close to their training dataset if cross-entropy loss is used for
training. In particular, we show that if the features of the training dataset lie in a
low-dimensional affine subspace and the cross-entropy loss is minimized by using
a gradient method, the margin between the training points and the decision bound-
ary could be much smaller than the optimal value. This result is contrary to the
conclusions of recent related works such as (Soudry et al., 2018), and we identify
the reason for this contradiction. In order to improve the margin, we introduce
differential training, which is a training paradigm that uses a loss function defined
on pairs of points from each class. We show that the decision boundary of a linear
classifier trained with differential training indeed achieves the maximum margin.
The results reveal the use of cross-entropy loss as one of the hidden culprits of ad-
versarial examples and introduces a new direction to make neural networks robust
against them.

1 INTRODUCTION

Training neural networks is challenging and involves making several design choices. Among these
are the architecture of the network, the training loss function, the optimization algorithm used for
training, and their hyperparameters, such as the learning rate and the batch size. Most of these
design choices influence the solution obtained by the training procedure and have been studied in
detail (Kingma & Ba, 2014; Hardt et al., 2015; He et al., 2016; Wilson et al., 2017; Nar & Sastry,
2018; Smith et al., 2018). Nevertheless, one choice has been mostly taken for granted when the
network is trained for a classification task: the training loss function.

Cross-entropy loss function is almost the sole choice for classification tasks in practice. Its preva-
lent use is backed theoretically by its association with the minimization of the Kullback-Leibler
divergence between the empirical distribution of a dataset and the confidence of the classifier for
that dataset. Given the particular success of neural networks for classification tasks (Krizhevsky
et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016), there seems to be little motivation to
search for alternatives for this loss function, and most of the software developed for neural networks
incorporates an efficient implementation for it, thereby facilitating its use.

Recently there has been a line of work analyzing the dynamics of training a linear classifier with
the cross-entropy loss function (Soudry et al., 2018; Nacson et al., 2018a;b; Ji & Telgarsky, 2018).
They specified the decision boundary that the gradient descent algorithm yields on linearly separable
datasets and claimed that this solution achieves the maximum margin.1 However, these claims were
observed not to hold in the simple experiments we ran. For example, Figure 1 displays a case where
the cross-entropy minimization for a linear classifier leads to a decision boundary which attains an
extremely poor margin and is nearly orthogonal to the solution given by the hard-margin support
vector machine (SVM).

We set out to understand this discrepancy between the claims of the previous works and our obser-
vations on the simple experiments. We can summarize our contributions as follows.

1The term “maximum margin” is used for `2 norm throughout the paper.

1



Under review as a conference paper at ICLR 2019

SVM decision boundary
(largest margin)

Cross-entropy min.
decision boundary

(poor margin)

Figure 1: Orange and blue points represent the data from two different classes in R2. Cross-entropy
minimization for a linear classifier on the given training points leads to the decision boundary shown
with the solid line, which attains a very poor margin and is almost orthogonal to the solution given
by the SVM.

1. We analyze the minimization of the cross-entropy loss for a linear classifier by using only
two training points, i.e., only one point from each of the two classes, and we show that the
dynamics of the gradient descent algorithm could yield a poor decision boundary, which
could be almost orthogonal to the boundary with the maximum margin.

2. We identify the source of discrepancy between our observations and the claims of the recent
works as the misleading abbreviation of notation in the previous works. We clarify why the
solution obtained with cross-entropy minimization is different from the SVM solution.

3. We show that for linearly separable datasets, if the features of the training points lie in an
affine subspace, and if the cross-entropy loss is minimized by a gradient method with no
regularization to train a linear classifier, the margin between the decision boundary of the
classifier and the training points could be much smaller than the optimal value. We verify
that when a neural network is trained with the cross-entropy loss to classify two classes
from the CIFAR-10 dataset, the output of the penultimate layer of the network indeed
produces points that lie on an affine subspace.

4. We show that if there is no explicit and effective regularization, the weights of the last layer
of a neural network could grow to infinity during training with a gradient method. Even
though this has been observed in recent works as well, we are the first to point out that this
divergence drives the confidence of the neural network to 100% at almost every point in
the input space if the network is trained for long. In other words, the confidence depends
heavily on the training duration, and its exact value might be of little significance as long
as it is above 50%.

5. We introduce differential training, which is a training paradigm that uses a loss function
defined on pairs of points from each class – instead of only one point from any class.
We show that the decision boundary of a linear classifier trained with differential training
indeed produces the SVM solution with the maximum hard margin.

2 CLASSIFICATION OF TWO POINTS MANIFESTS POOR MARGIN

We start with a simple binary classification problem. Given two points x ∈ Rd and −y ∈ Rd from
two different classes, we can find a linear classifier by minimizing the cross-entropy loss function

min
w∈Rd,b∈R

{
− log

(
1

e−w>x−b + 1

)
− log

(
ew

>y−b

ew>y−b + 1

)}
,
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or equivalently, by solving

min
w̃∈Rd+1

{
log(e−w̃

>x̃ + 1) + log(e−w̃
>ỹ + 1)

}
, (1)

where x̃ = [x> 1]>, −ỹ = [−y> 1]> and w̃ = [w> b]>. Unless the two points x and −y are equal,
the function (1) does not attain its minimum at a finite value of w̃. Consequently, if the gradient
descent algorithm is used to minimize (1), the iterate at time k, w̃[k], diverges as k increases. The
following theorem characterizes the growth rate of w̃[k] and its direction in the limit by using a
continuous-time approximation to the gradient descent algorithm.
Theorem 1. Given two points x ∈ Rd and −y ∈ Rd, let x̃ and −ỹ denote [x> 1]> and [−y> 1],
respectively. Without loss of generality, assume ‖x‖ ≤ ‖y‖. If the two points are in different classes
and we minimize the cross-entropy loss

min
w̃∈Rd+1

log(1 + e−w̃
>x̃) + log(1 + e−w̃

>ỹ)

by using the continuous-time approximation to the gradient descent algorithm

dw̃

dt
= x̃

δe−w̃
>x̃

1 + e−w̃>x̃
+ ỹ

δe−w̃
>ỹ

1 + e−w̃>ỹ

with the initialization w̃(0) = 0 and the learning rate δ, then

lim
t→∞

w̃(t)

log(t)
=

{
σy−σxy

σxσy−σ2
xy
x̃+

σx−σxy

σxσy−σ2
xy
ỹ if σxy < σx,

1
σx
x̃ if σxy ≥ σx,

(2)

where σx = ‖x̃‖2, σxy = x̃>ỹ and σy = ‖ỹ‖2.

Note that first d coordinates of (2) represent the normal vector of the decision boundary obtained by
minimizing the cross-entropy loss (1). This vector is different from x + y, which is the direction
of the maximum-margin solution given by the SVM. In fact, the direction in (2) could be almost
orthogonal to the SVM solution in certain cases, which implies that the margin between the points
and the decision boundary could be much smaller than the optimal value. Corollary 1 describes a
subset of these cases.
Corollary 1. Given two points x and −y in Rd, let ψ denote the angle between the solution given
by (2) and the solution given by the SVM, i.e., (x+ y). If x>y = 1, then

cos2 ψ ≤ 4

2 +
σy

σx

(
1− 1

σx

) ,
where σx = ‖x‖2+1 and σy = ‖y‖2+1. Consequently, as ‖x‖/‖y‖ approaches 0 while maintaining
the condition x>y = 1, the angle ψ converges to π/2.
Remark 1. Corollary 1 shows that if x and−y have disparate norms, the minimization of the cross-
entropy loss with gradient descent algorithm could lead to a direction which is almost orthogonal to
the maximum-margin solution. It may seem like this problem could be avoided with preprocessing
the data so as to normalize the data points. However, this approach will not be effective for neural
networks: if we consider an L-layer neural network, w>φL−1(x), and regard the first L− 1 layers,
φL−1(·), as a feature mapping, preprocessing a dataset {xi}i∈I will not produce a normalized set of
features {φL−1(xi)}i∈I . Note that we could not normalize {φL−1(xi)}i∈I directly either, since the
mapping φL−1(·) evolves during training.
Remark 2. Theorem 1 shows that the norm of w keeps growing unboundedly as the training con-
tinues. The same behavior will be observed for larger datasets in the next sections as well. Since the
“confidence” of the classifier for its prediction at a point x is given by

max

(
1

e−w>x−b + 1
,

e−w
>x−b

e−w>x−b + 1

)
,

this unbounded growth of ‖w‖ drives the confidence of the classifier to 100% at every point in the
input space, except at the points on the decision boundary, if the algorithm is run for long. Given
the lack of effective regularization for neural networks, a similar unbounded growth is expected to
be observed in neural network training as well, which is mentioned in (Bartlett et al., 2017). As a
result, the confidence of a neural network might be highly correlated with the training duration, and
whether a neural network gives 99% or 51% confidence for a prediction might be of little importance
as long as it is above 50%. In other words, regarding this confidence value as a measure of similarity
between an input and the training dataset from the most-likely class should be reconsidered.
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3 DATA WITH LOW-DIMENSIONAL FEATURES ATTAIN POOR MARGIN

In this section, we examine the binary classification of a linearly separable dataset by minimizing
the cross-entropy loss function. Recently, this problem has also been studied in (Soudry et al., 2018;
Nacson et al., 2018b;a; Ji & Telgarsky, 2018). We restate an edited version of the main theorem of
(Soudry et al., 2018), followed by the reason of the edition.
Theorem 2 (Adapted from Theorem 3 of (Soudry et al., 2018)). Given two sets of points {xi}i∈I
and {−yj}j∈J that are linearly separable in Rd, let x̃i and −ỹj denote [x>i 1]> and [−y>j 1]>,
respectively, for all i ∈ I , j ∈ J . Then the iterate of the gradient descent algorithm, w̃(t), on the
cross-entropy loss function

min
w̃∈Rd+1

∑
i∈I

log(1 + e−w̃
>x̃i) +

∑
j∈J

log(1 + e−w̃
>ỹj ) (3)

with a sufficiently small step size will converge in direction:

lim
t→∞

w̃(t)

‖w̃(t)‖
=

w

‖w‖
,

where w is the solution to

w = argmin
u∈Rd+1

‖u‖2 s.t. 〈u, x̃i〉 ≥ 1, 〈u, ỹj〉 ≥ 1 ∀i ∈ I, ∀j ∈ J. (4)

The solution (4) given in Theorem 2 was referred in (Soudry et al., 2018), and consequently in
the other works, as the maximum-margin solution. However, due to the misleading absence of the
bias term in the notation, this is incorrect. Given the linearly separable sets of points {xi}i∈I and
{−yj}j∈J , the maximum-margin solution given by the SVM solves

minimize
w,b

‖w‖22

subject to 〈w, xi〉+ b ≥ 1 ∀i ∈ I,
〈w,−yj〉+ b ≤ −1 ∀j ∈ J.

(P1)

On the other hand, the solution given by Theorem 2 corresponds to

minimize
w,b

‖w‖22 + b2

subject to 〈w, xi〉+ b = 〈w̃, x̃i〉 ≥ 1 ∀i ∈ I,
〈w,−yj〉+ b = 〈w̃,−ỹj〉 ≤ −1 ∀j ∈ J,

(P2)

where we define w̃ = [w> b]>, x̃i = [x>i 1]> and ỹj = [y>j − 1]> for all i ∈ I, j ∈ J . Even
though the sets of constraints for both problems are identical, their objective functions are different,
and consequently, the solutions are different. As a result, the decision boundary obtained by cross-
entropy minimization does not necessarily attain the maximum hard margin. In fact, as the following
theorem shows, its margin could be arbitrarily worse than the maximum margin.
Theorem 3. Assume that the points {xi}i∈I and {−yj}j∈J are linearly separable and lie in an
affine subspace; that is, there exist a set of orthonormal vectors {rk}k∈K and a set of scalars
{∆k}k∈K such that

〈rk, xi〉 = 〈rk,−yj〉 = ∆k ∀i ∈ I,∀j ∈ J, ∀k ∈ K.

Let 〈w, ·〉+B = 0 denote the decision boundary obtained by minimizing the cross-entropy loss, i.e.
the pair (w,B) solves

min
w,b
‖w‖2 + b2 s.t. 〈w, xi〉+ b ≥ 1, 〈w,−yj〉+ b ≤ −1 ∀i ∈ I, ∀j ∈ J.

Then the minimization of the cross-entropy loss (3) yields a margin smaller than or equal to

1√
1
γ2 +B2

∑
k∈K ∆2

k

where γ denotes the optimal hard margin given by the SVM solution.
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Remark 3. Theorem 3 shows that if the training points lie in an affine subspace, the margin obtained
by the cross-entropy minimization will be smaller than the optimal margin value. As the dimension
of this affine subspace decreases, the cardinality of the setK increases and the term

∑
k∈K ∆2

k could
become much larger than 1/γ2. Therefore, as the dimension of the subspace containing the training
points gets smaller compared to the dimension of the input space, cross-entropy minimization with
a gradient method becomes more likely to yield a poor margin. Note that this argument also holds
for classifiers of the form w>φ(x) with the fixed feature mapping φ(·).

The next theorem relaxes the condition of Theorem 3 and allows the training points to be near an
affine subspace instead of being exactly on it. Note that the ability to compare the margin obtained
by cross-entropy minimization with the optimal value is lost. Nevertheless, it highlights the fact that
same set of points could be assigned a different margin by cross-entropy minimization if all of them
are shifted away from the origin by the same amount in the same direction.

Theorem 4. Assume that the points {xi}i∈I and {−yj}j∈J in Rd are linearly separable and there
exist a set of orthonormal vectors {rk}k∈K and a set of scalars {∆k}k∈K such that

〈rk, xi〉 ≥ ∆k, 〈rk,−yj〉 ≤ ∆k ∀i ∈ I, ∀j ∈ J, ∀k ∈ K.

Let 〈w, ·〉+B = 0 denote the decision boundary obtained by minimizing the cross-entropy loss, i.e.
the pair (w,B) solves

min
w,b
‖w‖2 + b2 s.t. 〈w, xi〉+ b ≥ 1, 〈w,−yj〉+ b ≤ −1 ∀i ∈ I, ∀j ∈ J.

Then the minimization of the cross-entropy loss (3) yields a margin smaller than or equal to

1√
B2
∑
k∈K ∆2

k

Remark 4. Both Theorem 3 and Theorem 4 consider linearly separable datasets. If the dataset is not
linearly separable, (Ji & Telgarsky, 2018) predicts that the normal vector of the decision boundary,
w, will have two components, one of which converges to a finite vector and the other diverges.
The diverging component still has the potential to drive the decision boundary to a direction with a
poor margin. In fact, the margin is expected to be small especially if the points intruding into the
opposite class lie in the same subspace as the optimal normal vector for the decision boundary. In
this work, we focus on the case of separable datasets as this case provides critical insight into the
issues of state-of-the-art neural networks, given they can easily attain zero training error even on
randomly generated datasets, which indicates the linear separability of the features obtained at their
penultimate layers (Zhang et al., 2017).

4 DIFFERENTIAL TRAINING IMPROVES MARGIN

In previous sections, we saw that the cross-entropy minimization could lead to poor margins, and the
main reason for this was the appearance of the bias term in the objective function of (P2). In order
to remove the effect of the bias term, consider the SVM problem (P1) and note that this problem
could be equivalently written as

minimize
w

‖w‖22
subject to 〈w, xi + yj〉 ≥ 2 ∀i ∈ I, ∀j ∈ J

(P3)

if we only care about the weight parameter w. This gives the hint that if we use the set of differences
{xi + yj : i ∈ I, j ∈ J} instead of the individual sets {xi}i∈I and {−yj}j∈J , the bias term could
be excluded from the problem. This was also noted in (Keerthi et al., 2000; Ishibashi et al., 2008)
previously. Indeed, this approach allows obtaining the SVM solution with a loss function similar to
the cross-entropy loss, as the following theorem shows.

Theorem 5. Given two sets of points {xi}i∈I and {−yj}j∈J that are linearly separable in Rd, if
we solve

min
w∈Rd

∑
i∈I

∑
j∈J

log(1 + e−w
>(xi+yj)) (5)
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by using the gradient descent algorithm with a sufficiently small learning rate, the direction of w
converges to the direction of maximum-margin solution, i.e.

lim
t→∞

w(t)

‖w(t)‖
=

wSVM

‖wSVM‖
, (6)

where wSVM is the solution of (P3).

Proof. Apply Theorem 2 by replacing the sets {xi}i∈I and {−yj}j∈J with {xi + yj}i∈I,j∈J and
the empty set, respectively. Then the minimization of the loss function (5) with the gradient descent
algorithm leads to

lim
t→∞

w

‖w‖
=

w

‖w‖
where w satisfies

w = arg min
w
‖w‖2 such that 〈w, xi + yj〉 ≥ 1 ∀i ∈ I, ∀j ∈ J.

Since wSVM is the solution of (P3), we obtain w = 1
2wSVM, and the claim of the theorem holds. �

Remark 5. Theorem 5 is stated for the gradient descent algorithm, but the identical statement could
be made for the stochastic gradient method as well by invoking the main theorem of (Nacson et al.,
2018).

Minimization of the cost function (5) yields the weight parameter ŵ of the decision boundary. The
bias parameter, b, could be chosen by plotting the histogram of the inner products {〈ŵ, xi〉}i∈I and
{〈ŵ,−yj〉}j∈J and fixing a value for b̂ such that

〈ŵ, xi〉+ b̂ ≥ 0 ∀i ∈ I, (7a)

〈ŵ,−yj〉+ b̂ ≤ 0 ∀j ∈ J. (7b)

The largest hard margin is achieved by

b̂ = −1

2
min
i∈I
〈ŵ, xi〉 −

1

2
max
j∈J
〈ŵ,−yj〉. (8)

However, by choosing a larger or smaller value for b̂, it is possible to make a tradeoff between the
Type-I and Type-II errors.

The cost function (5) includes a loss defined on every pair of data points from the two classes. This
cost function can be considered as the cross-entropy loss on a new dataset which contains |I| × |J |
points. There are two aspects of this fact:

1. When standard loss functions are used for classification tasks, we need to oversample or
undersample either of the classes if the training dataset contains different number of points
from different classes. This problem does not arise when we use the cost function (5).

2. Number of pairs in the new dataset, |I| × |J |, will usually be much larger than the original
dataset, which contains |I| + |J | points. Therefore, the minimization of (5) might appear
more expensive than the minimization of the standard cross-entropy loss computationally.
However, if the points in different classes are well separated and the stochastic gradient
method is used to minimize (5), the algorithm achieves zero training error after using only
a few pairs, which is formalized in Theorem 6. Further computation is needed only to im-
prove the margin of the classifier. In addition, in our experiments to train a neural network
to classify two classes from the CIFAR-10 dataset, only a few percent of |I| × |J | points
were observed to be sufficient to reach a high accuracy on the training dataset.

Theorem 6. Given two sets of points {xi}i∈I and {−yj}j∈J that are linearly separable in Rd,
assume the cost function (5) is minimized with the stochastic gradient method. Define

Rx = max{‖xi − xi′‖ : i, i′ ∈ I}, Ry = max{‖yj − yj′‖ : j, j′ ∈ J}
and let γ denote the hard margin that would be obtained with the SVM:

2γ = maxu∈Rd mini∈I,j∈J 〈xi + yj , u/‖u‖〉.
If 2γ ≥ 5 max(Rx, Ry), then the stochastic gradient algorithm produces a weight parameter, ŵ,
only in one iteration which satisfies the inequalities (7a)-(7b) along with the bias, b̂, given by (8).

6



Under review as a conference paper at ICLR 2019

5 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments supporting our claims.

Differential training. In Figure 2, we show the decision boundaries of two linear classifiers, where
one of them is trained by minimizing the cross-entropy loss, and the other through differential train-
ing. Unlike the example shown in Figure 1, here the data do not exactly lie in an affine subspace.
In particular, one of the classes is composed of 10 samples from a normal distribution with mean
(2, 12) and variance 25, and the other class is composed of 10 samples from a normal distribution
with mean (40, 50) and variance 25. As can be seen from the figure, the cross-entropy minimization
yields a margin that is smaller than differential training, even though when the training dataset is not
low-dimensional, which is predicted by Theorem 4.

Differential training
boundary

Cross-entropy min.
boundary

Figure 2: Classification boundaries obtained using differential training and cross-entropy minimiza-
tion. The margin recovered by cross-entropy minimization is worse than differential training even
when the training dataset is not low-dimensional.

Low-dimensionality. We empirically evaluated if the features obtained at the penultimate layer of
a neural network indeed lie in a low-dimensional affine subspace. For this purpose, we trained
a convolutional neural network architecture to classify horses and planes from the CIFAR-10
dataset (Krizhevsky & Hinton, 2009). Figure 3 shows the cumulative variance explained for the
features that feed into the soft-max layer as a function of the number of principle components used.
We observe that the features, which are the outputs of the penultimate layer of the network, lie in a
low-dimensional affine subspace, and this holds for a variety of training modalities for the network.
This observation is relevant to Remark 3. The dimension of the subspace containing the training
points is at most 20, which is much smaller than the dimension of the feature space, 84. Conse-
quently, cross-entropy minimization with a gradient method is expected to yield a poor margin on
these features.

6 DISCUSSION

We compare our results with related works and discuss their implications for the following subjects.

Adversarial examples. State-of-the-art neural networks have been observed to misclassify inputs
that are slightly different from their training data, which indicates a small margin between their de-
cision boundaries and the training dataset (Szegedy et al., 2013; Goodfellow et al., 2015; Moosavi-
Dezfooli et al., 2017; Fawzi et al., 2017). Our results reveal that the combination of gradient meth-
ods, cross-entropy loss function and the low-dimensionality of the training dataset (at least in some
domain) has a responsibility for this problem. Note that SVM with the radial basis function was
shown to be robust against adversarial examples, and this was attributed to the high nonlinearity of
the radial basis function in (Goodfellow et al., 2015). Given that the SVM uses neither the cross
entropy loss function nor the gradient descent algorithm for training, we argue that the robustness
of SVM is no surprise – independent of its nonlinearity. Lastly, effectiveness of differential training
for neural networks against adversarial examples is our ongoing work.
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Figure 3: The activations feeding into the soft-max layer could be considered as the features for a
linear classifier. Plot shows the cumulative variance explained for these features as a function of
the number of principle components used. Almost all the variance in the features is captured by the
first 20 principle components out of 84, which shows that the input to the soft-max layer resides
predominantly in a low-dimensional subspace.

Low-dimensionality of the training dataset. As stated in Remark 3, as the dimension of the affine
subspace containing the training dataset gets very small compared to the dimension of the input
space, the training algorithm will become more likely to yield a small margin for the classifier. This
observation confirms the results of (Marzi et al., 2018), which showed that if the set of training
data is projected onto a low-dimensional subspace before feeding into a neural network, the perfor-
mance of the network against adversarial examples is improved – since projecting the inputs onto a
low-dimensional domain corresponds to decreasing the dimension of the input space. Even though
this method is effective, it requires the knowledge of the domain in which the training points are
low-dimensional. Because this knowledge will not always be available, finding alternative training
algorithms and loss functions that are suited for low-dimensional data is still an important direction
for future research.

Robust optimization. Using robust optimization techniques to train neural networks has been
shown to be effective against adversarial examples (Madry et al., 2018; Athalye et al., 2018). Note
that these techniques could be considered as inflating the training points by a presumed amount and
training the classifier with these inflated points. Consequently, as long as the cross-entropy loss is
involved, the decision boundaries of the neural network will still be in the vicinity of the inflated
points. Therefore, even though the classifier is robust against the disturbances of the presumed
magnitude, the margin of the classifier could still be much smaller than what it could potentially be.

Differential training. We introduced differential training, which allows the feature mapping to re-
main trainable while ensuring a large margin between different classes of points. Therefore, this
method combines the benefits of neural networks with those of support vector machines. Even
though moving from 2N training points to N2 seems prohibitive, it points out that a true classifica-
tion should in fact be able to differentiate between the pairs that are hardest to differentiate, and this
search will necessarily require an N2 term. Some heuristic methods are likely to be effective, such
as considering only a smaller subset of points closer to the boundary and updating this set of points
as needed during training. If a neural network is trained with this procedure, the network will be
forced to find features that are able to tell apart between the hardest pairs.

Nonseparable data. What happens when the training data is not linearly separable is an open
direction for future work. However, as stated in Remark 4, this case is not expected to arise for
the state-of-the-art networks, since they have been shown to achieve zero training error even on
randomly generated datasets (Zhang et al., 2017), which implies that the features represented by the
output of their penultimate layer eventually become linearly separable.
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A PROOF OF THEOREM 1

Theorem 1 could be proved by using Theorem 2, but we provide an independent proof here. Gradient
descent algorithm with learning rate δ on the cross-entropy loss (1) yields

dw̃

dt
= δx̃

e−w̃
>x̃

1 + e−w̃>x̃
+ δỹ

e−w̃
>ỹ

1 + e−w̃>ỹ
.

If w̃(0) = 0, then w̃(t) = p(t)x̃+ q(t)ỹ for all t ≥ 0, where

ṗ = δ
e−p‖x̃‖

2−q〈x̃,ỹ〉

1 + e−p‖x̃‖2−q〈x̃,ỹ〉
, q̇ = δ

e−q‖ỹ‖
2−p〈x̃,ỹ〉

1 + e−q‖ỹ‖2−p〈x̃,ỹ〉
.

Define
α = p‖x̃‖2 + q〈x̃, ỹ〉, β = q‖ỹ‖2 + p〈x̃, ỹ〉,

a = δ‖x̃‖2 = δσx, c = δ‖ỹ‖2 = δσy, b = δ〈x̃, ỹ〉 = δσxy.

Then we can write

α̇ = a
e−α

1 + e−α
+ b

e−β

1 + e−β
,

β̇ = c
e−β

1 + e−β
+ b

e−α

1 + e−α
.

Finally, define z = eα and v = eβ so that

ż =
z

z + 1

(
a+ b

z + 1

v + 1

)
,

v̇ =
v

v + 1

(
c+ b

v + 1

z + 1

)
.

Without loss of generality, assume c ≥ a. Before we proceed, note that

d

dt

(z
v

)
=
c− b
z + 1

z

v

(
a− b
c− b

− z + 1

v + 1

)
,

d

dt

(
z + 1

v + 1

)
=

z

(v + 1)2

[
v + 1

z + 1
a− v

z
b−

(
v

z

z + 1

v + 1
c− b

)]
.

Let u and w denote z
v and z+1

v+1 , respectively. Then,

u̇ < 0 if w >
a− b
c− b

u̇ > 0 if w <
a− b
c− b

ẇ < 0 if
( a
w

+ b
)
u < cw + b

ẇ > 0 if
( a
w

+ b
)
u > cw + b

Lemma 1. If b = 0, then

lim
t→∞

w̃(t)

log(t)
=

1

‖x̃‖
x̃+

1

‖ỹ‖
ỹ.

Proof. Note that

d(z + log(z))

dt
= a =⇒ z(t)− z0 + log(z(t)/z0) = at,

d(v + log(v))

dt
= c =⇒ v(t)− v0 + log(v(t)/v0) = ct.
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Then,

lim
t→∞

α(t)

log(t)
= lim
t→∞

log(z(t))

log(t)
= 1 = lim

t→∞

log(v(t))

log(t)
= lim
t→∞

β(t)

log(t)
,

and

lim
t→∞

w̃(t)

log(t)
=

x̃

‖x̃‖2
+

ỹ

‖ỹ‖2
. �

Lemma 2. If b < 0, then there exists t0 ∈ (0,∞) such that

−b
c
≤ z + 1

v + 1
≤ a

−b
∀t ≥ t0.

Proof. Note that −bc ≤
a−b
c−b ≤

a
−b because b < 0. First assume z0+1

v0+1 ≥
a
−b . Then, ż ≤ 0 and

v̇ =
v

v + 1

(
c+ b

v + 1

z + 1

)
≥ v

v + 1

(
c− b2

a

)
≥ v0
v0 + 1

ac− b2

a
,

which implies that
z + 1

v + 1
≤ (z0 + 1)

(
v0

v0 + 1

ac− b2

a
t+ 1

)−1
as long as z+1

v+1 ≥
a
−b , and this can be satisfied only for a finite time. Now assume z0+1

v0+1 ≤
−b
c .

Then, v̇ ≤ 0 and

ż =
z

z + 1

(
a+ b

z + 1

v + 1

)
≥ z0
z0 + 1

ac− b2

c
,

which implies
z + 1

v + 1
≥
(

z0
z0 + 1

ac− b2

c
t+ 1

)
(v0 + 1)−1

as long as z+1
v+1 ≤

−b
c , and this can be satisfied only for a finite time as well. �

Lemma 3. If b < 0, then

0 ≤ ż ≤ ac− b2

c
, 0 ≤ v̇ ≤ ac− b2

a
∀t ≥ t0,

where t0 is given by Lemma 2.

Proof.

ż =
z

z + 1

(
a+ b

z + 1

v + 1

)
≤ z

z + 1

ac− b2

c
≤ ac− b2

c

v̇ =
v

v + 1

(
c+ b

v + 1

z + 1

)
≤ v

v + 1

ac− b2

a
≤ ac− b2

a
�

Lemma 4. If b < 0, then

lim
t→∞

log(z)

log t
= lim
t→∞

log(v)

log t
= 1

Proof. From Lemma 3,

v̇ ≤ 0 ⇐⇒ c+ b
v + 1

z + 1
≥ 0,

and

v ≤ ac− b2

a
t+ v′0.

Combining these two inequalities, we have

c+
b

a

[
(ac− b2)t+ v′0 + 1

] 1

z + 1
≥ 0 ⇐⇒ z + 1 ≥ −b

ac
[(ac− b2)t+ v′0 + 1]

12
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As a result,

(−b)(ac− b2)

ac
t+ z1 ≤ z(t) ≤

ac− b2

c
t+ z2 ∀t ≥ t0 =⇒ lim

t→∞

log(z)

log(t)
= 1.

By using Lemma 2,

log(−b/c) ≤ log(z + 1)− log(v + 1) ≤ log(−a/b) =⇒ lim
t→∞

log(v)

log(t)
= 1. �

Lemma 5. If b < 0, then

lim
t→∞

w̃(t)

log(t)
= δ

c− b
ac− b2

x̃+ δ
a− b
ac− b2

ỹ =
σy − σxy
σxσy − σ2

xy

x̃+
σx − σxy
σxσy − σ2

xy

ỹ

Proof. Solving the set of equations

1 = lim
α

log(t)
=
a

δ
lim

p

log(t)
+
b

δ
lim

q

log(t)
,

1 = lim
β

log(t)
=
c

δ
lim

q

log(t)
+
b

δ
lim

p

log(t)
,

we obtain
lim
t→∞

p

log(t)
= δ

c− b
ac− b2

, lim
t→∞

q

log(t)
= δ

a− b
ac− b2

�

Lemma 6. If b > 0, then

lim
t→∞

z

v
= lim
t→∞

z + 1

v + 1
=

{
0 if a ≤ b
a−b
c−b if a > b

Proof. Note that ż ≥ a/2 and v̇ ≥ c/2; therefore,

lim
t→∞

z + 1

v + 1
= lim
t→∞

z

v
=⇒ lim

t→∞
u = lim

t→∞
w

if either side exists. Remember that

ẇ < 0 ⇐⇒ u <
cw2 + bw

a+ bw
=: f(w).

We can compute

f ′(w) =
2acw + bcw2 + ab

b2w2 + 2abw + a2
.

The function f is strictly increasing and convex for w > 0. We have

f(0) = 0,

f

(
a− b
c− b

)
=
a− b
c− b

.

Therefore, when b ≥ a, the only fixed point of f over [0,∞) is the origin, and when a > b, 0 and
(a− b)/(c− b) are the only fixed points of f over [0,∞).

Figure 4 shows the curves over which u̇ = 0 and ẇ = 0. Since limt→∞ u = limt→∞ w, the only
points (u,w) can converge to are the fixed points of f . Remember that

u̇ =
c− b
z + 1

u

(
a− b
c− b

− w
)
,

so when a > b, the origin (0, 0) is unstable in the sense of Lyapunov, and (u,w) cannot converge to
it. Otherwise, (0, 0) is the only fixed point, and it is stable. As a result,

lim
t→∞

z

v
= lim
t→∞

z + 1

v + 1
=

{
0 if a ≤ b
a−b
c−b if a > b

�
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w

u
u = f(w)

a−b
c−b

a−b
c−b

Figure 4: Stationary points of function f .

Lemma 7. If a > b > 0, then

lim
t→∞

w̃(t)

log(t)
= δ

c− b
ac− b2

x̃+ δ
a− b
ac− b2

ỹ =
σy − σxy
σxσy − σ2

xy

x̃+
σx − σxy
σxσy − σ2

xy

ỹ.

Proof. From Lemma 6,

lim
t→∞

z

t
= lim
t→∞

ż = lim
t→∞

z

z + 1

(
a+ b

z + 1

v + 1

)
= a+ b

a− b
c− b

=
ac− b2

c− b
,

lim
t→∞

v

t
=
ac− b2

a− b
.

Consequently,

lim
t→∞

log(z)

log(t)
= lim
t→∞

log(v)

log(t)
= 1

which gives the same solution as Lemma 5:

lim
t→∞

p

log(t)
= δ

c− b
ac− b2

, lim
t→∞

q

log(t)
= δ

a− b
ac− b2

. �

Lemma 8. If b ≥ a, then

lim
t→∞

w̃(t)

log(t)
=

1

‖x̃‖
x̃

Proof.

lim
t→∞

z

t
= a, lim

t→∞

log(z)

log(t)
= 1,

lim
t→∞

v

t
= lim
t→∞

v̇ =∞

lim
t→∞

log(v)

log(t)
= lim
t→∞

v̇

v
t = lim

t→∞

1

v + 1

(
c+ b

v + 1

z + 1

)
t = lim

t→∞

ct

v + 1
+ lim
t→∞

bt

z + 1
=
b

a

lim
t→∞

p

log(t)
=

1

‖x̃‖2
, lim

t→∞

q

log(t)
= 0 =⇒ lim

t→∞

px+ qy

log(t)
=

1

‖x̃‖2
x̃ �

Proof of Theorem 1. Lemma 1, Lemma 5, Lemma 7 and Lemma 8 prove all cases of Theorem 1. �
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B PROOF OF COROLLARY 1

Since x>y = 1, we have σxy = x̃>ỹ = x>y − 1 = 0 < a. Then the normal vector of the decision
boundary is proportional to 1

σx
x + 1

σy
y. For the angle between this vector and the solution of the

SVM, we can write

cosψ =
〈 1
σx
x+ 1

σy
y, x+ y〉∥∥∥ 1

σx
x+ 1

σy
y
∥∥∥∥∥x+ y

∥∥ =
2∥∥∥ 1

σx
x+ 1

σy
y
∥∥∥√σx + σy

.

We can obtain a lower bound for square of the denominator as∥∥∥ 1

σx
x+

1

σy
y
∥∥∥2(σx + σy) ≥

(
2 +

σy
σx
− σy
σ2
x

)
+

(
1

σx
+

1

σy
+
σx
σy
− σx
σ2
y

)
≥ 2 +

σy
σx

(
1− 1

σx

)
.

As a result,

cos2 ψ ≤ 4

2 +
σy

σx

(
1− 1

σx

) . �

C PROOF OF THEOREM 3

Let 〈wSVM, ·〉+bSVM = 0 denote the hyperplane obtained as the solution of SVM, i.e., (wSVM, bSVM)
is the solution to the problem

min
w,b
‖w‖2 s.t. 〈w, xi〉+ b ≥ 1, 〈w,−yj〉+ b ≤ −1 ∀i ∈ I, ∀j ∈ J.

Assume that w = u+
∑m
k=1 αkrk, where u ∈ Rd and 〈u, rk〉 = 0 for all k ∈ K.

The Lagrangian of the problem (4) can be written as

1

2
‖w‖2 +

1

2
b2 +

∑
i∈I

µi(1− 〈w, xi〉 − b) +
∑

j∈J
νj(1− 〈w, yj〉+ b),

where µi ≥ 0 for all i ∈ I and νj ≥ 0 for all j ∈ J . KKT conditions for the optimality of w and B
requires that

w =
∑

i∈I
µixi +

∑
j∈J

νjyj ,

B =
∑

i∈I
µi −

∑
j∈J

νj ,

and consequently, for each k ∈ K,

〈w, rk〉 =
∑

i∈I
µi〈xi, rk〉 −

∑
j∈J

νj〈−yj , rk〉 =
∑

i∈I
∆kµi −

∑
j∈J

∆kνj = B∆k.

Then, we can write w as

w = u+
∑

k∈K
B∆krk.

Remember, by definition,

wSVM = arg min ‖w‖2 s.t. 〈w, xi + yj〉 ≥ 2 ∀i ∈ I, ∀j ∈ J.

Since the vector u also satisfies 〈u, xi + yj〉 = 〈w, xi + yj〉 ≥ 2 for all i ∈ I, j ∈ J , we have
‖u‖ ≥ ‖wSVM‖ = 1

γ . As a result, the margin obtained by minimizing the cross-entropy loss is

1

‖w‖
=

1√
‖u‖2 +

∑
‖B∆krk‖2

≤ 1√
1
γ2 +B2

∑
∆2
k

. �
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D PROOF OF THEOREM 4

If B < 0, we could consider the hyperplane 〈w, ·〉 − B = 0 for the points {−xi}i∈I and {yj}j∈J ,
which would have the identical margin due to symmetry. Therefore, without loss of generality,
assume B ≥ 0. As in the proof of Theorem 3, KKT conditions for the optimality of w and B
requires

w =
∑

i∈I
µixi +

∑
j∈J

νjyj , B =
∑

i∈I
µi −

∑
j∈J

νj

where µi ≥ 0 and νj ≥ 0 for all i ∈ I, j ∈ J . Note that for each k ∈ K,

〈w, rk〉 =
∑

i∈I
µi〈xi, rk〉 −

∑
j∈J

νj〈−yj , rk〉

= B∆k +
∑

i∈I
µi(〈xi, rk〉 −∆k)−

∑
j∈J

νj(〈−yj , rk〉 −∆k) ≥ B∆k.

Since {rk}k∈K is an orthonormal set of vectors,

‖w‖2 ≥
∑

k∈K
〈w, rk〉2 ≥

∑
k∈K

B2∆2
k.

The result follows from the fact that ‖w‖−1 is an upper bound on the margin. �

E PROOF OF THEOREM 6

In order to achieve zero training error in one iteration of the stochastic gradient algorithm, it is
sufficient to have

mini′∈I〈xi′ , xi + yj〉 > maxj′∈J〈−yj′ , xi + yj〉 ∀i ∈ I, ∀j ∈ J,

or equivalently,
〈xi′ + yj′ , xi + yj〉 > 0 ∀i, i′ ∈ I, ∀j, j′ ∈ J. (9)

By definition of the margin, there exists a vector wSVM ∈ Rd with unit norm which satisfies

2γ = mini∈I,j∈J〈xi + yj , wSVM〉.

Note that wSVM is orthogonal to the decision boundary given by the SVM. Then we can write every
xi + yj as

xi + yj = 2γwSVM + δxi + δyj ,

where δxi , δ
y
j ∈ Rd and ‖δxi ‖ ≤ Rx and ‖δyj ‖ ≤ Ry . Then, condition (9) is satisfied if

〈2γwSVM + δxi + δyj , 2γwSVM + δxi′ + δyj′〉 > 0 ∀i, i′ ∈ I, ∀j, j′ ∈ J,

or equivalently if

4γ2 + 2γ〈wSVM, δ
x
i + δyj + δxi′ + δyj′〉+ 〈δxi + δyj , δ

x
i′ + δyj′〉 > 0 ∀i, i′ ∈ I, ∀j, j′ ∈ J. (10)

If we choose γ > 5
2 max(Rx, Ry), we have

4γ2 − 2γ(2Rx + 2Ry)− (Rx +Ry)2 > 0,

which guarantees (10) and completes the proof. �
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