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A B S T R A C T

Designing RNA molecules has garnered recent interest in medicine, synthetic bi-
ology, biotechnology and bioinformatics since many functional RNA molecules
were shown to be involved in regulatory processes for transcription, epigenetics
and translation. Since an RNA’s function depends on its structural properties,
the RNA Design problem is to find an RNA sequence which satisfies given struc-
tural constraints. Here, we propose a new algorithm for the RNA Design problem,
dubbed LEARNA. LEARNA uses deep reinforcement learning to train a policy
network to sequentially design an entire RNA sequence given a specified target
structure. By meta-learning across 65 000 different RNA Design tasks for one hour
on 20 CPU cores, our extension Meta-LEARNA constructs an RNA Design policy
that can be applied out of the box to solve novel RNA Design tasks. Methodolog-
ically, for what we believe to be the first time, we jointly optimize over a rich
space of architectures for the policy network, the hyperparameters of the training
procedure and the formulation of the decision process. Comprehensive empirical
results on two widely-used RNA Design benchmarks, as well as a third one that we
introduce, show that our approach achieves new state-of-the-art performance on
the former while also being orders of magnitudes faster in reaching the previous
state-of-the-art performance. In an ablation study, we analyze the importance of
our method’s different components.

1 I N T R O D U C T I O N

RNA is one of the major classes of information-carrying biopolymers in the cells of living organisms.
Recent studies revealed a key role of functional non-protein-coding RNAs (ncRNAs) in regulatory
processes and transcription control, which have also been connected to certain diseases like Parkin-
son’s disease and Alzheimer’s disease (ENCODE Project Consortium and others, 2004; Gstir et al.,
2014; Kaushik et al., 2018). Functional ncRNAs are involved in the modulation of epigenetic marks,
altering of messenger RNA (mRNA) stability, mRNA translation, alternative splicing, signal trans-
duction and scaffolding of large macromolecular complexes (Vandivier et al., 2016). Therefore,
engineering of ncRNA molecules is of growing importance with applications ranging from biotech-
nology and medicine to synthetic biology (Delebecque et al., 2011; 2012; Guo et al., 2010; Meyer
et al., 2015). In fact, successful attempts to create functional RNA sequences in vitro and in vivo
have been reported (Dotu et al., 2014; Wachsmuth et al., 2013).

At its most basic structural form, RNA is a sequence of the four nucleotides Adenine (A), Guanine
(G), Cytosine (C) and Uracile (U). This nucleotide sequence is called the RNA sequence, or primary
structure. While the RNA sequence serves as the blueprint, the functional structure of the RNA
molecule is determined by the folding translating the RNA sequence into its 3D tertiary structure.
The intrinsic thermodynamic properties of the sequence dictate the resulting fold. The hydrogen
bonds formed between two corresponding nucleotides constitute one of the driving forces in the
thermodynamic model and influence the tertiary structure heavily. The structure that encompasses
these hydrogen bonds is commonly referred to as the secondary structure of RNA. Many algorithms
for RNA tertiary structure design directly work on RNA secondary structures (Kerpedjiev et al., 2015;
Zhao et al., 2012; Reinharz et al., 2012). Therefore, fast and accurate algorithms for RNA secondary
structure design could advance the current state of the art in RNA engineering.
∗Frederic Runge and Danny Stoll contributed equally to this work; order determined by coinflip.

1



Published as a conference paper at ICLR 2019

(

(

.

. .

.

)

)

(a) Target structure ω

G C G A U A G C

(b) RNA sequence φ ∈ N |ω|

G

C

G

A U

A

G

C

(c) Fold F(φ)

Figure 1: Illustration of the RNA Design problem using a folding algorithm F and the dot-bracket
notation. Given the desired RNA secondary structure represented in the dot-bracket notation (a), the
task is to design an RNA sequence (b) that folds into the desired secondary structure (c).

The problem of finding an RNA sequence that folds into a desired secondary structure is known as
the RNA Design problem or RNA inverse folding (Hofacker et al., 1994). Most algorithms for RNA
Design focus on search strategies that start with an initial nucleotide sequence and modify it to find a
solution for the given secondary structure (Hofacker et al., 1994; Andronescu et al., 2004; Taneda,
2011; Esmaili-Taheri et al., 2014; Eastman et al., 2018). In contrast, in this paper we describe a
novel generative deep reinforcement learning (RL) approach to this problem. Our contributions are
as follows:

• We describe LEARNA, a deep RL algorithm for RNA Design. LEARNA trains a policy
network that, given a target secondary structure, can be rolled out to sequentially predict the
entire RNA sequence. After generating an RNA sequence, our approach folds this sequence,
locally adapts it, and uses the distance of the resulting structure to the target structure as an
error signal for the RL agent.

• We describe Meta-LEARNA, a version of LEARNA that learns a single policy across many
RNA Design tasks directly applicable to new RNA Design tasks. Specifically, it learns a
conditional generative model from which we can sample candidate RNA sequences for a
given RNA target structure, solving many problems with the first sample.

• Since validation in RNA Design literature is often done using undisclosed data sources
(Eastman et al., 2018; Yang et al., 2017) and previous benchmarks do not have a training
split associated with them (Taneda, 2011; Anderson-Lee et al., 2016; Kleinkauf et al., 2015),
we introduce a new benchmark dataset with an explicit training, validation and test split.

• We jointly optimize the architecture of the policy network together with training hyperpa-
rameters and the state representation. By assessing the importance of these choices, we
show that this is essential to achieve best results. To the best of our knowledge, this is
the first application of architecture search (AS) to RL, the first application of AS to meta-
learning, and the first time AS is used to choose the best combination of convolutional and
recurrent layers.

• A comprehensive empirical analysis shows that our approach achieves new state-of-the-art
performance on the two most commonly used RNA Design benchmark datasets: Rfam-
Taneda (following Taneda (2011)) and Eterna100 (following Anderson-Lee et al. (2016)).
Furthermore, Meta-LEARNA achieves the results of the previous state-of-the-art approaches
63× and 1765× faster, respectively.

2 T H E R NA D E S I G N P R O B L E M

RNA folding algorithms F map from an RNA sequence to a representation of its secondary structure.
The RNA Design problem aims to find an inverse mapping for a given RNA folding algorithm F :

Definition 1 (RNA Design). Given a folding algorithm F and a target RNA secondary structure ω,
the RNA Design problem is to find an RNA sequence φ ∈ N |ω| = {A, G, C, U}|ω| that satisfies
ω = F(φ).
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In this paper, we employ the most common folding algorithm: the Zuker algorithm (Zuker & Stiegler,
1981; Zuker & Sankoff, 1984), which uses a thermodynamic model to minimize the free energy to
find the most stable conformation of the RNA secondary structure. We note, however, that our
approach is not limited to it and would also directly apply for any other RNA folding algorithm.

RNA secondary structures are often represented using the dot-bracket notation, where dots stand for
unbound sites and nucleotides connected by a hydrogen bond are marked by opening and closing
brackets.1 Figure 1 illustrates the RNA Design problem and the dot-bracket notation.

Most algorithms for RNA Design employ a structural loss function Lω(F(φ)) to quantify the differ-
ence between the target structure ω and the structure resulting from folding an RNA sequence φ. A
minimizer of this loss corresponds to a solution to the RNA Design problem for a specified target
structure ω:

φ∗ ∈ arg min
φ∈N |ω|

Lω(F(φ)) . (1)

A common loss function, which we also employ in this work, is the Hamming distance (Hamming,
1950) between two structures. We note that multiple RNA sequences may fold to the same secondary
structure, such that the RNA Design problem does not generally have a unique solution; one could
distinguish between solutions by preferring more stable folds, targeting a specific GC content, or
satisfying other constraints; all of these could be incorporated into the loss function being optimized.

3 L E A R N I N G T O D E S I G N R NA

In this section we describe our novel generative approach for the RNA Design problem based on
reinforcement learning. We first formulate RNA Design as a decision process and then propose
several strategies to yield agents that learn to design RNA end-to-end.

3 . 1 M O D E L L I N G R NA D E S I G N A S A D E C I S I O N P R O C E S S

We propose to model the RNA Design problem with respect to a given target structure ω as the
undiscounted decision processDω := (S, A, Rω, Pω); its components (the state space S , the action
spaceA, the reward functionRω and the transition functionPω) are specified in the paragraphs below.
The RNA Design problem is defined with respect to a folding algorithm, which we denote as F(·);
further, we denote the set of dot-bracket encoded RNA secondary structures with Ω .

Action space In each episode, the agent has the task to design an RNA sequence that folds into the
given ω ∈ Ω. To design a candidate solution φ ∈ N |ω|, the agent places nucleotides by choosing an
action at at each time step t. For unpaired sites, at corresponds to one of the four RNA nucleotides
(G, C, A or U); for paired sites, two nucleotides are placed simultaneously. In our formulation, these
two nucleotides correspond to one of the Watson-Crick base pairs (GC, CG, AU, or UA). At time
step t, the action space can then be defined as

A := {0, 1, 2, 3} ≡
{
{A, G, C, U} for Cω(t) = . ["dot"]
{GC, CG, AU, UA} for Cω(t) = ( ["opening bracket"]

, (2)

where Cω(t) is the t-th character of the target structure ω. There is no action for closing brackets, as
the associated sites are assigned nucleotides when encountering the corresponding opening bracket.
See Figure 2 for an illustration of the action rollout.

State space The agent chooses an action at based on the state st provided by the environment. We
formulated states to provide local information to the agent. For this we set st to the (2κ+ 1)-gram
centered around the t-th site of the target structure ω, where κ is a hyperparameter we dub the state
radius. To be able to construct this centered n-gram at all sites, we introduced κ padding characters
at the start and the end of the target structure. Formally, the state space can then be written as

S := {0, 1, 2, 3}2κ+1 ≡ (B ∪ {padding})2κ+1
, (3)

where B is the set of symbols in the dot-bracket notation: a dot, an opening and a closing bracket.
1There are also other notations (Shapiro, 1988; Fontana et al., 1993); our approach would also apply to these.
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Figure 2: Illustration of an action rollout in the proposed decision process. The agent sequentially
builds a candidate solution by choosing actions to place nucleotides. At paired sites, as indicated by
a pair of brackets, two nucleotides are placed simultaneously (t = 0 and t = 1); while at unpaired
sites a single nucleotide is placed (t = 2).

Transition Function Since at each time step t the state st is set to a fixed (2κ + 1)-gram, the
transition function Pω is deterministic and defined accordingly.

Reward Function At the terminal time step T the agent has assigned nucleotides to all sites of the
candidate solution φ and the environment generates the (only non-zero) rewardRTω (φ). This reward
is based on the Hamming distance dH(F(φ), ω) between the folded candidate solution F(φ) and the
target structure ω. We normalize this distance with respect to the sequence length |ω| to formulate
the loss function Lω(F(φ)) := dH(F(φ), ω) / |ω|. To solve the optimization problem in Equation 1,
we set

RTω (φ) := (1− Lω(F(φ)))
α

, (4)

where α > 1 is a hyperparameter to shape the reward. Additionally, we include a local improvement
step to increase sample efficiency and boost performance of the stochastic RL agent as follows: If
dH(F(φ), ω) < ξ, where ξ is a hyperparameter, we search through neighboring primary sequences
by exhaustively trying all combinations for the mismatched sites, returning the minimum Hamming
distance observed. In our experiments, we set ξ = 5, which corresponds to at most 44 = 256
neighboring sequences. Pseudocode for computingRTω (φ) can be found in Appendix A.

3 . 2 O B TA I N I N G P O L I C I E S F O R R NA D E S I G N

We use deep reinforcement learning to learn the parameters θ of policy networks πθ. Our policy
networks consist of an embedding layer for the input state and a deep neural network; this neural
network optionally contains convolutional, recurrent and fully-connected layers, and its precise
architecture is jointly optimized together with the hyperparameters as described in Section 4. We
propose several strategies to learn the parameters θ of a given policy network as detailed below.

LEARNA The LEARNA strategy learns to design a sequence for the target structure ω in an online
fashion, from scratch. The parameters θ are randomly initialized before the agent episodically
interacts with the decision process Dω. For updating the parameters we use the policy gradient
method PPO (Schulman et al., 2017), which was recently successfully applied to several other
problems (Heess et al., 2017; Bansal et al., 2018; Zoph et al., 2018).

Meta-LEARNA Meta-LEARNA uses a meta-learning approach (Lemke et al., 2015) that views
the RNA Design problems associated with the target structures in the training set Ωtrain as tasks and
learns to transfer knowledge across them. Each of the target structures ωi ∈ Ωtrain defines a different
decision process Dωi

; using asynchronous parallel PPO updates, we train a single policy network on
all of these. Once the training is finished, the parameters θ are fixed and πθ can be applied to the
decision process Dω by sampling from the learned generative model.
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Meta-LEARNA-Adapt Meta-LEARNA-Adapt combines the previous two strategies: First, we
obtain an initialization for the parameters θ by running Meta-LEARNA on Ωtrain. Then, when applied
to the decision process Dω , the parameters θ are further adapted using the LEARNA strategy.

4 J O I N T A R C H I T E C T U R E A N D H Y P E R PA R A M E T E R S E A R C H

One problem of current deep reinforcement learning methods is that their performance can be very
sensitive to choices regarding the architecture of the policy network, the training hyperparameters,
and the formulation of the problem as a decision process (Henderson et al., 2017). Therefore, we
propose to use techniques from the field of automatic machine learning (Hutter et al., 2019), in
particular an efficient Bayesian optimization method (Falkner et al., 2018), to address the problems
of architecture search (AS) (Zoph & Le, 2017; Elsken et al., 2018) and hyperparameter optimization
as a joint optimization problem. To automatically select the best neural architecture based on data,
we define a search space that includes both elements of convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) and let the optimizer choose the best combination of the two.

In this section, we present our representation of the search space and describe our approach to
optimizing performance.

4 . 1 S E A R C H S PA C E

Our search space has three components described in the following: choices about the policy network’s
architecture, environment parameters (including the representation of the state and the reward), and
training hyperparameters.

Neural Architecture We construct the architecture of our policy network as follows: (1) the
dot bracket representation of the state is either binary encoded (distinguishing between paired and
unpaired sites) or processed by an embedding layer that converts the symbol-based representation
into a learnable numerical one for each site. Then, (2) an optional CNN with at most two layers
can be selected, followed by (3) an optional LSTM with at most two layers. Finally, we always add
(4) a shallow fully-connected network with one or two layers, which outputs the distribution over
actions. This parameterization covers a broad range of possible neural architectures while keeping
the dimensionality of the search space relatively modest (similar to what is achieved by the focus on
cell spaces (Zoph et al., 2018) in the recent literature on architecture search).

Environment Parameters Since our ultimate goal is not to solve a specific decision process (DP),
but to use the best DP for solving our problem, we also optimize parameters concerning the state
representation and the reward: We optimize the number of sites symmetrically centered around the
current one via the state radius κ (see Section 3.1), and the shape of the reward via the parameter α
(see Equation 4).

Training Hyperparameters Since the performance of neural networks strongly depends on the
training hyperparameters governing optimization and regularization, we optimized some of the pa-
rameters of PPO, which we employ for training the network: learning rate, batch size, and strength
of the entropy regularization.

Overall, these design choices yield a 14-dimensional search space comprising mostly integer vari-
ables. The complete list of parameters, their types, ranges, and the priors we used over them can be
found in Appendix E. We used almost identical search spaces for LEARNA and Meta-LEARNA, but
adapted the ranges for the learning rate and the entropy regularization slightly based on preliminary
experiments. Please refer to Tables 3 and 4 in Appendix E for more details.

4 . 2 S E A R C H P R O C E D U R E

We now describe how we optimized performance in the search space described above. We chose
the recently-proposed optimizer BOHB (Falkner et al., 2018) to find good configurations, because it
can handle mixed discrete/continuous spaces, utilize parallel resources, and additionally can exploit
cheap approximations of the objective function to speed up the optimization. These so-called low-
fidelity approximations can be achieved in numerous ways, e.g., limiting the training time, the number
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of independent repetitions of the evaluations, or using only fractions of the data. In our setting, we
decided to limit the wall-clock time for training (Meta-LEARNA) or the evaluations (LEARNA). For
a detailed description of the limits, we refer to Appendix E.

Datasets To properly optimize the listed design choices without overfitting, we needed a designated
training and validation dataset. However, previous benchmarks used in the RNA Design literature
do not provide a train/validation/test split. This led us to create the benchmark Rfam-Learn based
on the Rfam database version 13.0 (Kalvari et al., 2017), by employing the protocol described in
Appendix B. All datasets we used for this paper are listed in detail in Appendix D, however, we note
that all our approaches were optimized using only our newly introduced training and validation sets
(Rfam-Learn-Train and Rfam-Learn-Validation).

Budgets Due to the very different standardized evaluation timeouts of the benchmarks we report
on (10 minutes for Rfam-Taneda and up to 24 hours for Eterna100), we experimented with different
budgets for LEARNA. In particular, we ran our optimization with a 10-minute and a 30-minute
evaluation timeout (the former matching the Rfam-Taneda limit, the latter being larger, but still
computationally far more manageable than a 24 hour budget per sequence). After the optimization,
we evaluated both alternatives on our full validation set with a limit of 1 hour with the following
modification that we also used when evaluating on the Eterna100 and Rfam-Learn-Test benchmarks:
matching the evaluation timeout during optimization, every 10 or 30 minutes, the policy network and
all internal variables of PPO are reinitialized, i.e., we perform a restart of the algorithm to overcome
occasional stagnation of PPO. We found the 30-minute variant to perform better, and refer to this as
LEARNA throughout the rest of the paper.

Objective Despite the fact that RL is known to often yield noisy or unreliable outcomes in single
optimization runs (Henderson et al., 2017), we actively decided to only use a single optimization
run and a single validation set for each configuration to keep the optimization manageable. To
counteract the problems associated with single (potentially) noisy observations, we studied three
different loss functions for the hyperparameter optimization: (a) The number of unsolved sequences,
(b) the sum of mean distances, and (c) the sum of minimum distances to the target structure. While
we ultimately seek to minimize (a), this is a rather noisy and discrete quantity. In preliminary
experiments, optimizing (b) turned out to be inferior to (c), presumably because the former punishes
exploration by the agent more, while the latter rewards ultimately getting close to the solution.
Therefore, we used (c) during the optimization, but picked the final configuration using (a) among
the top five configurations. All of these evaluations were based on the validation set.

5 R E L AT E D W O R K

Architecture and Hyperparameter Search Mendoza et al. (2016) and Zela et al. (2018) pre-
viously studied joint architecture search and hyperparameter optimization. Here, we adapted this
approach for the use in deep RL and to a richer space of architectures. Although RL has been used
for performing architecture search (Zoph & Le, 2017; Mortazi & Bagci, 2018) and joint architec-
ture and hyperparameter search (Wong et al., 2018), to the best of our knowledge, this paper is the
first application of the reverse: architecture search for RL. For detailed reviews on architecture
search and hyperparameter optimization, we refer to Elsken et al. (2018) and Feurer & Hutter (2018),
respectively.

Matter Engineering Variational autoencoders, generative adversarial networks and reinforcement
learning have recently shown promising results in protein design and other related problems in matter
engineering (Gupta & Zou, 2018; Greener et al., 2018; Olivecrona et al., 2017). For a detailed review
on machine learning approaches in the field of matter engineering, we refer to Sanchez-Lengeling &
Aspuru-Guzik (2018). In recent work related to RNA Design, a convolutional neural network based
auto-encoder with additional supervised fine tuning was proposed to score on-target and off-target
efficacy of guide RNAs for the genome editing technique CRISPR/CAS9 (Chuai et al., 2018). This
automated efficacy scoring could inform future endeavours in designing guide RNAs. Our work adds
evidence for the competitiveness of generative machine learning methods in this general problem
domain.
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RNA Design Most algorithms targeting the RNA Design problem are either local or global al-
gorithms. Local approaches commonly operate on a single sequence and try to find a solution by
changing a small number of nucleotides at a time, guided by the loss function (RNAInverse (Hofacker
et al., 1994), RNA-SSD (Andronescu et al., 2004), INFO-RNA (Busch & Backofen, 2006), NUPACK
(Dirks & Pierce, 2004; Zadeh et al., 2010), ERD (Esmaili-Taheri et al., 2014) and the approach by
Eastman et al. (2018)). Global methods, on the other hand, either have a large number of candidates
being manipulated, or model a global distribution from which samples are generated (MODENA
(Taneda, 2011), antaRNA (Kleinkauf et al., 2015) and MCTS-RNA (Yang et al., 2017)). A more
detailed review can be found in Churkin et al. (2017).

RNA Design Using Human Solutions Very recently, another, less general direction to RNA Design
imposed a prior of human knowledge onto the agent (Shi et al., 2018). In this approach, a large
ensemble of models is trained on human solutions to manually designed RNA Design problems.
Further, for refinement of the candidate solution, an adaptive walk procedure using human strategies
is used, incorporating deep domain-knowledge guiding the agent’s behaviour. Totalized results over
all models of the ensemble were reported on the Eterna100 benchmark (Anderson-Lee et al., 2016),
which solely consists of manually designed RNA Design problems, and which we also report on
here. Although the approach showed good results in this one benchmark, human solutions and
strategies were not available for our further benchmarks derived from natural RNA structures, and
due to computational costs we could not include this work in our comparison.

RL for Combinatorial Problems The work by Bello et al. (2016) heavily influenced our work. In
it, the authors apply RL to combinatorial problems, namely the Traveling Salesman Problem. The
agent proposes complete solutions rather than manipulating an existing one, and it is trained using
an episodic reward, in this case the negative tour length. Inspired by this work, we propose to frame
the RNA Design problem as a RL problem where each candidate solution is designed from scratch.
In our approach, the agent predicts which nucleotides to place next into the sequence, learning to
design RNA end-to-end.

RL for RNA Design Our generative approach is in stark contrast to the recent work Eastman et al.
(2018) carried out in parallel to and independently from ours. Eastman et al. used RL to perform a
local search starting from a randomly initialized sequence. The RL agent applies local modifications
to design a solution that folds into the desired target structure. The current sequence constitutes the
state and each action represents changing an unpaired nucleotide or a pair of nucleotides. After each
action the current sequence is evaluated utilizing the Zuker algorithm (Zuker & Stiegler, 1981; Zuker
& Sankoff, 1984) and the agent only receives a nonzero reward signal once it finds a correct sequence.
The agent’s policy is a convolutional neural network pre-trained on fixed-length, randomly generated
sequences. In the remainder of the paper, we refer to this approach as RL-LS, since the RL agent
performs a local search.

6 E X P E R I M E N T S

We evaluate our approaches against state-of-the-art methods and perform an ablation study to assess
the importance of our method’s components. We report results on two established benchmarks
from the literature and on our own benchmark. Full information on the three benchmarks is given
in Appendix D. For each benchmark, we followed its standard evaluation protocol, performing
multiple attempts (in the following referred to as evaluation runs) with a fixed time limit for each
target structure. For each benchmark, we report the accumulated number of solved targets across
all evaluation runs and provide means and standard deviations around the mean for all experiments.
All methods were compared on the same hardware, each allowed one CPU core per evaluation of a
single target structure. The methods we compare to either do not have clear/exposed hyperparameters
(RNAinverse), or were optimized by the original authors (antaRNA, RL-LS, and MCTS-RNA); all
methods – including our own – might benefit from further optimization of their hyperparameters for
specific benchmarks. Details concerning the used software and hardware are listed in Appendix C.

6 . 1 C O M PA R AT I V E S T U D Y

The results of our comparative study, summarized in Table 1 and Figure 3, are as follows.
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Table 1: Fraction of solved target structures for MCTS-RNA, antaRNA, RL-LS, RNAInverse, LEARNA,
Meta-LEARNA, and Meta-LEARNA-Adapt on the two benchmarks from the literature (Eterna100 and
Rfam-Taneda), as well as on our newly introduced benchmark (Rfam-Learn-Test). A target structure
counts as solved if a solution was found in any of the evaluation runs.

M E T H O D
S O LV E D S E Q U E N C E S [ % ]

E T E R N A 1 0 0 R F A M - TA N E D A R F A M - L E A R N - T E S T

M C T S - R NA 5 7 7 9 9 7
A N TA R NA 5 8 6 6 1 0 0
R L - L S 5 9 6 2 6 2
R NA I N V E R S E 6 0 5 9 9 5

L E A R NA 6 7 7 9 9 7
M E TA - L E A R NA 6 8 8 3 1 0 0
M E TA - L E A R NA - A D A P T 6 8 8 3 9 9

Eterna100 Solving up to 68% (Meta-LEARNA and Meta-LEARNA-Adapt) of the target structures,
all our approaches achieve clear new state-of-the-art results on the Eterna100 benchmark. Addition-
ally, Meta-LEARNA only needs about 25 seconds to reach the final performance of any other method
(≈ 1765× faster) and achieves new state-of-the-art results in less than 30 seconds. This performance
is stable through all of the five evaluation runs performed. Remarkably, all versions of our approach
already achieve new state-of-the-art performance in each single evaluation run (see Appendix I).

Rfam-Taneda Concerning the Rfam-Taneda benchmark, LEARNA is on par with the current state-
of-the-art results of MCTS-RNA after 110 seconds (≈ 2× faster). Meta-LEARNA and Meta-LEARNA-
Adapt achieve this previous state-of-the-art performance in less than 5 seconds (≈ 63× faster) and
new state-of-the-art results after 400 seconds and 90 seconds, respectively (see Appendix J), solving
83% of the target structures.

Rfam-Learn Only Meta-LEARNA and antaRNA were able to solve all of the target structures (in
29 minutes and 20 minutes, respectively). Except for RL-LS, all algorithms could solve at least 95%
of the target structures.

In summary, our novel deep reinforcement learning algorithm achieved the best performance on all of
the three benchmarks while being much faster than all other algorithms on the two benchmarks from
the literature (Eterna100 and Rfam-Taneda). Our meta-learning approach Meta-LEARNA learned a
representation of the dynamics underlying RNA Design and is capable of transferring this knowledge
to new RNA Design tasks. As our additional analysis in Appendix H shows, it also scales better with
sequence length than existing approaches. For a detailed list of the performance of all algorithms on
specific target structures, we refer to the detail tables in Appendix K.

6 . 2 A B L AT I O N S T U D Y A N D PA R A M E T E R I M P O R TA N C E

To study the influence of the different components and parameters on the performance of our ap-
proach, we performed an ablation study and a functional analysis of variance (fANOVA) (Hooker,
2007; Hutter et al., 2014).

Ablation Study For the ablation, we excluded either the adaptation option, the local improvement
step, or the restart option. For all variants of our approach we observed a clear boost in performance
from the local improvement step, while the other components tended to have a smaller impact (see
Figure 8 in Appendix G). We note that we believe the local improvement step could also benefit other
generative approaches, such as MCTS-RNA. The restart option only boosted performance on the
Eterna100 benchmark, with considerably harder instances and a much longer runtime (see Figure 9
in Appendix G). As already apparent from our comparative study (Section 6.1), the continued
adaptation (Meta-LEARNA-Adapt) of the learned parameters did not improve performance. This
might be due to us not having optimized hyperparameters for this variant, but simply having reused
the same settings as for Meta-LEARNA.

8



Published as a conference paper at ICLR 2019

100 101 102 103 104 105
0

20

40

60

80

100

So
lv

ed
Se

qu
en

ce
s

[%
]

100 101 102 103 104 105
0

20

40

60

80

100
Meta-LEARNA-Adapt

Meta-LEARNA

LEARNA

RNAInverse

MCTS-RNA

antaRNA

RL-LS

100 101 102 103
0

20

40

60

80

100

So
lv

ed
Se

qu
en

ce
s

[%
]

100 101 102 103
0

20

40

60

80

100
Meta-LEARNA-Adapt

Meta-LEARNA

LEARNA

RNAInverse

MCTS-RNA

antaRNA

RL-LS

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

So
lv

ed
Se

qu
en

ce
s

[%
]

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

Meta-LEARNA-Adapt

Meta-LEARNA

LEARNA

RNAInverse

MCTS-RNA

antaRNA

RL-LS

Figure 3: Performance across the time spent on each particular target structure for all methods on
the Eterna100 benchmark (top), the Rfam-Taneda benchmark (middle), and the Rfam-Learn-Test
benchmark (bottom). On the left we show the total number of target structures that were solved in at
least one evaluation run, while the right panels show the average number of solved target structures
and the standard deviation around the mean.

Parameter Importance The fANOVA results highlight the importance of parameters from all
three components of the search space mentioned in Section 4. This emphasizes the importance of the
joint optimization of the policy network’s architecture, the environment parameters and the training
hyperparameters.

All results and a more detailed discussion of our ablation study and the fANOVA results can be found
in Appendix G and F, respectively.

7 C O N C L U S I O N

We proposed the deep reinforcement learning algorithm LEARNA for the RNA Design problem to
sequentially construct candidate solutions in an end-to-end fashion. By pre-training on a large corpus
of biological sequences, a local improvement step to aid the agent, and extensive architecture and
hyperparameter optimization, we arrived at Meta-LEARNA, a ready-to-use agent that achieves state-
of-the-art results on the Eterna100 (Anderson-Lee et al., 2016) and the Rfam-Taneda benchmark
(Taneda, 2011). Our ablation study shows the importance of all components, suggesting that RL with
an additional local improvement step can solve the RNA Design problem efficiently. Code and data
for reproducing our results is available at https://github.com/automl/learna.
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A P S E U D O C O D E F O R C O M P U T I N G T H E R E WA R D

Algorithm 1: Local improvement step (LIS) using Hamming distance dH(·, ·) and folding
algorithm F(·).

input : designed solution φ, target structure ω, initial Hamming distance δ
output : locally improved distance

1 ∆← ∅
2 nucleotide_combinations← {A, G, U, C}δ
3 candidate_solutions← replaceMismatchedSites(φ, ω, nucleotide_combinations)
4 foreach ψ ∈ candidate_solutions do
5 δ ← dH(F(ψ), ω)
6 if δ = 0 then
7 return δ
8 end
9 ∆← ∆ ∪ {δ}

10 end
11 return min ∆

Algorithm 2: Computing rewardRTω (φ) using LIS (Algorithm 1), Hamming distance dH(·, ·)
and folding algorithm F(·).

input : designed solution φ, target structure ω, LIS cut-off parameter ξ
output : rewardRTω (φ)

1 δ← dH(F(φ), ω)
2 if δ = 0 then
3 return δ
4 else if δ < ξ then
5 δ← LIS(φ, ω, δ)
6 end
7 Lω ← δ / |ω|
8 return (1− Lω)

α

B C R E AT I N G T H E R F A M - L E A R N D ATA S E T S

To ensure a large enough and interesting dataset, we downloaded all families of the Rfam database
version 13.0 (Kalvari et al., 2017) and folded them using the ViennaRNA package (Lorenz et al.,
2011a). We removed all secondary structures with multiple known solutions, and only kept structures
with lengths between 50 and 450 to match the existing datasets. To focus on the harder sequences,
we only kept the ones that a single run of MCTS-RNA could not solve within 30 seconds. We chose
MCTS-RNA for filtering as it was the fastest algorithm from the literature. The remaining secondary
structures were split into a training set of 65000, a validation set of 100, and a test set of 100 secondary
structures.

C S O F T WA R E A N D H A R D WA R E D E TA I L S

We used the implementation of the Zuker algorithm provided by ViennaRNA (Lorenz et al., 2011b)
versions 2.4.8 (MCTS-RNA, RL-LS and LEARNA), 2.1.9 (antaRNA) and 2.4.9 (RNAInverse). Our
implementation uses the reinforcement learning library tensorforce, version 0.3.3 (Schaarschmidt
et al., 2017) working with TensorFlow version 1.4.0 (Abadi et al., 2015). All computations were
done on Broadwell E5-2630v4 2.2 GHz CPUs with a limitation of 5 GByte RAM per each of the 10
cores. For the training phase of Meta-LEARNA, we used two of these CPUs, but at evaluation time,
all methods were only allowed a single core (using core binding).
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D B E N C H M A R K S

Table 2: Overview on the three benchmarks Eterna100 (Anderson-Lee et al., 2016), Rfam-Taneda
(Taneda, 2011) and Rfam-Learn we used for our experiments. The table displays the timeout, the
number of evaluations for each target structure, the number of sequences and the range of sequence
lengths for the corresponding benchmark.

D ATA S E T T I M E O U T E VA L U AT I O N S S E Q U E N C E S L E N G T H

E T E R N A 1 0 0 2 4 H 5 1 0 0 1 2 – 4 0 0
R F A M - TA N E D A 1 0 M I N 5 0 2 9 5 4 – 4 5 1

R F A M - L E A R N - T R A I N – – 6 5 0 0 0 5 0 – 4 5 0
R F A M - L E A R N - VA L – – 1 0 0 5 0 – 4 4 4
R F A M - L E A R N - T E S T 1 H 5 1 0 0 5 0 – 4 4 6

E J O I N T A R C H I T E C T U R E A N D H Y P E R PA R A M E T E R S E A R C H

Here, we provide a detailed description of the search space, the different computational budgets used
for optimization, and the final configurations found by the optimizer. The search spaces for LEARNA
and Meta-LEARNA can be found in Tables 3 and 4.

Table 3: Search space for the agent’s architecture and the hyperparameters used for LEARNA.

Parameter Name Type Range Prior

filter size in 1st conv layer integer {0} ∪ {3, 5, . . . , 17} uniform
filter size in 2nd conv layer integer {0, 3, 5, 7, 9} uniform
# filter in 1st conv layer integer [1, 32] log-uniform
# filter in 2nd conv layer integer [1, 32] log-uniform
# LSTM layers integer [0, 2] uniform
# units in every LSTM layer integer [1, 64] log-uniform
# fully connected layers integer [1, 2] uniform
# units in fully connected layer(s) integer [8, 64] log-uniform
state space radius κ integer [0, 32] uniform
embedding dimensionality integer [0, 4] uniform
batch size integer [32, 128] log-uniform
entropy regularization float [1 · 10−5, 1 · 10−2] log-uniform
learning rate for PPO float [1 · 10−5, 1 · 10−3] log-uniform
reward exponent α float [1, 10] uniform

Table 4: Modified hyperparameters in the search space used for optimizing Meta-LEARNA compared
to Table 3. We adapted these ranges slightly based on preliminary experiments. We hypothesize that
the longer training time and the parallel training require smaller learning rates and larger regulariza-
tion.

Parameter Name Type Range Prior

entropy regularization float [5 · 10−5, 5 · 10−3] log-uniform
learning rate for PPO float [1 · 10−6, 1 · 10−4] log-uniform

Using varying budgets, we can eliminate bad configurations quickly and focus most of the resources
on the promising ones. In BOHB, these budgets are geometrically distributed with a factor of three
between them. For LEARNA, we directly optimize the performance on the validation set and use
varying evaluation timeouts as budgets, with a maximum of 30 minutes to keep the optimization
manageable. For Meta-LEARNA, we vary the training time and keep the evaluation timeout on the
validation set fixed at 60 seconds. The maximum timeout of 1 hour on 20 CPU cores was chosen
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to almost match the timeout of the Eterna100 benchmark for a single sequence and the minimum
timeout was set to 400 seconds, chosen by preliminary runs and inspecting the achieved performance.
The validation timeout of one minute was chosen such that the training time on the smallest budget
of 400 seconds is still larger than the evaluation time for the 100 validation sequences. Additionally,
this encourages the agent to find a solution quickly. These considerations lead to the budgets shown
in the legends of Figure 4 and Figure 5.
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Figure 4: Left: Observed validation loss during the BOHB run for LEARNA. The different budgets
b correspond to the timeout for each of the 100 validation sequences. Right: Relationship between
the observed validation loss (sum of minimal, normalized Hamming distances) and the fraction of
solved sequences.
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Figure 5: Left: Observed validation loss during the BOHB run for Meta-LEARNA. The different
budgets b corresponds to the training time on 20 CPU cores before evaluating on the 100 validation
sequences for 60 seconds each. The results seem to suggest that one can achieve a very similar
performance with only 20 minutes of training, which could imply that much longer training of
the agent might be required for substantially better performance. Right: Relationship between the
observed validation loss (sum of minimal, normalized Hamming distances) and the fraction of solved
sequences during validation. The plot suggests that our loss metric correlates strongly with the
number of successfully found primary sequences.

Finally, Table 5 summarizes the evaluated configurations. The biggest differences between LEARNA
and Meta-LEARNA can be found among the architectural choices. The LEARNA configuration
has a relatively big CNN component and additionally uses a single LSTM layer with 28 units; in
contrast, the best found Meta-LEARNA configuration has no LSTM layers and a relatively small CNN
component with only 3 filters in the second layer. For both LEARNA and Meta-LEARNA, a modest
feed forward component with only one layer suffices, the number of embedding dimensions and the
batch sizes are almost identical. The entropy regularization and the learning rate also vary, validating
our decision to adapt the search spaces based on preliminary experiments. We expect most of these
differences to be the result of the different CPU time budgets, but we do not want to speculate about
whether CNNs are inherently better suited to generalizing across sequences than LSTMs based on our
results; longer training and more optimization might also produce a configuration for Meta-LEARNA
with LSTM cells.
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To summarize the results from the optimization: The best found configurations vary in key parameters,
highlighting the necessity to jointly optimize as many aspects of the RL problem as possible for the
given scenario.

Table 5: The selected configurations for each scenario.

Parameter Name LEARNA Meta-LEARNA

filter size in 1st conv layer 17 11
filter size in 2nd conv layer 5 3
# filters in 1st conv layer 7 10
# filters in 2nd conv layer 18 3
# fully connected layers 1 1
# units in fully connected layer(s) 57 52
# LSTM layers 1 0
# units in every LSTM layer 28 3
state space radius κ 32 29
embedding dimensionality 3 2
batch size 126 123
entropy regularization 6.76 · 10−5 1.51 · 10−4

learning rate for PPO 5.99 · 10−4 6.44 · 10−5

reward exponent α 9.34 8.93

17



Published as a conference paper at ICLR 2019

F F U N C T I O N A L A N A LY S I S O F VA R I A N C E F O R M E TA - L E A R NA

10 6 10 5 10 4

learning rate

15

20

25

30

So
lv

ed
 se

qu
en

ce
s [

%
]

importance 12.1%

10 4 10 3

entropy regularization

15

20

25

30

35

So
lv

ed
 se

qu
en

ce
s [

%
]

importance 7.8%

2 4 6 8 10
reward exponent 

15

20

25

30

35

So
lv

ed
 se

qu
en

ce
s [

%
]

importance 8.1%

23 24 25 26

#units in FC layer

15

20

25

30

So
lv

ed
 se

qu
en

ce
s [

%
]

importance 3.1%

Figure 6: Marginal prediction plots for the most important individual parameters, with all other
parameters marginalized out based on a random forest regression model. We plot means of the
marginal prediction across the random forest’s individual trees ± the empirical standard deviation
across the trees. The importance numbers given in the figure subtitles measure the fraction of the
total variance explained by the respective single parameter.

Here, we performed an analysis of variance (ANOVA) that quantifies the global importance of a
parameter of Meta-LEARNA by the fraction of the total variance it explains. Because our parameter
space is rather high dimensional, and we collected a limited (relative to the dimensionality) and
highly biased (because we optimized performance) set of evaluations, we use the functional ANOVA
(fANOVA) framework (Hooker, 2007). In particular, we use fANOVA based on random forests as
introduced by Hutter et al. (2014). The results are shown in Figures 6 and 7.

Among the four most important individual parameters, we found training and regularization hyper-
parameters (learning rate and entropy regularization in PPO), the reward representation (the reward
exponent), and an architectural hyperparameter (number of units in the fully connected layer(s)).
This highlights the need to include all components in the optimization.

The global analysis performed by fANOVA highlights hyperparameters that impact performance
most across the entire search space. As a result, the shown fraction of solved validation sequences
is rather low in the plots (. 35%, where the best found configurations achieved almost 90%, see
Figure 5). It is important to note that the quantitative behavior predicted by the fANOVA does not
have to be representative for the best configurations, especially if the good part of the space is rather
small. This also means that other hyperparameters, e.g., the architecture and type of the network, can
be more important than indicated by the fANOVA in order to reach peak performance.

From the plots, we can conclude that a relatively large learning rate performs best on average.
Interestingly, it seems to be advantageous to have a limited entropy regularization, which we see as
an indicator that the training set is fairly diverse and the problem challenging enough for the agent to
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Figure 7: Marginal prediction plots for the most important pairs of parameters when marginalizing
across all other parameters. The importance values shown in the subtitles are the ones by the
interaction effect itself (first) and the sum of it and the two individual effects (second).

keep exploring. The reward exponent should also be set quite high in conjunction with the learning
rate (see top right panel of Figure 7).
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G A B L AT I O N S T U D Y

In addition to the hyperparameter importance study, we assess the contribution of the different com-
ponents of our approaches with an ablation (Figure 8 and Figure 9). Clearly, a model based agent
compared to random actions has the biggest impact on the performance. The second most important
component is the local improvement step, which is active once a sequence with less than 5 mis-
matches has been found. Restarts only seem to affect the performance on the Eterna100 benchmark,
where due to the long budget, we only evaluated LEARNA. The seemingly negligible impact of
the continued training in Meta-LEARNA-Adapt could increase on datasets more dissimilar to the
training data or with an additional optimization of the relevant parameters used for the continuous
updates. Potentially, all parameters except the architecture and the state space representation could
be optimized to improve performance. This could be investigated in future work.
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Figure 8: Ablation study of Meta-LEARNA-Adapt (first row), Meta-LEARNA (second row) and
LEARNA (third row) on Rfam-Learn-Test. The left side shows the accumulated number of solved
target structures over 5 independent runs, while the right side shows the mean and the standard
deviation around the mean.
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Figure 9: Ablation study of LEARNA on Eterna100 with an evaluation timeout of 12 hours. The left
side shows the accumulated number of solved target structures over 5 independent runs, while the
right side shows the mean and the standard deviation around the mean.
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H C O M PA R I S O N : P E R F O R M A N C E A C R O S S S E Q U E N C E L E N G T H S
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Figure 10: Minimum solution times across sequence lengths on the Rfam-Learn-Test benchmark.
The solid line represents the evaluation timeout of 1 hour for the Rfam-Learn-Test benchmark and
points drawn above this line were not solved.
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I C O M PA R I S O N : N U M B E R O F S O L U T I O N S P E R K R U N S

Table 6: Comparison of all methods on Eterna100. Results list the number of solved target structures
in at least 1, 2, 3, 4, or all of the evaluation runs in percent.

M E T H O D
S O LV E D S E Q U E N C E S [ % ]

T O TA L 2 R U N S 3 R U N S 4 R U N S A L L R U N S

M C T S - R NA 5 7 5 7 5 6 5 4 5 1
A N TA R NA 5 8 5 8 5 8 5 6 5 5
R L - L S 5 9 5 9 5 8 5 7 5 5
R NA I N V E R S E 6 0 6 0 5 9 5 9 5 8

L E A R NA 6 7 6 6 6 3 6 3 6 3
M E TA - L E A R NA 6 8 6 7 6 7 6 7 6 7
M E TA - L E A R NA - A D A P T 6 8 6 7 6 7 6 6 6 6

Table 7: Comparison of all methods on Rfam-Taneda. Results list the number of solved target
structures in at least 1, 5, 10, 25, or all of the evaluation runs in percent.

M E T H O D
S O LV E D S E Q U E N C E S [ % ]

T O TA L 5 R U N S 1 0 R U N S 2 5 R U N S A L L R U N S

M C T S - R NA 7 9 7 6 7 2 7 2 5 9
A N TA R NA 6 6 6 6 6 6 6 6 6 2
R L - L S 6 2 6 2 5 5 5 2 4 8
R NA I N V E R S E 5 9 5 5 5 5 5 2 4 8

L E A R NA 7 9 7 9 7 6 6 6 4 8
M E TA - L E A R NA 8 3 7 9 7 9 7 9 7 2
M E TA - L E A R NA - A D A P T 8 3 8 3 7 9 7 9 7 6

Table 8: Comparison of all methods on Rfam-Learn-Test. Results list the number of solved target
structures in at least 1, 2, 3, 4, or all of the evaluation runs in percent.

M E T H O D
S O LV E D S E Q U E N C E S [ % ]

T O TA L 2 R U N S 3 R U N S 4 R U N S A L L R U N S

M C T S - R NA 9 7 9 4 9 1 8 9 8 2
A N TA R NA 1 0 0 9 9 9 9 9 9 9 9
R L - L S 6 2 5 3 4 5 4 1 3 7
R NA I N V E R S E 9 5 9 0 8 7 8 3 7 8

L E A R NA 9 7 9 3 8 6 8 2 7 1
M E TA - L E A R NA 1 0 0 9 9 9 8 9 8 9 6
M E TA - L E A R NA - A D A P T 9 9 9 9 9 9 9 7 9 4
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J C O M PA R I S O N : N U M B E R O F S O L U T I O N S AT D I F F E R E N T T I M E S

Table 9: Comparison of all methods on Eterna100. Results list the number of solved target structures
at different time points in percent.

M E T H O D
S O LV E D S E Q U E N C E S [ % ]

1 0 S 1 M I N 3 0 M I N 1 H 4 H 1 2 H 2 4 H

M C T S - R NA 4 1 4 8 5 5 5 6 5 7 5 7 5 7
A N TA R NA 3 6 4 6 5 4 5 5 5 5 5 8 5 8
R L - L S 0 4 0 5 3 5 5 5 8 5 9 5 9
R NA I N V E R S E 3 2 4 4 5 5 5 7 5 9 6 0 6 0

L E A R NA 2 1 4 7 6 1 6 3 6 5 6 7 6 7
M E TA - L E A R NA 5 6 6 2 6 5 6 7 6 7 6 8 6 8
M E TA - L E A R NA - A D A P T 5 6 6 1 6 4 6 6 6 7 6 7 6 8

Table 10: Comparison of all methods on Rfam-Taneda. Results list the number of solved target
structures at different time points in percent.

M E T H O D
S O LV E D S E Q U E N C E S [ % ]

1 0 S 3 0 S 1 M I N 5 M I N 1 0 M I N

M C T S - R NA 7 2 7 6 7 6 7 9 7 9
A N TA R NA 5 2 6 2 6 6 6 6 6 6
R L - L S 0 4 8 5 9 6 2 6 2
R NA I N V E R S E 5 5 5 5 5 5 5 5 5 9

L E A R NA 2 4 5 2 6 9 7 9 7 9
M E TA - L E A R NA 7 9 7 9 7 9 7 9 8 3
M E TA - L E A R NA - A D A P T 7 9 7 9 7 9 8 3 8 3

Table 11: Comparison of all methods on Rfam-Learn-Test. Results list the number of solved target
structures at different time points in percent.

M E T H O D
S O LV E D S E Q U E N C E S [ % ]

1 0 S 3 0 S 1 M I N 5 M I N 1 0 M I N 3 0 M I N 1 H

M C T S - R NA 4 0 5 5 6 8 8 6 9 2 9 4 9 7
A N TA R NA 3 6 5 8 7 3 9 7 9 9 1 0 0 1 0 0
R L - L S 0 1 4 2 1 3 8 4 5 5 6 6 2
R NA I N V E R S E 3 9 5 3 6 6 8 3 8 9 9 3 9 5

L E A R NA 1 1 2 3 3 1 7 2 8 3 9 3 9 7
M E TA - L E A R NA 7 4 8 2 8 7 9 6 9 7 1 0 0 1 0 0
M E TA - L E A R NA - A D A P T 7 3 8 4 9 1 9 5 9 8 9 9 9 9
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K C O M PA R I S O N : S P E C I F I C TA R G E T S T R U C T U R E S

Table 12: Results for 5 independent attempts on the first half of the 100 target structures of the Rfam-
Learn-Test benchmark. We abbreviate Meta-LEARNA with M-LEARNA and Meta-LEARNA-Adapt
with M-LEARNA-A.

I D L E A R NA M - L E A R NA M - L E A R NA - A M C T S - R NA R L - L S R NA I N V E R S E A N TA R NA

1 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
6 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
7 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
8 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
9 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 0 2 / 5 2 / 5 - 4 / 5 - 5 / 5 5 / 5
1 1 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 2 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 3 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 6 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 7 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 8 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 9 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 0 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 1 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 2 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
2 3 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 5 5 / 5 5 / 5 5 / 5 5 / 5 4 / 5 5 / 5 5 / 5
2 6 4 / 5 5 / 5 5 / 5 4 / 5 2 / 5 5 / 5 5 / 5
2 7 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 8 2 / 5 5 / 5 5 / 5 5 / 5 1 / 5 5 / 5 5 / 5
2 9 5 / 5 5 / 5 5 / 5 3 / 5 3 / 5 5 / 5 5 / 5
3 0 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 1 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 2 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 3 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 5 5 / 5 5 / 5 5 / 5 5 / 5 4 / 5 5 / 5 5 / 5
3 6 5 / 5 5 / 5 5 / 5 4 / 5 3 / 5 5 / 5 5 / 5
3 7 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 8 5 / 5 5 / 5 5 / 5 5 / 5 1 / 5 5 / 5 5 / 5
3 9 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 0 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 1 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 2 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 3 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 4 2 / 5 5 / 5 5 / 5 1 / 5 - 4 / 5 5 / 5
4 5 - 1 / 5 3 / 5 - - - 1 / 5
4 6 5 / 5 5 / 5 5 / 5 1 / 5 - 5 / 5 5 / 5
4 7 5 / 5 5 / 5 5 / 5 5 / 5 3 / 5 5 / 5 5 / 5
4 8 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 9 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
5 0 5 / 5 5 / 5 5 / 5 5 / 5 4 / 5 5 / 5 5 / 5

T O TA L 2 3 5 / 2 5 0 2 4 3 / 2 5 0 2 4 3 / 2 5 0 2 3 2 / 2 5 0 2 0 5 / 2 5 0 2 4 4 / 2 5 0 2 4 6 / 2 5 0

S O LV E D 4 9 / 5 0 5 0 / 5 0 4 9 / 5 0 4 9 / 5 0 4 5 / 5 0 4 9 / 5 0 5 0 / 5 0
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Table 13: Results for 5 independent attempts on the second half of the 100 target structures of the
Rfam-Learn-Test benchmark. We abreviate Meta-LEARNA with M-LEARNA and Meta-LEARNA-
Adapt with M-LEARNA-A.

I D L E A R NA M - L E A R NA M - L E A R NA - A M C T S - R NA R L - L S R NA I N V E R S E A N TA R NA

5 1 5 / 5 5 / 5 5 / 5 5 / 5 1 / 5 5 / 5 5 / 5
5 2 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
5 3 5 / 5 5 / 5 5 / 5 5 / 5 1 / 5 5 / 5 5 / 5
5 4 5 / 5 5 / 5 5 / 5 5 / 5 2 / 5 5 / 5 5 / 5
5 5 5 / 5 5 / 5 5 / 5 5 / 5 3 / 5 5 / 5 5 / 5
5 6 4 / 5 5 / 5 5 / 5 5 / 5 1 / 5 5 / 5 5 / 5
5 7 5 / 5 5 / 5 5 / 5 5 / 5 - 4 / 5 5 / 5
5 8 5 / 5 5 / 5 5 / 5 5 / 5 - 3 / 5 5 / 5
5 9 5 / 5 5 / 5 5 / 5 5 / 5 2 / 5 5 / 5 5 / 5
6 0 5 / 5 5 / 5 5 / 5 5 / 5 2 / 5 3 / 5 5 / 5
6 1 5 / 5 5 / 5 5 / 5 4 / 5 2 / 5 1 / 5 5 / 5
6 2 3 / 5 5 / 5 5 / 5 5 / 5 1 / 5 5 / 5 5 / 5
6 3 4 / 5 5 / 5 5 / 5 5 / 5 1 / 5 5 / 5 5 / 5
6 4 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
6 5 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
6 6 4 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
6 7 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
6 8 5 / 5 5 / 5 5 / 5 5 / 5 2 / 5 5 / 5 5 / 5
6 9 2 / 5 5 / 5 5 / 5 5 / 5 - 3 / 5 5 / 5
7 0 5 / 5 5 / 5 5 / 5 5 / 5 1 / 5 5 / 5 5 / 5
7 1 1 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
7 2 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
7 3 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
7 4 5 / 5 5 / 5 5 / 5 5 / 5 - 2 / 5 5 / 5
7 5 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
7 6 4 / 5 5 / 5 5 / 5 5 / 5 1 / 5 2 / 5 5 / 5
7 7 5 / 5 5 / 5 5 / 5 5 / 5 4 / 5 5 / 5 5 / 5
7 8 5 / 5 5 / 5 5 / 5 5 / 5 - 4 / 5 5 / 5
7 9 4 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
8 0 - 4 / 5 5 / 5 - - 1 / 5 5 / 5
8 1 3 / 5 5 / 5 5 / 5 5 / 5 - 2 / 5 5 / 5
8 2 4 / 5 5 / 5 5 / 5 4 / 5 - - 5 / 5
8 3 4 / 5 5 / 5 5 / 5 5 / 5 - 4 / 5 5 / 5
8 4 5 / 5 5 / 5 5 / 5 4 / 5 - 3 / 5 5 / 5
8 5 2 / 5 4 / 5 3 / 5 1 / 5 - 5 / 5 5 / 5
8 6 5 / 5 5 / 5 5 / 5 5 / 5 2 / 5 5 / 5 5 / 5
8 7 3 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
8 8 5 / 5 5 / 5 5 / 5 5 / 5 - 1 / 5 5 / 5
8 9 - 5 / 5 5 / 5 2 / 5 - - 5 / 5
9 0 2 / 5 5 / 5 5 / 5 2 / 5 - 5 / 5 5 / 5
9 1 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
9 2 3 / 5 5 / 5 4 / 5 - - 5 / 5 5 / 5
9 3 1 / 5 5 / 5 5 / 5 4 / 5 - 4 / 5 5 / 5
9 4 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
9 5 2 / 5 5 / 5 5 / 5 5 / 5 - 1 / 5 5 / 5
9 6 4 / 5 5 / 5 5 / 5 5 / 5 2 / 5 5 / 5 5 / 5
9 7 1 / 5 5 / 5 4 / 5 2 / 5 - 1 / 5 5 / 5
9 8 4 / 5 5 / 5 5 / 5 5 / 5 - - 5 / 5
9 9 4 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
1 0 0 1 / 5 5 / 5 4 / 5 3 / 5 - - 5 / 5

T O TA L 1 9 4 / 2 5 0 2 4 8 / 2 5 0 2 4 6 / 2 5 0 2 2 1 / 2 5 0 3 3 / 2 5 0 1 8 9 / 2 5 0 2 5 0 / 2 5 0

S O LV E D 4 8 / 5 0 5 0 / 5 0 5 0 / 5 0 4 8 / 5 0 1 7 / 5 0 4 6 / 5 0 5 0 / 5 0
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Table 14: Results for 5 independent attempts on the first half of the 100 target structures of the
Eterna100 benchmark. We abbreviate Meta-LEARNA with M-LEARNA and Meta-LEARNA-Adapt
with M-LEARNA-A.

I D L E A R NA M - L E A R NA M - L E A R NA - A M C T S - R NA R L - L S R NA I N V E R S E A N TA R NA

1 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
6 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5
7 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
8 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
9 5 / 5 5 / 5 5 / 5 - 4 / 5 - 3 / 5
1 0 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5 5 / 5
1 1 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 2 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 3 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 6 5 / 5 5 / 5 5 / 5 - 3 / 5 - -
1 7 5 / 5 5 / 5 5 / 5 4 / 5 5 / 5 2 / 5 -
1 8 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
1 9 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 0 5 / 5 5 / 5 5 / 5 4 / 5 5 / 5 5 / 5 5 / 5
2 1 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 2 2 / 5 5 / 5 5 / 5 5 / 5 5 / 5 - 5 / 5
2 3 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5 5 / 5
2 4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 6 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 7 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 8 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
2 9 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 0 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5 5 / 5
3 1 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 2 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 3 5 / 5 5 / 5 5 / 5 - - 5 / 5 5 / 5
3 4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 5 2 / 5 5 / 5 5 / 5 - - - -
3 6 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
3 7 5 / 5 5 / 5 5 / 5 5 / 5 2 / 5 4 / 5 -
3 8 5 / 5 5 / 5 5 / 5 5 / 5 - - -
3 9 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 0 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 1 5 / 5 5 / 5 5 / 5 - 5 / 5 5 / 5 5 / 5
4 2 5 / 5 5 / 5 5 / 5 4 / 5 5 / 5 5 / 5 5 / 5
4 3 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 6 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 7 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 8 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
4 9 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
5 0 - - - - - - -

T O TA L 2 3 9 / 2 5 0 2 4 5 / 2 5 0 2 4 5 / 2 5 0 2 0 2 / 2 5 0 2 1 9 / 2 5 0 2 1 6 / 2 5 0 2 1 8 / 2 5 0

S O LV E D 4 9 / 5 0 4 9 / 5 0 4 9 / 5 0 4 1 / 5 0 4 5 / 5 0 4 4 / 5 0 4 4 / 5 0
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Table 15: Results for 5 independent attempts on the second half of the 100 target structures of the
Eterna100 benchmark. We abbreviate Meta-LEARNA with M-LEARNA and Meta-LEARNA-Adapt
with M-LEARNA-A.

I D L E A R NA M - L E A R NA M - L E A R NA - A M C T S - R NA R L - L S R NA I N V E R S E A N TA R NA

5 1 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
5 2 - - - - - - -
5 3 - 5 / 5 5 / 5 - - - -
5 4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
5 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
5 6 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
5 7 - - - - - - -
5 8 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
5 9 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 -
6 0 - - - - - - -
6 1 - - - - - - -
6 2 5 / 5 5 / 5 5 / 5 - - 5 / 5 3 / 5
6 3 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
6 4 - - - - - - -
6 5 - - - 2 / 5 - - -
6 6 - 5 / 5 - - - 5 / 5 5 / 5
6 7 - - - - - - -
6 8 - - - - - - -
6 9 5 / 5 5 / 5 5 / 5 5 / 5 - - -
7 0 5 / 5 5 / 5 5 / 5 3 / 5 - - 4 / 5
7 1 - - - - - - -
7 2 - - - - 5 / 5 5 / 5 -
7 3 - - - - - - -
7 4 1 / 5 - 3 / 5 - - - -
7 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
7 6 - - - - - - -
7 7 2 / 5 5 / 5 5 / 5 3 / 5 4 / 5 5 / 5 -
7 8 - - - - - - -
7 9 - - - - - - -
8 0 - - - - - - -
8 1 - - - - - - -
8 2 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
8 3 - - - - - - -
8 4 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
8 5 - - - - - - -
8 6 - - - - - - -
8 7 - - - - - - -
8 8 - - - - - - -
8 9 - - - - - - -
9 0 - - - - - - -
9 1 - - - - - - -
9 2 - - - - - - -
9 3 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
9 4 - - - - - - -
9 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5
9 6 - - - - - - -
9 7 - - - - - - -
9 8 5 / 5 1 / 5 1 / 5 - - - -
9 9 - - - - - - -
1 0 0 - - - - - - -

T O TA L 8 3 / 2 5 0 9 1 / 2 5 0 8 9 / 2 5 0 7 3 / 2 5 0 6 9 / 2 5 0 8 0 / 2 5 0 6 7 / 2 5 0

S O LV E D 1 8 / 5 0 1 9 / 5 0 1 9 / 5 0 1 6 / 5 0 1 4 / 5 0 1 6 / 5 0 1 4 / 5 0
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Table 16: Results for 50 independent attempts on each of the 29 target structures of the Rfam-
Taneda benchmark. We abbreviate Meta-LEARNA with M-LEARNA and Meta-LEARNA-Adapt with
M-LEARNA-A.

I D L E A R NA M - L E A R NA M - L E A R NA - A M C T S - R NA R L - L S R NA I N V E R S E A N TA R NA

1 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 3 2 / 5 0 7 / 5 0 2 0 / 5 0 5 0 / 5 0
2 3 5 / 5 0 5 0 / 5 0 5 0 / 5 0 2 8 / 5 0 5 / 5 0 - -
3 1 8 / 5 0 4 9 / 5 0 5 0 / 5 0 4 / 5 0 - - -
4 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
5 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
6 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
7 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 4 8 / 5 0 5 0 / 5 0 5 0 / 5 0
8 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
9 1 8 / 5 0 5 0 / 5 0 5 0 / 5 0 4 4 / 5 0 - - -
1 0 - - - - - - -
1 1 - - - - - - -
1 2 4 8 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 3 / 5 0 5 0 / 5 0
1 3 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
1 4 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
1 5 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
1 6 - - - - - - -
1 7 2 2 / 5 0 5 0 / 5 0 5 0 / 5 0 4 7 / 5 0 - 5 0 / 5 0 5 0 / 5 0
1 8 - 2 / 5 0 5 / 5 0 - - - -
1 9 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
2 0 - - - - - - -
2 1 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
2 2 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
2 3 - - - - - - -
2 4 4 8 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 1 9 / 5 0 - 5 0 / 5 0
2 5 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 4 6 / 5 0 5 0 / 5 0
2 6 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
2 7 8 / 5 0 4 2 / 5 0 4 3 / 5 0 6 / 5 0 - - -
2 8 4 9 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0
2 9 2 8 / 5 0 5 0 / 5 0 5 0 / 5 0 5 0 / 5 0 - - 3 6 / 5 0

T O TA L 9 7 4 / 1 4 5 0 1 1 4 3 / 1 4 5 0 1 1 4 8 / 1 4 5 0 1 0 1 1 / 1 4 5 0 7 7 9 / 1 4 5 0 7 6 9 / 1 4 5 0 9 3 6 / 1 4 5 0

S O LV E D 2 3 / 2 9 2 4 / 2 9 2 4 / 2 9 2 3 / 2 9 1 8 / 2 9 1 7 / 2 9 1 9 / 2 9
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