
Published as a conference paper at ICLR 2019

TOP-DOWN NEURAL MODEL FOR FORMULAE

Karel Chvalovský
Czech Institute of Informatics, Robotics, and Cybernetics
Czech Technical University in Prague
karel@chvalovsky.cz

ABSTRACT

We present a simple neural model that given a formula and a property tries to an-
swer the question whether the formula has the given property, for example whether
a propositional formula is always true. The structure of the formula is captured
by a feedforward neural network recursively built for the given formula in a top-
down manner. The results of this network are then processed by two recurrent
neural networks. One of the interesting aspects of our model is how propositional
atoms are treated. For example, the model is insensitive to their names, it only
matters whether they are the same or distinct.

1 INTRODUCTION

In real-world situations a very successful approach, popularized in Kahneman (2011), to problem
solving is based on a clever combination of fast instinctive (heuristic) reasoning and slow logical
reasoning. The latter is exemplified by abstract logical formulae where only structural properties
matter. If computers are involved, a logical formula is traditionally a syntactic object which is a
subject to simple but very fast syntactic manipulations Robinson & Voronkov (2001). Hence all
but very basic decisions are postponed if possible. However, this viewpoint is rapidly changing as
various AI methods are tested in the field of automated reasoning, in particular machine learning
methods.

A fundamental problem in using machine learning in automated reasoning is a suitable represen-
tation of logical formulae. A formula as a solely syntactic object is no longer sufficient and we
have to exploit its semantic properties. Various approaches have been proposed for different log-
ical systems. In this paper we will concentrate on the simplest yet very powerful standard logical
system—classical (Boolean) propositional logic.

This paper presents, as far as we know, a novel neural representation of propositional formulae that
makes it possible to test whether a given formula has a given property, e.g., whether the formula
is always true or not. Clearly, we try to solve a well-known CONP-complete problem. However,
the fact that the problem is generally hard and requires a non-trivial search does not rule out the
possibility that a decent heuristic can be learned, moreover, if only a specific subset of formulae is
involved. In particular, our general goal is to obtain a useful heuristic that can help us in guiding a
proof search, where we typically face numerous choice points.

Unlike in natural language processing, a parse tree for a formula is available for free. Although
some approaches do not exploit this feature and try to learn the structure of a formula on their own,
using usually various recurrent neural networks (RNN), it is more common to take advantage of
this knowledge. Moreover, it seems that the later approach has a significant edge, see Evans et al.
(2018). Usually propositional atoms, the basic building blocks of propositional formulae, are learned
as embeddings and each logical connective is treated as a unique neural network that given the vector
representation of its arguments produces a vector that represents an application of the connective on
these arguments, e.g., a binary connective takes two vectors of length d, and produces a new one
of length d, see Allamanis et al. (2017). This clearly leads to tree recursive neural networks Socher
et al. (2012) where the structure of the network follows the parse tree. Such models are built bottom-
up and the meaning of the formula is usually the vector produced in the root of the tree.

Our model also uses the parse tree of the formula, but the knowledge is propagated in the opposite
direction. We start with a vector (random or learned), representing a property we want to test, and

1

Published as a conference paper at ICLR 2019

we propagate it from the root to leaves (propositional atoms). The knowledge propagated to atoms
is then processed by recurrent neural networks and a decision is produced. This makes it possible to
ignore completely the names of propositional atoms and concentrate more on structural properties
of formulae.

The experimental results suggest that the model is more than competitive and beats other known ap-
proaches on some benchmarks. More importantly, our model seems to suffer less if bigger formulae
are involved and could be more useful in real world scenarios.

The structure of this paper is as follows. In Section 2 we discuss the architecture of our model in full
details and also a dataset on which we will experiment is introduced there. In Section 3 we discuss an
implementation of building blocks of our network, present experimental data, and shortly describe
possible interpretations of our model. Some potential future modifications are briefly mentioned in
Section 4. Few relevant models are mentioned in Section 5 and the paper concludes with Section 6.

2 MODEL

Our model tries to mimic the following approach sometimes used by humans to decide whether a
propositional formula is always true (tautology). If we want to know whether, e.g., (p→ q)∨ (q →
p) is a tautology1 we can suppose the contrary and try to produce a truth-value assignment such that
the whole formula is false. It means both p → q and q → p are false under such an assignment2. It
follows from the former that p is true and q is false, but from the latter we obtain that q is true and p
is false. Because such an assignment is impossible, we showed that the formula cannot be false and
hence it is always true.

In a nutshell, we try to propagate a truth value assigned to the whole formula, in our case the formula
being false, to its subformulae and we repeat this process until we reach propositional atoms. This
gives us a set of constraints on possible truth-value assignments to atoms. At this point we check
whether a truth-value assignment satisfying these constraints exists and thus we answer the original
question.

However, it is pretty clear that usually this approach is not so straightforward. For example, if
we want a formula of the form A → B to be true, it means that the subformula A is false or the
subformula B is true. Moreover, such choices easily accumulate with the increasing depth3 of a
formula.

Still we will show that a neural model based on the above mentioned idea is competitive. Similarly
to the standard recursive approach, we also represent a formula by a recursively built model based
on the parse tree of the formula. However, unlike there we use a top-down approach. In our case, we
start with a vector w ∈ Rd (random or learned), where d is a parameter of the model, that roughly
represents a property of formulae we want to check.4 We continue by propagating this knowledge
to subformulae in a top-down manner, e.g., a binary connective ◦ takes a vector v ∈ Rd (input) and
produces two new vectors v1 ∈ Rd and v2 ∈ Rd (outputs), hence ◦ : Rn → Rn × Rn. Since all
the vectors have the same length d, it is possible to connect individual building blocks together and
produce a recursive neural network.

The basic building blocks of the tree part of our model are

w ∈ Rd an initial vector,

ci : Rd → Rd × · · · × Rd︸ ︷︷ ︸
k-times

a neural network that represents a k-ary logical connective i,

for all logical connectives i in our language5.

1A formula that is true under any assignment of truth values to propositional atoms.
2For simplicity, from now on we assume that all the claims are under a given assignment.
3The depth of a formula is the depth of its parse tree.
4However, it does not mean that by simply changing w our model starts to test a different property, other

parts of the model have to be trained accordingly, see also footnote 8.
5Note that even nullary connectives, called constants, are allowed.

2

Published as a conference paper at ICLR 2019

w

c∨

c→ c→

p1 q1 q2 p2

RNN-Var

RNN-Var

p1 p2

q1 q2

p q RNN-All

Final

out

Figure 1: An example of our model for formula F = (p → q) ∨ (q → p). The initial vector w is
propagated through the tree recursive network part producing vectors p1,p2, q1, and q2, where p1

corresponds to the first occurrence of the atom p in F . Vectors corresponding to the same atom are
processed by RNN-Var and these results are then processed by RNN-All. The final output out is
produced by Final using the output of RNN-All.

From these components, which are shared among all formulae in a given language, we dynamically
build a recursive network for a particular formula that corresponds to the parse tree of the formula—
the parse tree tells us how to connect individual components together. For example, in the left part
of Figure 1 we see a model for F = (p → q) ∨ (q → p), which is directly obtained from the parse
tree. The vector w is an input to the root of the tree and all the connectives in it are replaced by
neural nets ci that represent them. Atoms contain propagated outputs (vectors) of this tree recursive
model, here we obtain vectors p1, q1, q2,p2 ∈ Rd, where p1 is at the position of the first occurrence
of p in F .

Note that each occurrence of the same atom in our tree model produces a unique vector. The fact that
they correspond to the same atom is exploited by another level of our model. We take a recurrent
neural network RNN-Var that has a sequence of all vectors corresponding to the same atom in the
formula as an input and outputs a vector in Rd. In Figure 1 RNN-Var takes p1 and p2 and outputs
p ∈ Rd and also the same RNN-Var takes q1 and q2 and outputs q ∈ Rd.

One more recurrent neural network RNN-All takes a sequence of all output vectors produced by
RNN-Var and outputs a vector in Rd that is input to a component Final : Rd → R2 which ends
with a softmax layer and produces out ∈ R2 that makes it easy to decide whether the output of the
whole network is true or false. It should be emphasized that our model completely ignores the names
of atoms, we only check whether they are the same or distinct. Moreover, the number of distinct
atoms that can occur in a formula is effectively only bounded by the ability of RNN-All to correctly
process the outputs of RNN-Var. Hence the model can evaluate formulae that contain more atoms
than formulae used for training.

The basic building blocks of the recurrent part of our model are

RNNVar : Rd × · · · × Rd → Rd a RNN aggregating vectors corresponding to the same atom,

RNNAll : Rd × · · · × Rd → Rd a RNN aggregating the outputs of RNN-Var components,

Final : Rd → R2 a final decision layer.

It should be emphasized again how the model is built. Given a property we want to test, e.g., whether
a formula is always true, we train representations of w, ci, RNN-Var, RNN-All, and Final. These
components are shared among all the formulae. For a single formula we produce a model (neural
network) recursively from them as described above. For implementation details see Section 3.

3

Published as a conference paper at ICLR 2019

2.1 DATASET

To provide comparable results in Section 3 we use the dataset6 presented in Evans et al. (2018) and
thoroughly described therein. For our purposes here it is essential that it contains triples of the form
(A,B,A |= B) where A and B are propositinal formulae and A |= B indicates whether B follows
from A. The dataset contains train (99876 triples), validation (5000), and various test sets with a
different level of difficulty given by a number of atoms and connectives7 occurring in them.

From the deduction theorem we know that A |= B is equivalent to A → B being a tautology. We
prefer the later form, because it fits nicely into our model and instead of learning the meaning of
entailment (|=), we can use the connective→ directly.

Note that although our model ignores the names of atoms this cannot be exploited directly, because
validation and test sets do not contain pairs of formulae that would result from pairs in the training
set by renaming atoms.

3 EXPERIMENTS

Although our model is conceptually simple, each building block can be implemented in various
ways. In this section we briefly discuss some possible variants and parameters. However, we have
not tried to optimize over all the possible parameters discussed later and it is very likely that our
results can be improved.

The following implementation of the model introduced in Section 2 is our standard experimental
model, called TopDownNet:

• d = 128,
• w ∈ Rd is a learned vector,
• every ci is a sequence of linear, ReLU, linear, and ReLU layers, where the input size and

output size is always the same with the exception of binary connectives, where the last
linear layer is Rd → R2d,

• RNN-Var is a gated recurrent unit (GRU) with 2 recurrent layers and the size of the input
and hidden state is d,

• RNN-All is a GRU with 1 recurrent layer and the size of the input and hidden state is d,

• Final is a sequence of linear (Rd → Rd/2), ReLU, linear (Rd/2 → R2), and log softmax
layers,

and we use the mean square error as a loss function and Adam as an optimizer with the learning rate
10−4.

A key parameter of our model is the dimension d, which is the length of the initial vector w and also
the length of many other vectors occurring in our model. Even d = 8 produces reasonable results,
as Figure 2 shows, but with increasing d the quality of the model grows, see Table 1.

Our various experiments suggest that whether w is chosen randomly or learned makes little to no
difference.8 Similarly and more importantly, connectives ci composed of a single linear layer seem
to perform almost equally, and sometimes even better, to more complicated versions containing
non-linearities as in our standard TopDownNet.

In RNN-Var and RNN-All we use gated recurrent units (GRUs) which in our experiments perform
similarly to long short-term memory (LSTM) RNNs. Similarly to results obtained in Evans et al.
(2018), we have seen no real advantage of using their bidirectional variants for our model and in
many cases they produce worse results. The order in which RNN-Var and RNN-All consume their
inputs is random.

6It can be obtained from https://github.com/deepmind/logical-entailment-dataset.
7The dataset contains negations (¬), implications (→), conjunctions (∧), and disjunctions (∨).
8An obvious question is whether it makes sense to even consider a learned w. Generally, it could be useful,

because we can be in a situation where we want to use more such vectors which are in relations that we want
to learn.

4

https://github.com/deepmind/logical-entailment-dataset

Published as a conference paper at ICLR 2019

0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

d=8
d=16
d=32
d=64
d=128
d=256
d=512
d=1024

Epochs

Va
lid

at
io

n
su

cc
es

s
ra

te

Figure 2: Various choices of d used on a very simple variant of our network with a long short-term
memory (LSTM)—every ci is a linear layer, RNN-Var and RNN-All are LSTMs with one recurrent
layer, and Final is a linear layer combined with log softmax.

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

2 RNNs
1 RNN
1 RNN (padding)

Epochs

Va
lid

at
io

n
su

cc
es

s
ra

te

Figure 3: RNN variants where 2 RNNs is TopDownNet (w is random and fixed). 1 RNN uses RNN-
Var also as RNN-All and 1 RNN (padding) uses only RNN-Var where the sequences of distinct
atoms are separated by padding.

Although it is conceptually nicer and fits to our original intuition, our combination of two RNNs
and their functions clearly suggest a question whether they are in fact necessary. Either we can
use the same RNN for RNN-Var and RNN-All, or we can use padding to separate the sequences
of different atoms. Our preliminary experiments suggest that both new variants and our original
approach perform quite similarly, see Figure 3.

It seems that if Final is just a combination of linear and log softmax layers the performance is
slighly better than the one used in TopDownNet with an added non-linearity. However, the best
performing models that we present in Table 1 use our standard parameters with different values of
the dimension d.

5

Published as a conference paper at ICLR 2019

Table 1: TopDownNet models against other approaches (accuracy)

model valid easy hard big massive exam

TreeNet Encoders 72.7 72.2 69.7 67.9 56.6 85.0
TreeLSTM Encoders 79.1 77.8 74.2 74.2 59.3 75.0
PossibleWorldNet 98.7 98.6 96.7 93.9 73.4 96.0

TopDownNet (d = 128) 94.0 92.8 81.0 80.7 79.7 95.0
TopDownNet (d = 256) 95.1 95.2 82.3 80.3 82.4 95.0
TopDownNet (d = 512) 95.1 95.3 84.2 83.6 83.6 96.0
TopDownNet (d = 1024) 95.5 95.9 83.2 81.6 83.6 96.0

In Table 1 is a comparison of our models and other approaches mentioned in the benchmark in Evans
et al. (2018). The values for the first three models are taken from that paper. TreeNN follows Alla-
manis et al. (2017) and TreeLSTM follows Tai et al. (2015). PossibleWorldNet is developed in Evans
et al. (2018). TopDownNets are our standard models from the beginning of Section 3 with the lowest
losses on the validation set for different values of d.

The results in Table 1 show that our model is competitive with other approaches. It beats standard
tree recursive models (TreeNet Encoders and TreeLSTM Encoders) and PossibleWorldNet, which
performs similar to testing random truth-values, on the massive set and keeps pace on examples
from textbooks. The good results on the massive set suggest that our model can do better than just
random testing of truth-values. Moreover, it is interesting that the increase of d does not have such
a significant role, as already mentioned before.

3.1 INTERPRETATION OF MODEL

We present our model as an alternative to bottom-up approaches, where a possible interpretation
of such models is that they combine (samples of) random assignments and produce the value of
the whole formula. Similarly, we could argue that our model propagates a truth value top-down
and makes (sampled) random choices when multiple options are available, e.g., when we want to
make A → B true. However, this clearly does not explain better results of our model, because
for example on the massive set from Table 1 random assignments are much more successful than
random top-down propagations.

Our model therefore has to take advantage of something else, or it significantly improves the above
mentioned random top-down propagations. Clearly, it uses training data more efficiently, because
it is insensitive to the names of atoms, but this is not enough to explain our results. However, it is
possible that the top-down propagation captures the overall structure of a formula better and enables
a more efficient transfer of knowledge through formulae. Although it is hard to analyze our models
completely, we can say something about what is commonly happening at the beginning; close to w.

All formulae in the dataset are of the form A → B, see Section 2.1, hence propagating w, which
is supposed to mean false, through →, denoted c→(w), produces two vectors v→1 and v→2 that
correspond to A and B, respectively. These two vectors are commonly very distinct and applying
negation (c¬) on one of them almost exactly produces the other one. Moreover, this remains true
even if we apply c¬ repeatedly, see Figure 4. If we now apply c∧ on v→1, assuming B is C∧D, then
we not so surprisingly obtain two vectors very similar to each other and also similar to v→1; loosely
speaking, they should all represent being true. More interesting is to apply c∧ on v→2, assuming B
is E ∧ F , because we obtain two vectors that are similar, but not as similar as in the previous case
and usually even less similar to v→2. This suggests that something more involved than a simple
splitting of truth values according to possible choices can happen in the model.9 Nevertheless, it

9Loosely speaking, if we assume that v→2 is false, then there are three ways how to make the conjunction
false {(0, 0), (0, 1), (1, 0)}, where 0 means false and 1 means true. Hence the first component of the conjunc-

6

Published as a conference paper at ICLR 2019

0 2 4 6

−2

0

2
1
2
3
4
5
6
7

Iterations

0 2 4 6

−2

0

2 1
2
3
4
5
6
7

Iterations

Figure 4: The repeated applications of negation (c¬) on v→1 (left) and v→2 (right), which are the
results of c→(w), for a model where every ci is a linear layer with d = 8 and a learned w. The
individual components of the vectors are shown.

seems that the model is able to transfer the piece of knowledge that something is (almost) true or
false.

Unfortunately, it is very unclear what happens deeper in the model and how recurrent neural net-
works combine the vectors in the leaves. Moreover, RNN-Var and RNN-All consume their inputs
in random order and this slightly influences the results. However, it is plausible, based on initial
experiments with small formulae, that RNN-Var, loosely speaking, checks inconsistent assignments
to the same atoms and RNN-All just aggregates these results. Moreover, it seems that our model is
quite robust to changes in the order of arguments in commutative connectives (∧ and ∨) and to other
simple transformations of subformulae—replacing A→ B by ¬B → ¬A, A ∧B by ¬(¬A ∨ ¬B)
etc.

A possible explanation of very good performance could be that our model just exploits the given
dataset in some unforeseen way. In fact, we want to learn regularities in the dataset. Although this is
possible, we believe that this does not explain the performance of our model completely. We trained
our model on the BOOL8 and BOOL10 datasets from Allamanis et al. (2017) adapted10 to our prob-
lem and tested it on unseen equivalence classes with the accuracy 98.3% and 80.5%, respectively.
These numbers are not directly comparable to the results presented in the paper, however, they sug-
gest that our model is able to perform reasonably even on other datasets. Similarly, if we use the
dataset from Evans et al. (2018) to test satisfiability11, then we obtain results similar to the results
on the original dataset.

4 POSSIBLE VARIANTS

We aimed for a simple model and hence a plethora of modifications is possible; they can both
improve the quality of produced models and their generality. Here we will discuss at least some of
them.

Our model uses a feedforward neural network for representing a formula and only then two recurrent
networks are used to process the results of the feedforward part. Clearly, more complicated versions
can be produced that provide a better interplay between these two layers and/or the feedforward part
can become more complicated, e.g., to allow a communication between different subformulae.12

tion could be represented by v1 = (0, 0, 1) and the second one by v2 = (0, 1, 0). If one naturally represents
false in v→2 by (0, 0, 0), then v1 and v2 should be closer to v→2 than to each other.

10We produced randomly balanced sets containing pairs of equivalent and non-equivalent formulae.
11For every formula A → B we take ¬(A → B) and propagate negation through the formula. Hence we

obtain, e.g., A ∧ ¬B and then continue by propagating negation through B.
12An example how a more complicated model can help is Peirce’s law ((p → q) → p) → p, a well-known

tautology. Similarly as in Section 2 we try to produce a truth-value assignment such that Peirce’s law is false.
It means that (p → q) → p is true and p is false. Now using that p is false, we know that p → q is also false
and hence p is true and q is false, a contradiction thanks to p. However, without using the fact that p is false

7

Published as a conference paper at ICLR 2019

For example, it is possible to propagate information also back in the bottom-up direction through
the tree part of our model, or use an attention mechanism.

It should be also noted that although we use our model for deciding whether a formula is a tautology,
we can try to enforce other properties by a similar process, e.g., we can test whether a formula is
satisfiable, i.e., is true under some assignment of truth-values. Also learning more related properties,
more vectors like w, with all the other components shared could be an interesting problem, and their
interplay could even improve the performance on individual tasks.

Clearly, our presentation of the model suggests that it heavily relies on properties of classical
(Boolean) propositional logic. Nevertheless, it can be used directly also in a non-classical (proposi-
tional) setting. Note that the semantics of a given logic is completely learned from examples and no
a priory knowledge is provided, however, it is of course possible that our model is unable to reason-
ably capture the semantics of the given logic and some modifications, e.g., those mentioned above,
are necessary. The question whether a more involved model based on our model can be successfully
used also for more complex formulae (first-order or even higher-order) is a bit unclear, a clear goal
for future research.

5 RELATED WORK

A thorough recent comparison of related methods is in Evans et al. (2018) and therefore this section
is only very brief. In Wang et al. (2017) authors also develop a model which is invariant to atoms
(variables) renaming. However, a formula graph obtained from a parse tree is there translated into
a vector using the embeddings of nodes given by their neighborhoods. Moreover, the problem they
study is different (first-order and higher-order logics). In Zaremba et al. (2014), a pioneering paper
on using recursive neural networks Socher et al. (2012) for mathematical expressions, they also do
not deal with variables, because they allow at most one to occur in them.

In Allamanis et al. (2017) a bottom-up approach is presented, however, it also contains a restricted
form of backward communication that proved to be useful. The problem studied there is learning
vector representations of formulae and based on their similarity test their properties. In our case, we
test the properties directly.

An approach based solely on recurrent neural networks has been used in natural language processing
where textual entailment is an important topic. For LSTM models with an attention mechanism
see Wang & Jiang (2016); Rocktäschel et al. (2016).

PossibleWorldNet developed in Evans et al. (2018) addresses the same problem as our model. It
exploits a novel idea of learning various useful assignments and test them latter on. However, the
results suggest that the method performs similarly to random assignments (a very powerful technique
on its own). It could be because the standard bottom-up approach is used.

6 CONCLUSION

We have presented a novel top-down approach to represent formulae by neural networks and showed
some preliminary experiments. They suggest that our approach is competitive with other known
approaches and beats them on some benchmarks. More importantly, it seems that the presented
model can deal better with the increasing size of formulae than other approaches. The model deals
only with the structure of formulae and ignores completely for example names of individual atoms,
only whether they are the same or distinct matters.

ACKNOWLEDGMENTS

This work was supported by the European Regional Development Fund under the project
AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

(inaccessible to our model) in processing (p → q) → p we have to deal with more choices along this line of
reasoning.

8

Published as a conference paper at ICLR 2019

REFERENCES

Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles A. Sutton. Learning
continuous semantic representations of symbolic expressions. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
pp. 80–88, 2017. URL http://proceedings.mlr.press/v70/allamanis17a.
html.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural
networks understand logical entailment? In International Conference on Learning Representa-
tions, 2018. URL https://openreview.net/forum?id=SkZxCk-0Z.

Daniel Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011. ISBN
9781429969352.

John Alan Robinson and Andrei Voronkov (eds.). Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press, 2001. ISBN 0-444-50813-9.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiský, and Phil Blunsom.
Reasoning about entailment with neural attention. In International Conference on Learning Rep-
resentations (ICLR), 2016.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. Semantic composi-
tionality through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, pp. 1201–1211, 2012.
URL http://www.aclweb.org/anthology/D12-1110.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representa-
tions from tree-structured Long Short-Term Memory networks. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566.
Association for Computational Linguistics, 2015. doi: 10.3115/v1/P15-1150. URL http:
//www.aclweb.org/anthology/P15-1150.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for theorem proving
by deep graph embedding. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30,
pp. 2786–2796. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
6871-premise-selection-for-theorem-proving-by-deep-graph-embedding.
pdf.

Shuohang Wang and Jing Jiang. Learning natural language inference with LSTM. In Proceed-
ings of the 2016 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pp. 1442–1451. Association for Computa-
tional Linguistics, 2016. doi: 10.18653/v1/N16-1170. URL http://www.aclweb.org/
anthology/N16-1170.

Wojciech Zaremba, Karol Kurach, and Rob Fergus. Learning to discover efficient math-
ematical identities. In Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pp. 1278–1286, 2014. URL http://papers.nips.cc/paper/
5350-learning-to-discover-efficient-mathematical-identities.

9

http://proceedings.mlr.press/v70/allamanis17a.html
http://proceedings.mlr.press/v70/allamanis17a.html
https://openreview.net/forum?id=SkZxCk-0Z
http://www.aclweb.org/anthology/D12-1110
http://www.aclweb.org/anthology/P15-1150
http://www.aclweb.org/anthology/P15-1150
http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graph-embedding.pdf
http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graph-embedding.pdf
http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graph-embedding.pdf
http://www.aclweb.org/anthology/N16-1170
http://www.aclweb.org/anthology/N16-1170
http://papers.nips.cc/paper/5350-learning-to-discover-efficient-mathematical-identities
http://papers.nips.cc/paper/5350-learning-to-discover-efficient-mathematical-identities

	Introduction
	Model
	Dataset

	Experiments
	Interpretation of model

	Possible variants
	Related work
	Conclusion

