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Abstract— As Artificial Intelligence (AI) becomes an integral
part of our life, the development of explainable AI, embodied
in the decision-making process of an AI or robotic agent,
becomes imperative. For a robotic teammate, the ability to
generate explanations to explain its behavior is one of the
key requirements of an explainable agency. Prior work on
explanation generation focuses on supporting the reasoning
behind the robot’s behavior. These approaches, however, fail
to consider the mental workload needed to understand the
received explanation. In other words, the human teammate
is expected to understand any explanation provided, often
before the task execution, no matter how much information
is presented in the explanation. In this work, we argue that
an explanation, especially complex ones, should be made in
an online fashion during the execution, which helps spread
out the information to be explained and thus reducing the
mental workload of humans. However, a challenge here is
that the different parts of an explanation are dependent on
each other, which must be taken into account when generating
online explanations. To this end, a general formulation of online
explanation generation is presented along with three different
implementations satisfying different online properties. We base
our explanation generation method on a model reconciliation
setting introduced in our prior work. Our approaches are
evaluated both with human subjects in a standard planning
competition (IPC) domain, using NASA Task Load Index
(TLX), as well as in simulation with ten different problems
across two IPC domains.

I. INTRODUCTION

As intelligent robots become more prevalent in our lives,
the interaction of these AI agents with humans becomes
more frequent and essential. One of the most important
aspects of human-AI interaction is for the AI agent to provide
explanations to convey the reasoning behind the robot’s
decision-making [1]. An explanation provides justifications
for the agent’s intent, which helps the human maintain trust
of the robotic peer as well as a shared situation awareness
[2], [3]. Prior work on explanation generation often focuses
on supporting the motivation for the agent’s decision while
ignoring the underlying requirements of the recipient to
understand the explanation [4], [5], [6]. However, a good
explanation should be generated in a lucid fashion from the
recipient’s perspective [7].

To address this challenge, the agent should consider
the discrepancies between the human and its own model
while generating explanations. In our prior work [7], we
encapsulate such inconsistencies as model differences. An
explanation then becomes a request to the human to adjust
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Fig. 1: The model reconciliation setting [7]. MR represents
the robot’s model and MH represents the human’s model of
expectation. Using MH , the human generates πMH , which
captures the human’s expectation of the robot. Whenever
the two plans are different, the robot should explain by
generating an explanation to reconcile the two models.

the model differences in his mind so that the robot’s behavior
would make sense in the updated model, which is used to
produce the human’s expectation of the robot. The general
decision-making process of an agent in the presence of such
model differences is termed model reconciliation [7], [8].

One remaining issue, however, is the ignorance of the
mental workload required of the human for understanding
an explanation. In most earlier work on explanation gener-
ation, the human is expected to understand any explanation
provided regardless of how much information is present
and no discussion has been provided on the process for
presenting the information. In this work, we argue that
explanations, especially complex ones, should be provided
in an online fashion, which intertwines the communication
of explanations with plan execution. In such a manner, an
online explanation requires less mental workload at any
specific point of time. One of the main challenges here,
however, is that the different parts of an explanation could be
dependent on each other, which must be taken into account
when generating online explanations. The online explanation
generation process spreads out the information to be commu-
nicated while ensuring that they do not introduce cognitive
dissonance so that the different parts of the information are
perceived in a smooth fashion.

A. Motivating Example

Let us illustrate the concept of online explanations through
a familiar situation between two friends. Mark and Emma
want to meet up to study together for an upcoming exam.
Mark is a take-it-easy person so he plans to break the review
session into two 60 minutes parts, grab lunch in between
the sub-sessions and go for a walk after lunch. On the other



hand, Mark knows that Emma is of a more focused type who
would rather keep the review in one session and get lunch
afterwards. Mark would like to keep his plan. However, had
he explained to Emma at the beginning of his plan, he
knew that Emma would have proposed to order takeouts for
lunch on the way before the review session. Instead, without
revealing his plan, he goes with Emma to the library. After
studying for 60 minutes, he then explains to Emma that he
cannot continue without energy, which makes going to lunch
the best option for both. At the same time, Mark refrained
from telling Emma (until after lunch) that he also needed a
walk since otherwise Emma would have proposed for him
to take a walk alone while she stays a bit longer for review,
and then to meet up at the lunch place.

The above example demonstrates the importance of pro-
viding an explanation in an online fashion. Mark gradually
reveals the reasoning to maintain his plan as the execution
unfolds so that it also becomes both acceptable and under-
standable to Emma, even though being subject to different
values due to model differences (e.g., Mark values lunch
break more than Emma thinks he does). The key point here
is to explain minimally and only when necessary. In this way,
the information to be conveyed is spread out throughout the
plan execution, potentially with even a reduced amount of in-
formation, so that there is less mental workload requirement
at the current step–from Emma’s perspective, the interaction
with Mark is more straightforward.

In this paper, we develop a new method for explanation
generation that intertwines explanation with plan execution.
The new form of explanation is referred to as online expla-
nation, which considers the mental workload of the receiver
of an explanation by breaking it into multiple parts that
are to be communicated at different times during the plan
execution. We implemented three different approaches for
online explanation generation, each focusing on different
“online” properties. In the first approach, our focus is on
matching the plan prefix. In the second approach, the focus is
on making the very next action understandable to the human
teammate. In the third approach, the focus is on matching
the prefix of the robot’s plan with any possible optimal
human plan. We use a model search method that ensures
that the earlier information communicated would not affect
the later parts of the explanation. This creates a desirable
experience for the recipient by significantly reducing the
mental workload. Our approaches are evaluated both with
human subjects and in simulation.

II. RELATED WORK

AI and its numerous applications have provided astound-
ing benefits in areas such as transportation, medicine, finance
and military in recent years, but AI agents are so far limited
in their ability to operate as a teammate. To be considered
a teammate, the agent must not only achieve a given task,
but also provide a level of transparency to other members of
the team [3]. One of the ways to achieve this is to enable
AI agents to be self-explanatory in their behaviors. Recently,
explainable AI paradigm [9] rises as one essential constituent

of human-AI collaboration. Explainable AI helps improve
human trust of the AI agent and maintain a shared situation
awareness by contributing to the human’s understanding of
the underlying decision-making process of the agent.

The explainable agency’s effectiveness [10] is assessed
based on its capability to model the human’s perception of
the AI agent accurately. This means that an explainable AI
agent must not only model the world, but also the other
agents’ perception of itself [11]. This model of the other
agents allows the agent to infer about their expectation
of itself. Using this model, an agent can generate legible
motions [12], explicable plans [8], [13], [14], or assistive
actions [15]. In these approaches, an agent often substi-
tutes cost optimality with a new metric that simultaneously
considers cost and explicability. Another way of using the
model is for an AI agent to signal its intention before
execution [16]. The motivation here is to use the model to
search for additional context information that would help
improve human understanding.

A third way of using this model is for the agent to
explain its behavior by generating explanations [4], [5], [6].
Similar to intention signaling, this method has the benefit
that the agent can maintain its optimal behavior. Research
along this direction has focused on generating the “right”
explanations based on the recipient’s perception model of
an explanation [7], [17]. This is useful, however, only with
the assumption that the explanation can be understood,
regardless of how much information is provided or whether
sufficient time is given–the mental workload that is required
for understanding an explanation is largely ignored.

In our prior work, we have studied how the ordering of the
information of an explanation may influence the perception
of an explanation [18]. In this work, we further argue that an
explanation must sometimes be made in an online fashion.
This is especially true for complex explanations that require a
large amount of information to be conveyed. The idea behind
online explanation generation is to provide a minimal amount
of information that is sufficient to explain part of the plan
that is of interest currently (e.g., the next action), and in such
a way intertwine explanation generation with plan execution.

III. EXPLANATION GENERATION

Our problem definition is based on the model reconcil-
iation setting defined in our prior work [7]. We provide a
brief review of the relevant concepts before defining our
problem in this work. Our problem is closely associated with
planning problems so we first provide the background here.
A planning problem is defined as a tuple (F,A, I,G) using
PDDL [19], similar to STRIPS [20]. F is the set of predicates
used to specify the state of the world and A is the set of
actions used to change the state of the world. Actions are
defined with a set of preconditions, add and delete effects.
I,G are the initial and goal state.

Definition 1 (Model Reconciliation): : A model
reconciliation is a tuple (π∗I,G, 〈MR,MH〉), where
cost(π∗I,G,M

R) = cost∗MR(I,G) and π∗I,G is the robot’s
plan to be explained.



Where cost(π∗I,G,M
R) is the cost of the plan generated

using MR and cost∗MR(I,G) is the cost of the optimal
plan based on the initial and goal state pair under MR. In
other words, the robot plan to be explained is required to
be optimal according to MR, assuming rational agents. The
model reconciliation setting also takes the human’s model
MH into account, which captures the human’s expectation
of the robot’s behavior. When the robot’s behavior to be
explained (i.e., π∗I,G) matches with the human’s expected
behavior, the models are said to be reconciled for the plan.
A figure that illustrates the model reconciliation setting is
presented in Figure 1. Explanation generation in a model
reconciliation setting means bringing two models, MH and
MR, “close enough” by updating MH such that π∗I,G,
the robot’s plan, becomes fully explainable (optimal) in the
human’s model. A mapping function was defined in [7]
to convert a planning problem into a set of features that
specifies the problem as Γ:M 7−→ S′ is a mapping function,
which transfers any planning problem (F,A, I,G) to a state
s′ in the feature space as follows:

τ(f) =



init− has− f, if f ∈ I.
goal − has− f, if f ∈ G.
a− has− precondition− f, if f ∈ pre(a), a ∈ A.

a− has− add− effect− f, if f ∈ eff+(a), a ∈ A.

a− has− del − effect− f, if f ∈ eff−(a), a ∈ A.

a− has− cost− f, if f = ca, a ∈ A.

Γ(M) = {τ(f)|∀f ∈ I ∪ G ∪
⋃
a∈A
{f ′|∀f ′ ∈ {ca} ∪ pre(a)∪

eff+(a) ∪ eff−(a)}}

In other words, the mapping function converts a planning
problem into a set of features that specifies the problem.

Definition 2 (Explanation Generation [7]): The explana-
tion generation problem is a tuple (π∗I,G, 〈MR,MH〉),
and an explanation is a set of unit feature changes to
MH such that 1) Γ(M̂H) \ Γ(MH) ⊆ Γ(MR), and 2)

cost(π∗I,G, M̂
H) − cost∗

M̂H
(I,G) < cost(π∗I,G,M

H) −
cost∗MH (I,G), where M̂H is the model after the changes.

An explanation hence reconciles two models by making
the cost difference between the human’s expected plan and
the robot’s plan smaller after the model updates.

Definition 3 (Complete Explanation [7]): Given an ex-
planation generation problem, a complete explanation is an
explanation that satisfies cost(π∗I,G, M̂H) = cost∗

M̂H
(I,G).

The robot’s plan must be optimal in the human’s model
after a complete explanation (M̂H ). A minimal complete
explanation (MCE) [7] is defined as a complete explanation
that contains the minimum number of unit feature changes.

IV. ONLINE EXPLANATION GENERATION (OEG)

While the previous explanation generation approach pro-
vides a framework to generate explanations considering both
the robot’s model and the human’s model, it largely ignores
the mental workload requirement of the human for under-
standing the explanation. We introduce online explanation

generation to address this issue. The key here is to only
provide a minimal amount of information during the plan
execution to explain the part of the plan that is of interest
and not explainable.

Definition 4 (Online Explanation Generation): Given a
model reconciliation problem, an online explanation is a set
of sub-explanations (ek, tk), where ek represents the kth set
of unit features to be made (as a sub-explanation) at step tk
in the plan.

Basically, an online explanation requires only that any
actions in the robot’s plan before the kth sub-explanations
will match with that of the human’s expectation. In such
a way, the robot can split an explanation into multiple
parts, which are made in an online fashion as the plan
is being executed. We provide three different approaches
of online explanation generation based on the definition
provided, while each of these approaches focus on one aspect
of explanation generation intertwined with plan execution.
Section IV-A discusses OEG with Plan Prefix matching,
Section IV-B describes OEG with Next Action matching and
Section IV-C explains OEG with any prefix matching.

A. OEG for matching Plan Prefix (OEG-PP)

To generate the sub-explanations (i.e., {ek}) for an online
explanation, the planning process must consider how the
sequence of model changes would result in the changes of the
human’s expectations after each sub-explanation. Similar to
the search process for complete explanations [7], we convert
the problem of explanation generation to the problem of
model search in the space of possible models. The challenge
here is that the model changes may not be independent, i.e.,
future changes may render a mismatch in the previously
reconciled plan prefixes. To address this issue, it must be
ensured that the model changes after ek, i.e., ek+1:m where
m denotes the size of the set of sub-explanations, would
not change the plan prefixes in MH . This can be achieved
by searching from MR to MH to find the largest set of
model changes which ensure that the plan prefix would not
change afterwards after further sub-explanations. This search
process is illustrated in Figure 2. An OEG-PP is a set of sub-
explanations (ek, tk) such that:

∀k > 1,Prefix(π∗I,G, tk − 1) = Prefix(πH
Ek−1

, tk − 1)

Γ(MH
Ek−1

) = Γ(MH) ∪ Ek−1

s.t.⋃
i

ei = Γ(M̂H)\Γ(MH) ⊆ Γ(MR)

(1)
where Prefix(π, t) returns the prefix of a plan π up to
step tk−1. Ek represents e1:k and πH

Ek
is the optimal plan

created from MH
Ek

(MH after providing sub-explanations
e1 to ek). More specifically, the following process will be
performed recursively for each sub-explanation. First, we
continue moving along π∗I,G = (a1, a2, ..., an) as long as
the plan prefix matches with the prefix of the plan using
the human model MH . Let t = t1 be the first plan step
where they differ. Our search for the sub-explanation starts



Fig. 2: Model space search process for OEG-PP. Compared to MCE in the previous work [7], the difference is that in our
approach the search starts from the robot model and stops where the plan prefixes for the updated human model and the
robot model match, while in the previous approach the search process starts from the human model (MH). In this aspect, our
research process is more akin to MME [7]. However, since we are focusing on matching the prefixes rather than the whole
plan in one shot, our approach must run this process multiple times compared to only once in MME. While seemingly more
computationally expensive, this characteristic actually allows us to beat both MCE and MME in terms of computation since
our approaches at any time consider only a small set of changes (see results). The dotted line represents the border of the
maximum state space model modification in robot model which reconciles the two models up to where the plan execution
currently is. Maximum updates to the robot model is equivalent to minimum updates to the human model.

with MR. It finds the largest set of model changes to MR

such that the prefix of a plan using the corresponding model
(i.e., MR minus the set of changes) matches with that of
π∗I,G up to step t2 − 1. The complement set of changes
(i.e., the difference between MH and MR, minus this set
of changes) will be e1. For the next recursive step, we will
start from action t1 and the human model will be MH

E1
. To

ensure that the prefix (up to t2 − 1) will be maintained for
future steps, we directly force the later plans to be compatible
with the prefix. Since we know that an optimal plan exists
that satisfies this requirement following the search process,
this would not affect our solution for online explanation.

The recursive search algorithm for model space OEG
is presented in Algorithm 1 for finding ek given Ek−1.
To search for ek, we use a recursive model reconciliation
procedure on the model space. Given MH

Ek−1
and MR,

we start off with finding the difference between these two
models, and modify MR with respect to MH to find the
largest set of model changes that can satisfy constraints
introduced in Eq. (1). This algorithm continues until the
human’s plan matches with that of the robot’s plan.
B. OEG for matching Next Action (OEG-NA)

Throughout OEG-PP, we assume that generating expla-
nations would modify MH , and the goal of explanation
generation is to ensure that the robot and human plan have
the same prefix at any step of plan execution. However,
this is not always required since the human may not be
interested in actions that occurred. Hence, we relax earlier
than the current action the plan prefix condition, such that
the robot needs only to reconcile between MR and MH

to match the very next action in π∗I,G and πH
Ek−1

at step
tk, regardless of the earlier actions in the plan prefix. This
approach is also motivated by the fact that the human is

Algorithm 1: OEG-PP Algorithm

input : MH
Ek−1

, MR, π∗I,G and {ek−1, tk − 1}
output: Sub-explanation ek
Compute ∆(MH

Ek−1
, MR) as the difference between

the two models;
Sort ∆(MH

Ek−1
, MR) ascending based on the size of

the model changes;
Compute πH based on MH

Ek−1
with prefix set up to

tk − 1;
tk ← FirstDiff(π∗I,G, πH );
. The first plan difference between
π∗I,G and πH

LONGESTMONOTONIC(MH
Ek−1

, tk,∆)
if (π∗I,G ≡ πH ) then

return {};
for ∀f ∈ Γ(MR)\Γ(MH

Ek−1
) do

. All remaining differences after
sub-explanations Ek−1

λ← Γ(MH
f ) ; . create a modification

if πH
Ek−1

≡ π∗I,G then
return λ;

Create a plan πf
H using (MH

f );
if (tk ≤ FirstDiff(πf

H , π∗I,G)) then
if |λ| > λmax then

λmax ← λ;
∆(MH

Ek−1
, MR)− = λmax ;

Sort (∆(MH
Ek−1

, MR)) ascending ;
LONGESTMONOTONIC(MH

Ek−1
, tk,∆);

return λmax as ek;



known to have limited cognitive memory span [21]. In the
most limited case, the agent focuses on explaining the very
next action that is different between the most recent human
plan πH

Ek−1
and π∗I,G. Similar to Algorithm 1, We perform a

recursive model reconciliation procedure on the model space.
Compared to other two approaches, first, we perform the
search from M̂H\MH rather than MR (see Figure 2) since it
is computationally faster due to the fact that the plan prefixes
do not need to be identical and since the search procedure
is monotonic, the search result would be equivalent as if the
procedure started from MR. The other difference here is that
we do not compare the entire plan prefix. Instead, the agent
explains only the immediate next action that does not match
in the human and robot plans that, without requiring the
explanation also maintains the match between the prefixes.
In this aspect, the search process of OEG is similar to that of
minimally monotonically explanation (MME) in [7], except
that the process must be executed multiple times for OEG
due to its online fashion. In the implementations, however,
our algorithms actually combine search from MH and MR

for a better performance, given the fact that latter model
updates do not often affect the previous sub-explanations:

∀k > 1,∀tk − 1 ≤ t < tk, ak ∈ π∗I,G[t] & ak ∈ πH
Ek−1

[t]

& Γ(MH
Ek−1

) = Γ(MH) ∪ Ek−1

s.t.⋃
i

ei = Γ(M̂H)\Γ(MH) ⊆ Γ(MR)

(2)

C. OEG for matching Any Prefix (OEG-AP)

One assumption in the OEG-PP approach is that the robot
has only right plan. Subsequently, the robot’s goal is to
reconcile the human’s plan with respect to its own plan using
model space search. We relax this assumption by assuming
that there is a set of optimal plans. In such a setting, the robot
does not need to explain as long as there exists a human plan
that has the same prefix as the robot’s plan earlier than the
current action. The goal of OEG here is thus to satisfy the
following:

∃πH
Ek−1

∈ ΠH
Ek−1

∀k > 1,Prefix(π∗I,G, tk − 1) = Prefix(πH
Ek−1

, tk − 1)

Γ(MH
Ek−1

) = Γ(MH) ∪ Ek−1 (3)
where ΠH

Ek−1
is a set of optimal plans generated using

MH
Ek−1

, πH
Ek−1

is the human optimal plan generated from
MH

Ek−1
and π∗MH

is the human optimal plan generated from
the original human model (MH ). A straightforward solution
to OEG-AP is to generate all human optimal plans and check
if any one of them matches with the robot’s plan (prefix).
This approach however is computationally expensive. In-
stead, we implemented a compilation approach. To check that
a plan prefix Prefix(π∗I,G, tk−1) in the robot’s plan is also a
prefix in the human’s model, we first compile the problem in
the human’s model into a new problem such that the robot’s
plan prefix would always be a prefix of the human’s plan.

If the cost of the human’s optimal plan in this new domain
model is equal to the cost of the human’s optimal plan before
the compilation, then clearly there exists an optimal plan
in the human’s model that matches the prefix. Otherwise,
we know that an explanation must be made. Hence, the key
here is to ensure that a plan prefix is always satisfied in the
compiled model.

This is not difficult to achieve. For all i ≥ 1, such
that ai, ai+1 ∈ Prefix(π∗I,G, tk − 1), where ai, ai+1 are two
consecutive actions in π∗I,G, the compilation can be achieved
by adding a predicate pi to ai as an effect, which is a
prerequisite for ai+1. ai+1, in its turn deletes pi and adds
pi+1 which is a prerequisite for ai+2, etc.

To search for ek, we again use a recursive model recon-
ciliation process on the model space, similar to Algorihm
1. Similar to IV-A, we start off with finding the differ-
ence between these two models. The main difference in
this approach is that after each model update after a sub-
explanation, the agent checks if there exists a human optimal
plan that has the same plan prefix as the robot’s plan up until
the next action using the compilation approach described
above. This check stops when such a plan does not exist
and a new sub-explanations must be identified by model
space search. This process continues until an optimal human
plan exists that matches the robot’s plan. Note however that
this does not mean that an optimal planner would necessary
return the same plan using the human’s model.

V. EVALUATION

We evaluated our approach for online explanation genera-
tion both with human subjects and in simulation for the dif-
ferent approaches introduced above and compared the results
with Minimally Complete Explanation (MCE) [7] approach.
For simulation, the goal is to see that how online explanation
is in general different from MCE in terms of the information
needed and computation time. We evaluated our approach on
ten different problems across the rover domain and barman
domain–two standard IPC domain described below. For both
human and simulation evaluations, the differences between
MH and MR are made by randomly removing preconditions
from an arbitrarily chosen set of model features. For human
subject study, the aim is to confirm the benefits of online
explanation generation. Our hypothesis is as follows:
• Online explanation generation will reduce mental work-

load and improve task performance.
We evaluated our approach with human subjects on a mod-
ified rover domain (see Sec. V-D).

A. Rover Domain

In this domain, the rover is supposedly on Mars and the
goal is to explore the space to take rock and soil samples
as well as taking images and communicate the results after
analysis to the base station via the lander. In order to take any
image, the rover must first calibrate its camera with respect
to the target. To sample rock or soil, the robot must have an
empty space in its storage. At any point of time, the rover
only has enough space to store one sample. In order to take



Problem OEG-PP OEG-NA OEG-AP MCE

Explanations Time Explanations Distance Time Explanations Distance Time Explanations Time

Rover

P1 3 (1.5) 8.89 7 (1.167) 0.4 17.929 2 (1) 0.4 6.94 3 28.91

P2 5 (1.67) 22.32 7 (1.4) 0.105 42.568 3 (1) 0.105 18.30 5 150.54

P3 6 (1.5) 18.68 8 (1.143) 0.068 21.258 3 (1) 0.068 1.64 5 176.16

P4 6 (1.5) 50.97 8 (1.33) 0.131 94.783 5 (1.25) 0.131 45.36 6 314.15

P5 5 (1.67) 54.83 8 (1.33) 0.135 106.709 3 (2) 0.135 50.36 4 272.76

Barman

P1 5 (1.25) 43.01 5 (1.25) 0.911 59.912 2 (1) 0.943 24.37 5 179.95

P2 5 (1) 36.17 5 (1) 0.995 33.032 3 (1) 0.899 9.36 5 38.89

P3 5 (1.25) 36.83 5 (1) 0.895 46.775 3 (1.5) 0.705 9.67 5 51.84

P4 5 (1.25) 78.42 5 (1) 0.838 69.016 4 (1) 0.556 20.42 5 61.86

P5 5 (1.67) 41.88 5 (1) 0.892 54.708 3 (2) 0.556 10.15 5 61.48

TABLE I: Comparison of number of generated explanations and computation time using different approaches for IPC Rover
and Barman Domains.

(a) OEG-PP (b) OEG-NA
(c) OEG-AP

Fig. 3: Plan distance [22] convergence across three different approaches between πH
Ek−1

and πR for the Rover domain
problems. The y-axis represents the distances while x-axis represents the number of Ek(sub-explanations).

multiple samples, it must drop the current sample before
taking another sample [23].

B. Barman Domain

In this domain, the robot assumes the role of a barman
whose goal is to serve a desired set of drinks using drink
dispensers, glasses and a shaker. The constraints are that the
robot can grab one object if its hand is empty, the robot can
grab one object with one hand, and before filling it with a
drink, a glass should be empty and clean [23].

C. Simulation Results

Table I shows the simulation results comparing minimally
complete explanations (MCE) withx OEG-PP, OEG-NA and
OEG-AP approaches for 5 problems in the rover domain
and 5 problems in the barman domain. While the average
number of model features of OEG (in a sub-explanation)
being shared at each instance of time is considerably lower
that MCE (every feature in the explanation is presented at
once), the total number of model features in an explanation
are the same for MCE and OEG-PP across most of the
problems. We can see that in some cases (for instance,
P3 from the Rover domain), the total number of model
features in the explanation for OEG-PP and OEG-NA is
more than that of MCE, which is expected since OEG is
focused on generating the minimal amount of information at

each time step, instead of the amount overall. The reason for
sharing more information in total in OEG-PP and OEG-NA,
when compared to MCE, lies in the dependence between the
features and the behavior of the planner (i.e., which optimal
is returned). While OEG-AP seems to have improved over
the amount of information in an explanation, it actually only
shows the advantage of considering all optimal plans instead
of the one returned by the planner.

Comparing both the OEG-NA and OEG-AP approaches
with MCE and OEG-PP, there is a remaining distance
between the robot’s plan and the human’s plan in terms of
plan action distance (also returned by an optimal planner).
The distance of OEG-NA is due to the fact that only the
immediate next action is considered. For OEG-AP, as we
explained, there is no guarantee that the plan returned using
the human’s model will be the same as the robot’s plan since
it considers all optimal human plans and only requires one
of them to match the robot’s. This is also illustrated more
clearly in Fig. 3. Furthermore, ion OEG approaches, since the
execution and explanation is intertwined, the plan distance
[22] between πH

Ek−1
and πR in our approaches gradually

moves towards 0 as shown, which suggests a “smoother”
adjustment for MH during the execution. This is expected
to have a positive effect on the human’s mental workload,
which we evaluated next.

Table I also presents the time comparison between differ-



ent approaches. For computation time, the results are col-
lected using a 2015 Mac book Pro, with 2.2 GHz Intel Core
i7 and 16 GB of memory. The results of the time comparison
suggest that OEG-PP is faster than MCE. Moreover, OEG-
NA seems the slowest while OEG-AP is the fastest since
it uses fewer model features. The performance improvement
over MCE may be surprising, thanks to combining search
from MR and MH . In our implementation, the possible
model updates are sorted ascending based on their feature
size and our algorithms start checking the ones with the
smallest changes from the robot’s side. The consistency
check is left as we proceed to the next sub-explanation and
backtracking is performed when it fails. This search process
takes advantage of the fact that latter information often does
not affect the previous sub-explanations.

D. Human Study

To test our hypothesis, we designed a human study to
compare our three approaches for online explanation gen-
eration with minimally complete explanation (MCE) [7].
Furthermore, to ensure that the performance difference is
not solely due to simply breaking information into multiple
pieces, we also implement another approach that randomly
breaks MCE during plan execution (referred to as MCE-
R). We conducted our experiment using Amazon Mechanical
Turk (MTurk) with 3D simulation. The subjects were given
an introduction to the rover domain and the task they were
supposed to help with. Each subject was given a 30-minute
limit to finish the task. Explanations were provided using
plain English language and rover actions were depicted using
GIF images from a 3D simulated scenario as the rover
executes the plan. Figure 4 shows the 3D simulated scenario
presented to the subjects. In this experiment, the human
subject acts as the rover’s commander, where the robot is
on Mars and supposed to perform a mission autonomously.
The human subject observes the rover’s plan sequentially
and is asked to determine whether the rover’s current action
is questionable or not, with explanations provided by OEG
approaches or MCEs. Each subject can only perform the task
for one setting to reduce the influence between different runs.
To observe the effect on mental workload more clearly, we
have also added a few spatial puzzles to the experiment as
a secondary task to create additional cognitive demand.

In the scenario, we deliberately remove certain information
from the domain so that the subject would create an incorrect
plan, when no explanation is given. In particular, we did
not inform them that the storage is limited, the memory
is limited, the camera must be calibrated, and the camera
must be calibrated with respect to the objective. This hidden
information introduces differences between MH and MR

in the model reconciliation setting, and hence resulting
in scenarios where explanations must be provided. In this
scenario, for example, the subject may question the action
for calibrating the camera if they were not specifically told
to consider that.

In MCE setting, the robot shares all the information at the
beginning of the task [7], while the information is randomly

broken to be communicated at different steps in MCE-R.
In each of the OEG setting, the robot uses different ap-
proaches of online explanation generation, which intertwines
the communication of explanation with the plan execution.
In particular, the four pieces of missing information are
provided to the subjects at different steps. In all settings, the
subjects were asked to determine whether the robot’s action
makes sense or not at a time. The minimally complete expla-
nations are generated based on [7] and online explanations
are generated using approaches introduced above.

At the end of the study, the subjects were provided the
NASA Task Load standard questionnaire to evaluate the
efficiency of different explanation approaches by NASA
Task Load Index (TLX) [24]. The NASA TLX is a subjec-
tive workload assessment tool to evaluate human-machine
interface systems. Mental workload is a multidimensional
variable which can be captured by different variables and
NASA TLX is one of the most frequently used subjective
measurements for capturing different aspect of mental work-
load [25]. It calculates an overall mental workload score
using a weighted average on sub-scales: mental demand,
physical demand, temporal demand, performance, effort and
frustration. Since our experiment does not involve physical
demand, we did not include the corresponding question. The
description of questions used for each category is presented
as follows:
• Mental Demand: How mentally demanding was the task?
• Temporal Demand: How hurried or rushed was the pace of

the task?
• Performance: How successful were you in accomplishing what

you were asked to do?
• Effort: How hard did you have to work to accomplish your

level of performance?
• Frustration: How insecure, discouraged, irritated, stressed, and

annoyed were you?

E. Human Study Results

We created the academic survey using Qualtrics and
recruited 150 human subjects on MTurk, 30 subjects for each
setting. To improve the quality of the responses, we set the
criteria that the worker’s HIT acceptance rate must be greater
than 98%. After sifting out invalid responses (i.e., failing to
identify the two purposely inserted random actions), we had
94 valid responses in total: 19 for each of MCE-R and MCE,
20 for OEG-PP, and 18 for each of OEG-NA and OEG-AP.
The age range of subjects was between 18 and 70, and 29.8%
of the subjects were female.

We examined how well the human subjects understand the
robot’s plan given the different explanations, and compared
the distances across the five different settings. We compute
the distance between the robot’s plan and the human’s ex-
pected plan by the ratio between the number of questionable
actions and the total number of actions in a plan. The lower
the distance value, the closer the human’s plan is to the
robot’s plan. This metric intuitively captures how much the
human subject understands the robot’s plan. We calculated
the averaged results of each settings over all of the subjects
participated in that setting, using subjective questions from



(a) The blue rover moves between waypoints (b) The blue rover takes a picture of one of the objectives

Fig. 4: The 3D visualization of the modified IPC rover domain problem provided to the human subjects. The rovers must
together take pictures of targets, collect rock and soil samples, and transmit them to the lander after analysis. The subject
views the actions of the rovers via GIF images. (a) and (b) shows the begin and end of an action in which one of the rover
takes an image of a target at the bottom.

(a)

(b) (c)

Fig. 5: (a) Comparison of the results of all of TLX categories
for the five settings (b) Accuracy of action classification (c)
Number of questionable actions

NASA TLX and objective performance measures such as the
number of questionable actions and the accuracy of action
classification. Results are shown in Figure 5.

The results overall show that OEG approaches are able
to better reduce the human’s mental workload than MCE
approaches. This is backed up by the fact that OEG ap-
proaches resulted in better performance in almost all NASA

TLX measures. Due to intertwining the explanation pro-
cess with the plan execution, the OEG approaches create
more temporal demand according to the experiment, which
is expected. Figure 5 presents both objective performance
measures, and subjective results of the human study amongst
the 5 TLX categories. First, the number of questionable
actions are significantly lower among OEG approaches when
comparing to the MCEs. This indicates that the subjects
had more trust towards robots in the OEG cases. Moreover,
the accuracy of identifying the correct actions (questionable
vs. non-questionable) among OEG approaches are higher.
Between the three approaches, OEG-AP has the least number
of questionable actions and the most accuracy.

We have also presented the p-value for the mental load
based on the subjective measures in Table 6 (with weights 1
for all measures ranging from 0 to 100). The results indicate
a statistical significant difference between OEG approaches
and MCEs for the mental workload in a pairwise comparison.
The overall p-value across five categories is 0.0068 between
OEGs (as a group) and MCEs (as a group).

We also did some time analysis. The average overall time
taken to accomplish the task for each of the categories is as
follows: OEG-NA (567.44s) < OEG-AP (629.56s) < MCE-
R (678.98s) < MCE (763.47s) < OEG-PP (775.65s), al-
though we did not see a statistically significant difference due
to large variances. The accuracy of the secondary task is also
not significantly different between the various approaches.

VI. CONCLUSION

In this paper, we introduced a novel approach for expla-
nation generation to reduce the mental workload needed for
the human to interpret the explanations, throughout a human-
robot interaction scheme. The key idea here is to break down
a complex explanation into smaller parts and convey them in
an online fashion, while intertwined with the plan execution.
We take a step further from our prior work by considering
not only providing the correct explanations, but also the ex-
planations that are easily understandable. We provided three
different approaches each of which focuses on one aspect
of explanation generation weaved in plan execution. This



Fig. 6: p-values across different approaches on the mental
workload, which is the sum of subjective measures (with
weights 1).

is an important step toward achieving explainable AI. We
evaluated our approaches using both simulation and human
subjects. Results showed that our approaches achieved better
task performance while reducing the mental workload.
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