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Abstract
The most recent fast and accurate image segmentation methods are built upon fully convolutional
deep neural networks. In particular, densely connected convolutional neural networks (DenseNets)
have shown excellent performance in detection and segmentation tasks. In this paper, we propose
new deep learning strategies for DenseNets to improve segmenting images with subtle differences
in intensity values and features. In particular, we aim to segment brain tissue on infant brain MRI at
about 6 months of age where white matter and gray matter of the developing brain show similar T1
and T2 relaxation times, thus appear to have similar intensity values on both T1- and T2-weighted
MRI scans. Brain tissue segmentation at this age is, therefore, very challenging. To this end, we
propose an exclusive multi-label training strategy to segment the mutually exclusive brain tissues
with similarity loss functions that automatically balance the training based on class prevalence. Us-
ing our proposed training strategy based on similarity loss functions and patch prediction fusion we
decrease the number of parameters in the network, reduce the number of training classes, focusing
the attention on less number of tasks, while mitigating the effects of data imbalance between la-
bels and inaccuracies near patch borders. By taking advantage of these strategies we were able to
perform fast image segmentation (less than 90 seconds per 3D volume) using a network with less
parameters than many state-of-the-art networks (1.4 million parameters), overcoming issues such
as 3D vs 2D training and large vs small patch size selection, while achieving the top performance
in segmenting brain tissue among all methods tested in first and second round submissions of the
isointense infant brain MRI segmentation (iSeg) challenge according to the official challenge test
results. Our strategy improved the training process through balanced training and reduced com-
plexity, and provided a trained model that works for any size input image and is faster and more
accurate than many state-of-the-art methods.
Keywords: Deep learning, Convolutional Neural Network, FC-DenseNet, Segmentation

1. Introduction

Deep convolutional neural networks have shown great potential in medical imaging on account of
dominance over traditional methods in applications such as segmentation of neuroanatomy (Bui
et al., 2017; Moeskops et al., 2016; Zhang et al., 2015; Chen et al., 2017), lesions (Valverde et al.,
2017; Brosch et al., 2015; Kamnitsas et al., 2017; Hashemi et al., 2019), and tumors (Havaei et al.,
2017; Pereira et al., 2016; Wachinger et al., 2017) using voxelwise networks (Moeskops et al., 2016;
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Havaei et al., 2017; Salehi et al., 2017, 2018), 3D voxelwise networks (Chen et al., 2017; Kamnitsas
et al., 2017) and Fully Convolutional Networks (FCNs) (Çiçek et al., 2016; Milletari et al., 2016;
Salehi et al., 2017, 2018; Hashemi et al., 2019). FCNs have shown better performance while also
being faster in training and testing than voxelwise methods (Salehi et al., 2017, 2018).

Among these, the densely connected networks, referred to as DenseNets (Huang et al., 2017)
and a few of its extensions, such as a 3D version called DenseSeg (Bui et al., 2017) and a fully con-
volutional two-path edition (FC-DenseNet) (Jegou et al., 2017), have shown promising results in
image segmentation tasks (Dolz et al., 2018). For example the DenseSeg showed top performance
in the 2017 MICCAI isointense infant brain MRI segmentation (iSeg) grand challenge (Wang et al.,
2019)1, which is considered a very difficult image segmentation task for both traditional and deep
learning approaches. During early infant brain maturation through the myelination process, there is
an isointense period in which the T1 and T2 relaxation times of the white matter (WM) and gray
matter (GM) tissue become similar, resulting in isointense (similar intensity) appearance of tissue
on both T1-weighted and T2-weighted MRI contrasts. This happens around 6 months of age where
tissue segmentation methods that are based directly on image intensity are prone to fail (Wang et al.,
2013). Deep learning methods, however, have shown promising results in this application. In this
work, we aimed to further improve image segmentation under these challenging conditions. While
the top performing methods in the iSeg challenge relied on the power of DenseNets and used con-
ventional training strategies based on cross-entropy loss function (Bui et al., 2017; Dolz et al., 2018),
in this work we focused on the training part and developed new strategies that helped us achieve the
best performance currently reported on the iSeg challenge among all first2 and second round sub-
missions3. We built our technique over a deep 3D two-channel fully convolutional DenseNet; and
trained it purposefully using our proposed exclusive multi-label multi-class method of training, with
exclusively adjusted similarity loss functions on large overlapping 3D image patches. We overcame
class similarity issues by focusing the training on one of the isointense class labels (WM) instead of
both (thus referred to as exclusive multi-label multi-class), where we balanced precision and recall
separately for each class using Fβ loss functions (Hashemi et al., 2019) with β values adjusted with
respect to class prevalence in the training set.

Our contributions that led to improved iso-intense image segmentation include 1) An exclu-
sive multi-label multi-class training approach (through independent probability estimation) using
automatically-adjusted similarity loss functions per class; 2) utilizing a 3D FC-DenseNet architec-
ture adopted from (Jegou et al., 2017) that is deeper, has more total number of skip connections
and has less overall trainable parameters than networks in previous studies; and 3) training and test-
ing on large overlapping 3D image patches with a patch prediction fusion strategy (Hashemi et al.,
2019) that enabled intrinsic data augmentation and improved segmentation in patch borders while
having the advantage of using any size image. Similarity loss functions, such as the Dice simi-
larity loss, were previously proposed for two-class segmentation in V-Net (Milletari et al., 2016).
The Fβ loss functions, which showed excellent performance in training deep networks for highly
imbalanced medical image segmentation (Hashemi et al., 2019), appeared to be effective also in
exclusive multi-label training of DenseNets for independent multi-class segmentation in this work,
where the class imbalance hyper-parameter β was directly adjusted based on training data in the
training phase.

1. http://iseg2017.web.unc.edu/
2. http://iseg2017.web.unc.edu/rules/results
3. http://iseg2017.web.unc.edu/evaluation-on-the-second-round-submission
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The official results on iSeg test data show that our method outperformed all previously pub-
lished and reported methods improving DenseNets while standing in the first place after the second
round submissions as of December 2018. Our proposed training strategy can be extended to other
applications for independent multi-class segmentation and detection with multiple very similar and
unbalanced classes. After a brief technical description of the isointense infant brain MRI segmenta-
tion challenge in the Motivation, the details of the methods, including the network architecture and
our proposed strategies for training are presented in the Methods section; and are followed by the
Results and Conclusions.

2. Motivation

The publicly available MICCAI grand challenge on 6-month infant brain MRI segmentation (iSeg)
dataset contains pre-processed T1- and T2-weighted MR images of 10 infant subjects with manual
labels of cerebrospinal fluid (CSF), WM, and GM for training and 13 infant subjects without labels
for testing which are all pre-defined by challenge officials. The intensity distribution of all classes
(CSF, GM, WM) is shown in Figure S1 in Appendix C, which shows that the intensity values of
GM and WM classes on both MRI scans largely overlap. The GM-WM isointense appearance only
happens around this stage of brain maturation and hinders GM-WM segmentation. CSF, which
shows less overlap with GM and WM, shows a relatively spread intensity distribution, which is
partly attributed to partial voluming effects in relatively large voxels where signal is averaged in
CSF-GM interface, and inclusion of some other tissues such as blood vessels in the CSF label in
iSeg data.

In the iSeg training data, the number of voxels in each class label is different and can be roughly
presented as the average ratio of (36,1,2,1.5) for non-brain, CSF, GM, and WM classes, respec-
tively. Unbalanced labels can make the training process converge to local minima resulting in sub
optimal performance. The predictions, thus, may lean towards the GM class especially when dis-
tinguishing between the isointense areas of GM and WM. Using our proposed exclusive multi-label
multi-class training method, which can be extended to other segmentation or detection tasks with
very similar (isointense) while exclusive labels (each voxel belonging to a single label), we aimed
to 1) let the network focus on and learn one of the segmentation challenges at a time rather than
two (in this case WM rather than both GM and WM), 2) reduce the bias in training towards classes
with higher prevalence (in this case GM), and 3) use dedicated impartial asymmetric similarity loss
functions on each of the non-similar classes independently (in this case WM and CSF).

3. Methods

3.1. Network architecture

In traditional densely connected networks each layer is connected to every other layer to preserve
both high- and low-level features, in addition to allowing the gradients to flow from bottom layers
to top layers resulting in more accurate predictions. Unlike Resnets (He et al., 2016) which only
sum the output of the identity function at each layer with a skip connection from the previous
layer, DenseNets (Huang et al., 2017) significantly improve the flow of information throughout
the network by 1) using concatenation instead of summation and 2) forward connections from all
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Figure 1: The 3D FC-DenseNet architecture used in this study; In the first layer, the input patch is
downsampled from 128× 128× 128 to 64× 64× 64 using a 2× 2× 2 convolution with
stride 2 (purple). Before the activation layer the patch is upsampled from 64×64×64 to
128× 128× 128 using a 2× 2× 2 convolution transpose with stride 2 (red). Using this
deep architecture, we mitigated memory size limitations with large input patches, while
maintaining a large field of view and incorporating 5 skip connections to improve the flow
of local and global feature information.

preceding layers rather than just a previous layer, therefore:

x(Resnet)
l = Hl(xl−1)+ xl−1 , x(Densenet)

l = Hl([x0,x1, . . . ,xl−1]) (1)

where xl is the output of the lth layer, Hl is the lth layer transition, and [x0,x1, . . . ,xl−1] refers to the
concatenation of all previous feature maps.

We designed our deep 3D densely connected network based on a combination of DenseSeg (Bui
et al., 2017) and FC-DenseNet (Jegou et al., 2017) architectures. This deep DenseNet (Huang et al.,
2017) style architecture is shown in Figure 1 consisting of contracting and expanding paths. The
network is trained on local features in the contracting path concatenated with upsampled global
features in the expanding path. For this reason, the model has the capacity to learn both high-
resolution local and low-resolution global 3D features. The depth of the architecture as well as the
5 skip-layer connections ensure the use of 5 various resolutions of local and global 3D features in
the final prediction.

The contracting path contains an initial 2× 2× 2 convolution with stride 2 for the purpose of
downsampling and reducing the patch size (to 64× 64× 64) while preserving the larger field of
view (128× 128× 128). It is then followed by three padded 3× 3× 3 convolutional layers. Five
dense blocks follow with a growth rate of 12. Growth rate for dense blocks is the increase amount
in the number of feature maps after each block. Dense blocks contain four 3×3×3 convolutional
layers preceding with 1×1×1 convolutions which are known as bottlenecks (Huang et al., 2017).

263



EXCLUSIVE INDEPENDENT PROBABILITY ESTIMATION: ISOINTENSE INFANT BRAIN SEGMENTATION

Dimension reduction of 0.5 applied at transition layers helps parameter efficiency and reduce the
number of input feature maps. There are skip connections between each and every layer inside
dense blocks. Aside from the center dense block connecting the two paths, contracting dense blocks
are followed by a 1× 1× 1 convolutional layer and a max pooling layer referred to as transition
down blocks, and expanding dense blocks are preceded with a 3×3×3 transpose convolution with
stride 2 known as transition up blocks (Jegou et al., 2017). All convolutional layers in the network
are followed by batch normalization and ReLU non-linear layers. Dropout rate of 0.2 is used only
after 3×3×3 convolutional layers of each dense block. As the final layer a 1×1×1 convolution
with a sigmoid or softmax output is used, which is discussed later.

3.2. Training strategy

While our deep two-channel 3D FC-DenseNet architecture used two extra downsampling and up-
sampling convolutional layers (purple and red layers in Figure 1) to preserve higher fields of view
with more overall number of skip connections than other DenseNet variants (Bui et al., 2017; Dolz
et al., 2018), in this work we mainly focused on innovative training strategies to facilitate net-
work training and improve performance. These innovations constitute two training approaches, i.e.
single-label multi-class and exclusive multi-label multi-class training, with asymmetric similarity
loss functions based on Fβ scores (Hashemi et al., 2019), use of large image patches as input, and a
patch prediction fusion strategy, which are discussed here.

3.2.1. SINGLE-LABEL MULTI-CLASS

Often in machine learning and deep learning tasks, all labels in a dataset are mutually exclusive
which is also the case for the iSeg dataset. This is called a single-label multi-class problem where
each voxel can only have one label inside a multi-class environment. One of the most important
decisions in a network is the choice of the classification layer. The usual choice for this type of
classification for image segmentation is a softmax layer which is a normalized exponential function
and a generalization of the logistic function forcing probability values to be in the range of [0,1] with
the total class probability sum of 1. Softmax assumes independability of each class to other classes,
which is theoretically accurate in the case of iSeg labels (CSF, GM, WM). However, because of
human error in generating accurate ground truth labels as well as the isointense specification of GM
and WM classes in 6-month infant MRIs, incorporating this theory could result in complications on
the border voxels of the two labels where the intensities are most analogous.

In the single-label approach we trained the network the more popular way to learn all labels
together with a softmax activation function as shown in Figure 2(a), where the highest probability
class was selected for each voxel. Even though we used an asymmetric loss function to account
for data imbalance (discussed later), the network applied the required precision-recall asymmetry
mostly on labels with higher level of occurrence since all the labels were trained together. In this
case the GM label being the most prevalent class (46.7% of all labeled voxels), receives higher
recall than the other labels (21.84% CSF and 31.45% WM prevalence). Considering both the level
of occurrence as well as the isointense aspect of infant brain MRIs, the WM class would receive the
least recall among all labels. Therefore, we aimed to exploit other strategies, in particular exclusive
independent probability estimation using a multi-label multi-class strategy to better balance the
training.
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3.2.2. MULTI-LABEL MULTI-CLASS

Unlike single-label problems where voxels can only have one label, in multi-label multi-class prob-
lems each voxel has the potential to have multiple labels in a multi-class environment. These types
of tasks require prediction of multiple labels per voxel. By using softmax as the activation function,
a constant threshold cannot be used practically because the probabilities are not evenly distributed
for every patch or image. Therefore, some sort of binary classification or output function is needed;
such as the sigmoid function:

σ
so f tmax
z =

ez

Σn
k=1ek , σ

sigmoid
z =

1
1+ e−z =

ez

1+ ez =
ez

e0 + ez (2)

where σ denotes the output of the softmax and sigmoid functions, z is the output for label z before
activation, k is the output for each label ∈ [1,n] before activation and n is the total number of
labels. Sigmoid is a special case of softmax for only two classes (i.e. 0 and z) which models
the probability of classes as Bernoulli distributions and independent from other class probabilities.
In the multi-label approach, instead of training all the class labels to a probability sum of 1, we
scale each class probability separately between [0,1] so we can use a constant threshold to extract
labels. The multi-label multi-class approach has two other advantages: 1) different loss functions
and hyper-parameters can be used for distinct training of classes; and 2) calculating sigmoid is less
computationally cumbersome for a processing unit compared to softmax especially for large number
of labels.

3.2.3. EXCLUSIVE MULTI-LABEL MULTI-CLASS

Since we decided to use a less complex cost function and train the class labels independently, there
was no reason to train on both of the isointense labels, especially as the classes were mutually
exclusive. In fact reducing one of the classes helps the network focus its attention to one label while
eliminating the effect of biased learning towards a class with higher prevalence. This way, the model
has an easier task of learning subtle differences between nearly indistinguishable classes such as GM
and WM in isointense infant brain MRI segmentation. This can potentially be generalizable to every
combination of extremely hard to detect, unbalanced, and mutually exclusive class labels, excluding
the one with more occurrences and training on the other while reducing the number of network
parameters and achieving better performance. To this end, for the iSeg data, as shown in Figure 2(b)
we removed GM from the training cycle and trained the CSF and WM classes against non-CSF
and non-WM labels using the Sigmoid activation function with differently balanced similarity loss
functions discussed in the next section. The GM labels were concluded from the compliment of the
already predicted CSF and WM labels.

3.2.4. LOSS FUNCTION

To better deal with data imbalance, we used an extension of the idea of using Dice similarity
loss (Milletari et al., 2016), based on the Fβ scores (Hashemi et al., 2019) defined as:

Fβ =
(1+β 2)× precision× recall

β 2× precision+ recall
=

T P

T P+( β 2

1+β 2 )FN +( 1
1+β 2 )FP

(3)

Where T P, FN, and FP are true positives, false negatives, and false positives, respectively. While
Dice similarity is a harmonic mean of precision and recall, Fβ allows balancing between precision
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(a) (b)

Figure 2: Examples of the a) Single-label approach with the Softmax activation function and sin-
gle loss function for all labels, and b) Exclusive Multi-label approach with the Sigmoid
activation function and multiple loss function configurations for different labels in iSeg
segmentation task.

and recall by an appropriate choice of the hyper-parameter β . The selection method for β values
based on class prevalence is explained in Appendix A.

3.2.5. 3D LARGE PATCHES AND PATCH PREDICTION FUSION

Rather than training on full-size, two-channel (T1- and T2-weighted MRI) input images, we ex-
tracted and used large 3D two-channel image patches as inputs and augmented the training data at
the level of large patches. This had several advantages including efficient use of memory, intrinsic
data augmentation, and the design of an image size-independent model. Previously in the Network
Architecture section, we mentioned that large patches of 128× 128× 128 were selected from the
image and were immediately downsampled through a convolutional layer within the network to
the size of 64×64×64 in order to preserve higher receptive field while adapting to GPU memory
restrictions. Nonetheless, accuracy near patch borders was relatively low mainly because of the
effective receptive field of patches. To circumvent this problem while fusing patch predictions in
both training and testing, we exploited a weighted soft voting approach (Hashemi et al., 2019) using
second-order spline functions placed at the center of patches. Patches were selected for prediction
using 50% overlaps. Each patch was rotated 180 degrees once in each direction for augmentation
in both training and testing, and the final result was calculated through the fusion of predictions by
all overlapping patches and their augmentations (32 predictions per voxel).

3.3. Experimental design

We trained and tested our 3D FC-DenseNet with Fβ loss layer to segment isointense infant brains.
T1- and T2-weighted MRI of 10 subjects were used as input, where we used five-fold cross-
validation in training. There was not any pre-processing involved as the images were already skull-
stripped and registered. The two MRI images of each subject were normalized through separately
dividing each voxel value by the mean of non-zero voxels in each image. This way the whole
brain (excluding background) in each modality was normalized to unit mean. Our 3D FC-DenseNet
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was trained end-to-end. Cost minimization on 2,500 epochs was performed using ADAM opti-
mizer (Kingma and Ba, 2014) with an initial learning rate of 0.0005 multiplied by 0.9 every 500
steps. The training time for this network was approximately 14 hours on a workstation with Nvidia
Geforce GTX1080 GPU.

Validation and test volumes were segmented using feed-forward through the network. The out-
put of the last convolutional layer with softmax non-linearity consisted of a probability map for
CSF, GM and WM tissues. For the sigmoid version of the network, it contained only the CSF and
WM tissues. In the softmax approach (single-label multi-class), the class with maximum probabil-
ity among all classes was selected as the segmentation result for each voxel, while in the sigmoid
approach (exclusive multi-label multi-class) voxels with computed probabilities≥ 0.5 were consid-
ered to belong to the specific tissue class (CSF or WM) and those with probabilities < 0.5 were
considered non tissue. For voxels with both CSF and WM probabilities of ≥ 0.5 the class with
higher probability was selected. Finally, GM labels were generated based on the compliment of
predicted CSF and WM class labels. For evaluation, following iSeg, we report the Dice Similarity
Coefficient (DSC), Hausdorff Distance (HD), and the Average Surface Distance (ASD) all defined
in Appendix B.

4. Results

To evaluate the effect of our proposed exclusive multi-label multi-class training strategy compared to
the single-label (without exclusive multi-label) method, we trained our FCN with single- and multi-
label designs and calculated cross-validation DSC. The characteristics and performance metrics of
our two trained models are compared in Appendix C Table S1, along with a comparison of other
methods on a different validation set from (Bui et al., 2017). Paired sample t-test between exclusive
multi-label and single-label configurations confirmed that differences were statistically significant
(p < 0.05) among DSC, sensitivity and specificty results of CSF, GM and WM. The results in the
top part of Table S1 and our results in the bottom part should not be directly compared as they are
on different validation sets. The actual comparison based on official iSeg test set are reported in
Table 1.

The official challenge test results on challenge website, reported in Table 1 for the top perform-
ing teams, show that our approach outperformed all first and second round submissions including
the DenseNet based methods of DenseSeg (Bui et al., 2017) and HyperDenseNet (Dolz et al., 2018).
According to the DSC and ASD performance metrics our exclusive multi-label method performed
better than all other methods for all (CSF, GM and WM) classes. The results of the HD score,
however, were not consistent; nonetheless the HD score is not an appropriate performance measure
for segmentation of complex shapes based on the comprehensive discussion and evaluation in (Taha
and Hanbury, 2015) (Appendix B). Overall, official challenge results show improved segmenta-
tion in iSeg using our method, which is attributed to 1) our 3D FC-DenseNet architecture which is
deeper than previous DenseNets with more overall skip-layer connections and less number of net-
work parameters; and more importantly 2) our proposed exclusive multi-label training with Fβ loss
functions that made a better balance between precision and recall in training the network. Figure 3
shows prediction results of a subject from one of the validation folds for our two training methods
compared to the ground truth. Visual assessment and the DSC scores on all labels consistently show
that the best results were achieved by our exclusive multi-label model.
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Table 1: Official iSeg test set results of the top ranking teams. The best values for each metric
have been highlighted in bold. Our exclusive multi-label method outperformed the first
and second ranked teams (Bui et al., 2017; Dolz et al., 2018) at the time of the challenge
and stands, overall, in the first place among all first and second round submissions through
December 2018 (iSeg first round, iSeg second round). Note that the HD metric is not con-
sidered a reliable performance metric for medical image segmentation (Taha and Hanbury,
2015) as it is very susceptible to outliers.

CSF GM WM
Teams (Published) DSC HD ASD DSC HD ASD DSC HD ASD

BCH CRL Imagine (ours) 96.0 8.85 0.11 92.6 9.55 0.31 90.7 7.1 0.36
MSL SKKU (2nd rnd) 95.8 9.11 0.116 92.3 6.0 0.32 90.4 6.62 0.375
MSL SKKU (1st rnd) 95.8 9.07 0.116 91.9 5.98 0.33 90.1 6.44 0.39

LIVIA (2nd rnd) 95.6 9.42 0.12 92.0 5.75 0.33 90.1 6.66 0.38
LIVIA (1st rnd) 95.7 9.03 0.138 91.9 6.42 0.34 89.7 6.98 0.38

Bern IPMI 95.4 9.62 0.127 91.6 6.45 0.34 89.6 6.78 0.4
nic vicorob 95.1 9.18 0.137 91.0 7.65 0.37 88.5 7.15 0.43

Figure 3: Segmentation results of 3D FC-DensNet of subject 1 in the validation set with Exclusive
Multi-label and without Exclusive Multi-label (Single-label). Dice scores for each class
label are also shown for each image. Red squares highlight some areas of differences
between the two approaches.
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5. Conclusion

We introduced a new deep densely connected network (Huang et al., 2017) based on (Bui et al.,
2017; Jegou et al., 2017), called 3D FC-DenseNet that has more depth, more total number of skip
connections and less network parameters than its predecessors, while having the capability of in-
cluding 8 times the regular patch sizes (128×128×128 vs 64×64×64) due to its early downsam-
pling and late upsampling layers. To train this deep network we used similarity Fβ loss functions
that generalized the Dice similarity, and achieved better precision-recall trade-off and thus improved
performance in segmentation. We designed two pipelines for training, a single-label (regular net-
work without exclusive multi-label) and an exclusive multi-label procedure. Experimental results
in 6-month old infant brain MRI segmentation show that performance evaluation metrics (on the
validation set) improved by using exclusive multi-label rather than single-label training. The loss
function was designed to weigh recall higher than precision (at β = 1.5) for CSF, while using equal
precision-recall ratio (β = 1) for WM labels against GM, based on class prevalence in the training
set. Official test results based on DSC and ASD scores on the iSeg challenge data show that our
method generated the best results in isointense infant brain MRI segmentation, improving the results
of all previous DenseNet-based methods (Bui et al., 2017; Dolz et al., 2018).
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Appendix A. Hyper-parameter selection

The values of β for each class are selected automatically in training based on the ratio of the number
of instances per every other class over the number of instances for all classes being equal to the
coefficient of all false negatives in equation (3):

β 2
z

1+β 2
z
=

Σn
k=1Nk−Nz

Σn
k=1Nk

+λ =⇒ βz =

√
(1+λ )Σn

k=1Nk−Nz

Nz−λΣn
k=1Nk

(4)

which we saw fit regarding the necessary sensitivity rate for each class based on the complement
of its portion on all classes. βz denotes the chosen value for the β hyper-parameter for label z,
Nz corresponds to the total number of labels for class z, n is the number of classes and λ is an
extra recall hyper-parameter which we set to 0.1 for this experiment. If we assume λ of 0, then
equation (4) becomes the square root of the reverse ratio between the target label and all other
labels:

βz

∣∣∣∣
λ=0

=

√
Σn

k=1Nk−Nz

Nz
(5)

Based on prevalence rates of 21.84% for CSF and 31.45% for WM, and λ = 0.1, β values of 1.5
and 1 were approximated and used in this study for CSF and WM classes, respectively.

Appendix B. Evaluation metrics

To evaluate and compare the performance of the network against state-of-the-art in isointense infant
brain MRI segmentation, we report the Dice Similarity Coefficient (DSC):

DSC =
2 |P∩R|
|P|+ |R|

=
2T P

2T P+FP+FN
(6)

which is equivalent to the F1 score calculated by setting β = 1 in Equation (3). T P, FP, and FN are
the true positive, false positive, and false negative rates, respectively; and P and R are the predicted
and ground truth labels, respectively. In the iSeg challenge, in addition to the DSC score, Hausdorff
Distance (HD) and Average Surface Distance (ASD):

HD = max{max
q∈R

d(q,P),max
q∈P

d(q,R)} , ASD =
1

|R|+ |P|

(
∑
q∈R

d(q,P)+ ∑
p∈P

d(p,R)
)

(7)

were also reported in the test set results, where d(q,P) denotes the point-to-set distance: d(q,P) =
min
p∈P
||q− p||, with ||.|| presenting the Euclidean distance and |.| denoting the cardinality of a set.

Average Surface Distance (ASD), also known as Mean Surface Distance (MSD) is the average of
all the distances from points on the boundary of P to the boundary of R and vice versa, while
HD only accounts for the maximum distances between predictions and ground truths. According
to (Taha and Hanbury, 2015), HD is generally sensitive to outliers and because noise and outliers
are common in medical segmentations, it is not recommended to use HD directly. For example,
broken lines that frequently occur in HD calculation on complex shapes increase the HD measure
and cause mismatches. Consequently, the use of HD is highly discouraged and is not an appropriate
and reliable unit of measure in medical image segmentation where it involves point-to-set matching
on complex shapes, which is a procedure that is prone to errors and is susceptible to outliers.
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Appendix C. Tables and Figures

(a) (b)

Figure S1: Intensity distributions of all three classes on a) T1-weighted and b) T2-weighted MRI
scans on all images in the iSeg training set. At 6 months of age, the intensity values of
the white matter (WM) and gray matter (GM) in the infant brain, considered in iSeg,
largely overlap. This makes WM-GM segmentation on these images very challenging.
Given both scans the cerebrospinal fluid (CSF) shows much better separation from WM
and GM based on image intensity values.

273



EXCLUSIVE INDEPENDENT PROBABILITY ESTIMATION: ISOINTENSE INFANT BRAIN SEGMENTATION

Table S1: Average performance metrics (on validation sets) of several state-of-the-art methods
trained and evaluated on the iSeg challenge dataset. The best values for each metric
have been highlighted in bold. The top three methods in the table are derived from (Bui
et al., 2017) with training process and cross validation folds that are different from our
methods in the bottom two rows, so the top and bottom parts of the table cannot be
directly compared. Comparable results on the official challenge test dataset are shown
in Table 1. This table shows relative performance of DenseNets, 3D Unet, and Den-
seVoxNet style network architectures and their depth and number of parameters. Paired
sample t-test between our exclusive multi-label and single-label trained models (bottom
two rows) confirmed that differences were statistically significant (p < 0.05).

Method
DSC

Depth Params
CSF GM WM

3D Unet (Çiçek et al., 2016) 94.44 90.73 89.57 18 19M
DenseVoxNet (Yu et al., 2017) 93.71 88.51 85.46 32 4.34M

DenseSeg - MSK SKKU (Bui et al., 2017) 94.69 91.57 91.25 47 1.55M

3D FC-DenseNet (Single-label) 94.86 91.18 89.27 60 1.5M
3D FC-DenseNet Exclusive Multi-label 95.19 91.79 90.37 60 1.4M
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