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Abstract

The key idea behind the unsupervised learning of disentangled representations is
that real-world data is generated by a few explanatory factors of variation which can
be recovered by unsupervised learning algorithms. In this paper, we provide a sober
look on recent progress in the field and challenge some common assumptions. We
train more than 12 000 models covering most prominent methods and evaluation
metrics in a reproducible large-scale experimental study on seven different data
sets. We observe that while the different methods successfully enforce properties
“encouraged” by the corresponding losses, well-disentangled models seemingly
cannot be identified without supervision. Furthermore, increased disentanglement
does not seem to lead to a decreased sample complexity of learning for downstream
tasks. Our results suggest that future work on disentanglement learning should be
explicit about the role of inductive biases and (implicit) supervision, investigate
concrete benefits of enforcing disentanglement of the learned representations, and
consider a reproducible experimental setup covering several data sets.

1 Introduction

In representation learning it is often assumed that real-world observations x (e.g., images or videos)
are generated by a two-step generative process. First, a multivariate latent random variable z is
sampled from a distribution P (z). Intuitively, z corresponds to semantically meaningful factors of
variation of the observations (e.g., content + position of objects in an image). Then, in a second
step, the observation x is sampled from the conditional distribution P (x|z). The key idea behind this
model is that the high-dimensional data x can be explained by the substantially lower dimensional
and semantically meaningful latent variable z which is mapped to the higher-dimensional space of
observations x. Informally, the goal of representation learning is to find useful transformations r(x)
of x that “make it easier to extract useful information when building classifiers or other predictors”
[4]. A recent line of work has argued that representations that are disentangled are an important
step towards a better representation learning [4, 46, 36, 3, 51, 33, 58]. They should contain all the
information present in x in a compact and interpretable structure [4, 31, 8] while being independent
from the task at hand [17, 37]. They should be useful for (semi-)supervised learning of downstream
tasks, transfer and few shot learning [4, 52, 46]. They should enable to integrate out nuisance
factors [32], to perform interventions, and to answer counterfactual questions [44, 53, 46].

While there is no single formalized notion of disentanglement (yet) which is widely accepted, the
key intuition is that a disentangled representation should separate the distinct, informative factors
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of variations in the data [4]. A change in a single underlying factor of variation zi should lead to
a change in a single factor in the learned representation r(x). This assumption can be extended to
groups of factors as, for instance, in Bouchacourt et al. [5] or Suter et al. [56]. Based on this idea, a
variety of disentanglement evaluation protocols have been proposed leveraging the statistical relations
between the learned representation and the ground-truth factor of variations. Disentanglement is
then measured as a particular structural property of these relations [19, 29, 15, 32, 7, 49].

State-of-the-art approaches for unsupervised disentanglement learning are largely based on
Variational Autoencoders (VAEs) [30]: One assumes a specific prior P (z) on the latent space and
then uses a deep neural network to parameterize the conditional probability P (x|z). Similarly, the
distribution P (z|x) is approximated using a variational distribution Q(z|x), again parametrized
using a deep neural network. The model is then trained by minimizing a suitable approximation
to the negative log-likelihood. The representation for r(x) is usually taken to be the mean of the
approximate posterior distribution Q(z|x). Several variations of VAEs were proposed with the
motivation that they lead to better disentanglement [19, 6, 29, 7, 32, 50]. The common theme behind
all these approaches is that they try to enforce a factorized aggregated posterior

∫
x
Q(z|x)P (x)dx,

which should encourage disentanglement. In Appendix A we theoretically prove that (perhaps
unsurprisingly) the unsupervised learning of disentangled representations is fundamentally impossible
without inductive biases both on the considered learning approaches and the data sets.

Our contributions. In light of this result, we challenge commonly held assumptions in this field.
Our contributions can be summarized as follows:

• We investigate current approaches and their inductive biases in a reproducible large-scale experi-
mental study1 with a sound experimental protocol for unsupervised disentanglement learning. We
implement six recent unsupervised disentanglement learning methods as well as six disentangle-
ment measures from scratch and train more than 12 000 models on seven data sets.

• We release disentanglement_lib2, a new library to train and evaluate disentangled repre-
sentations. As reproducing our results requires substantial computational effort, we also release
more than 10 000 trained models which can be used as baselines for future research.

• We analyze our experimental results and challenge common beliefs in unsupervised disentangle-
ment learning: (i) While all considered methods prove effective at ensuring that the individual
dimensions of the aggregated posterior (which is sampled) are not correlated, we observe that
the dimensions of the representation (which is taken to be the mean) are correlated. (ii) We
do not find any evidence that the considered models can be used to reliably learn disentangled
representations in an unsupervised manner as random seeds and hyperparameters seem to matter
more than the model choice. Furthermore, good trained models seemingly cannot be identified
without access to ground-truth labels even if we are allowed to transfer good hyperparameter values
across data sets. (iii) For the considered models and data sets, we cannot validate the assumption
that disentanglement is useful for downstream tasks, for example through a decreased sample
complexity of learning.

• Based on these empirical evidence, we suggest three critical areas of further research: (i) The role
of inductive biases and implicit and explicit supervision should be made explicit: unsupervised
model selection persists as a key question. (ii) The concrete practical benefits of enforcing a
specific notion of disentanglement of the learned representations should be demonstrated. (iii)
Experiments should be conducted in a reproducible experimental setup on data sets of varying
degrees of difficulty.

2 Other related works

In a similar spirit to disentanglement, (non-)linear independent component analysis [12, 2, 27, 24]
studies the problem of recovering independent components of a signal. The underlying assumption is
that there is a generative model for the signal composed of the combination of statistically independent
non-Gaussian components. While the identifiability result for linear ICA [12] proved to be a milestone
for the classical theory of factor analysis, similar results are in general not obtainable for the nonlinear
case and the underlying sources generating the data cannot be identified [25]. The lack of almost any

1Reproducing these experiments requires approximately 2.52 GPU years (NVIDIA P100).
2https://github.com/google-research/disentanglement_lib
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identifiability result in non-linear ICA has been a main bottleneck for the utility of the approach [26]
and partially motivated alternative machine learning approaches [14, 51, 11]. Given that unsupervised
algorithms did not initially perform well on realistic settings most of the other works have considered
some more or less explicit form of supervision [47, 63, 61, 31, 9, 39, 42, 56]. [22, 10] assume some
knowledge of the effect of the factors of variations even though they are not observed. One can also
exploit known relations between factors in different samples [28, 18, 60, 16, 13, 23, 62] or explicit
inductive biases [38]. This is not a limiting assumption especially in sequential data, i.e., for videos.
We focus our study on the setting where factors of variations are not observable at all, i.e. we only
observe samples from P (x).

3 Experimental design

Considered methods. All the considered methods augment the VAE loss with some regularizer. The
β-VAE [19], introduces a hyperparameter in front of the KL regularizer of vanilla VAEs to constrain
the capacity of the VAE bottleneck. The AnnealedVAE [6] progressively increase the bottleneck
capacity so that the encoder can focus on learning one factor of variation at the time (the one that
most contribute to a small reconstruction error). The FactorVAE [29] and the β-TCVAE [7] penalize
the total correlation [59] with adversarial training [43, 55] or with a tractable but biased Monte-Carlo
estimator respectively. The DIP-VAE-I and the DIP-VAE-II [32] both penalize the mismatch between
the aggregated posterior and a factorized prior. Implementation details and further discussion on the
methods can be found in Appendix C and H.

Considered metrics. The BetaVAE metric [19] measures disentanglement as the accuracy of a linear
classifier that predicts the index of a fixed factor of variation. Kim & Mnih [29] address several
issues with this metric in their FactorVAE metric by using a majority vote classifier on a different
feature vector which accounts for a corner case in the BetaVAE metric. The Mutual Information Gap
(MIG) [7] measures for each factor of variation the normalized gap in mutual information between
the highest and second highest coordinate in r(x). Instead, the Modularity [49] measures if each
dimension of r(x) depends on at most a factor of variation using their mutual information. The
Disentanglement metric of Ridgeway & Mozer [49] (which we call DCI Disentanglement for clarity)
computes the entropy of the distribution obtained by normalizing the importance of each dimension
of the learned representation for predicting the value of a factor of variation. The SAP score [32] is
the average difference of the prediction error of the two most predictive latent dimensions for each
factor. Implementation details and further descriptions can be found in Appendix D.

Data sets. We consider four data sets in which x is obtained as a deterministic function of z:
dSprites [19], Cars3d [48], SmallNORB [35], Shapes3D [29]. We also introduce three data sets where
the observations x are stochastic given the factor of variations z: Color-dSprites, Noisy-dSprites and
Scream-dSprites. In Color-dSprites, the shapes are colored with a random color. In Noisy-dSprites,
we consider white-colored shapes on a noisy background. Finally, in Scream-dSprites the background
is replaced with a random patch in a random color shade extracted from the famous The Scream
painting [40]. The dSprites shape is embedded into the image by inverting the color of its pixels.
Further details on the preprocessing of the data can be found in Appendix I.

We fix our experimental setup in advance and we run all the considered methods on each data set
for 50 different random seeds and evaluate them on the considered metrics. The full details on
the experimental setup are provided in the Appendix H. Our experimental conditions and guiding
principles, the limitations of this study, and the differences with previous implementations are
extensively discussed in Appendix E, F, and G respectively.

4 Key experimental results

In this section, we highlight our key findings with plots specifically picked to be representative of our
main results. In Appendix J, we provide the full experimental results with a complete set of plots for
different methods, data sets and disentanglement metrics.
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4.1 Can current methods enforce a uncorrelated aggregated posterior and representation?
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Figure 1: Total correlation based on a fitted Gaus-
sian of the sampled (left) and the mean representa-
tion (right) plotted against regularization strength
for Color-dSprites and approaches (except An-
nealedVAE). The total correlation of the sampled
representation decreases while the total correla-
tion of the mean representation increases as the
regularization strength is increased.
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MIG (C)
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Modularity (E)
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100 80 44 41 46 37

80 100 49 52 25 38

44 49 100 76 6 42

41 52 76 100 -8 38

46 25 6 -8 100 13

37 38 42 38 13 100

Dataset = Noisy-dSprites

Figure 2: Rank correlation of different metrics
on Noisy-dSprites. Overall, we observe that all
metrics except Modularity seem mildly correlated
with the pairs BetaVAE and FactorVAE, and MIG
and DCI Disentanglement strongly correlated with
each other.

While many of the considered methods aim to
enforce a factorizing and thus uncorrelated ag-
gregated posterior (e.g., regularizing the total
correlation of the sampled representation), they
use the mean vector of the Gaussian encoder
as the representation and not a sample from the
Gaussian encoder. This may seem like a mi-
nor, irrelevant modification; however, it is not
clear whether a factorizing aggregated posterior
also ensures that the dimensions of the mean
representation are uncorrelated. To test the im-
pact of this, we compute the total correlation of
both the mean and the sampled representation
based on fitting Gaussian distributions for each
data set, model and hyperparameter value (see
Appendix D and J.2 for details).

Figure 1 (left) shows the total correlation based
on a fitted Gaussian of the sampled representa-
tion plotted against the regularization strength
for each method except AnnealedVAE on Color-
dSprites. We observe that the total correlation of
the sampled representation generally decreases
with the regularization strength. One the other
hand, Figure 1 (right) shows the total correla-
tion of the mean representation plotted against
the regularization strength. It is evident that the
total correlation of the mean representation gen-
erally increases with the regularization strength.
The only exception is DIP-VAE-I for which we
observe that the total correlation of the mean
representation is consistently low. This is not
surprising as the DIP-VAE-I objective directly
optimizes the covariance matrix of the mean rep-
resentation to be diagonal which implies that the

corresponding total correlation (as we measure it) is low. These findings are confirmed by our detailed
experimental results in Appendix J.2 (in particular Figures 8-9) which considers all different data
sets. Furthermore, we observe largely the same pattern if we consider the average mutual information
between different dimension of the representation instead of the total correlation (see Figures 26-27
in Appendix K).

Implications. Overall, these results lead us to conclude with minor exceptions that the considered
methods are effective at enforcing an aggregated posterior whose individual dimensions are not
correlated but that this does not seem to imply that the dimensions of the mean representation (usually
used for representation) are uncorrelated.

4.2 How much do the disentanglement metrics agree?

As there exists no single, common definition of disentanglement, an interesting question is to see
how much different proposed metrics agree. Figure 2 shows the Spearman rank correlation between
different disentanglement metrics on Noisy-dSprites whereas Figure 12 in Appendix J.3 shows the
correlation for all the different data sets. We observe that all metrics except Modularity seem to be
correlated strongly on the data sets dSprites, Color-dSprites and Scream-dSprites and mildly on the
other data sets. There appear to be two pairs among these metrics that capture particularly similar
notions: the BetaVAE and the FactorVAE score as well as the MIG and DCI Disentanglement.

Implication. All disentanglement metrics except Modularity appear to be correlated. However, the
level of correlation changes between different data sets.
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4.3 How important are different models and hyperparameters for disentanglement?
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Figure 3: (left) FactorVAE score for each
method on Cars3D. Models are abbreviated (0=β-
VAE, 1=FactorVAE, 2=β-TCVAE, 3=DIP-VAE-I,
4=DIP-VAE-II, 5=AnnealedVAE). The scores are
heavily overlapping. (right) Distribution of Fac-
torVAE scores for FactorVAE model for different
regularization strengths on Cars3D.

The primary motivation behind the considered
methods is that they should lead to improved
disentament. This raises the question how dis-
entanglement is affected by the model choice,
the hyperparameter selection and randomness
(in the form of different random seeds). To in-
vestigate this, we compute all the considered
disentanglement metrics for each of our trained
models.

In Figure 3 (left), we show the range of at-
tainable FactorVAE scores for each method on
Cars3D. We observe that these ranges are heav-
ily overlapping for different models leading us
to (qualitatively) conclude that the choice of hy-
perparameters and the random seed seems to be
substantially more important than the choice of
objective function. These results are confirmed

by the full experimental results on all the data sets presented in Figure 13 of Appendix J.4: While
certain models seem to attain better maximum scores on specific data sets and disentanglement
metrics, we do not observe any consistent pattern that one model is consistently better than the other.
At this point, we note that in our study we have fixed the range of hyperparameters a priori to six
different values for each model and did not explore additional hyperparameters based on the results
(as that would bias our study). However, this also means that specific models may have performed
better than in Figure 13 (left) if we had chosen a different set of hyperparameters.
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Figure 4: (left) FactorVAE score vs hyperparameters for each score on Cars3d. There seems to be no
model dominating all the others and for each model there does not seem to be a consistent strategy
in choosing the regularization strength. (center) Unsupervised scores vs disentanglement metrics
on Shapes3D. Metrics are abbreviated ((A)=BetaVAE Score, (B)=FactorVAE Score, (C)=MIG ,
(D)=DCI Disentanglement, (E)=Modularity, (F)=SAP). The unsupervised scores we consider do not
seem to be useful for model selection. (right) Rank-correlation of DCI disentanglement metric across
different data sets. Good hyperparameters only seem to transfer between dSprites and Color-dSprites
but not in between the other data sets.

In Figure 3 (right), we further show the impact of randomness in the form of random seeds on the
disentanglement scores. Each violin plot shows the distribution of the FactorVAE metric across
all 50 trained FactorVAE models for each hyperparameter setting on Cars3D. We clearly see that
randomness (in the form of different random seeds) has a substantial impact on the attained result
and that a good run with a bad hyperparameter can beat a bad run with a good hyperparameter in
many cases. Again, these findings are consistent with the complete set of plots provided in Figure 14
of Appendix J.4.

Finally, we perform a variance analysis by trying to predict the different disentanglement scores
using ordinary least squares for each data set: If we allow the score to depend only on the objective
function (treated as a categorical variable), we are only able to explain 37% of the variance of the
scores on average (see Table 5 in Appendix J.4 for further details). Similarly, if the score depends on
the Cartesian product of objective function and regularization strength (again categorical), we are
able to explain 59% of the variance while the rest is due to the random seed.
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Implication. The disentanglement scores of unsupervised models are heavily influenced by ran-
domness (in the form of the random seed) and the choice of the hyperparameter (in the form of the
regularization strength). The objective function appears to have less impact.

4.4 Are there reliable recipes for model selection?

In this section, we investigate how good hyperparameters can be chosen and how we can distinguish
between good and bad training runs. In this paper, we advocate that that model selection should not
depend on the considered disentanglement score for the following reasons: The point of unsupervised
learning of disentangled representation is that there is no access to the labels as otherwise we could
incorporate them and would have to compare to semi-supervised and fully supervised methods. All
the disentanglement metrics considered in this paper require a substantial amount of ground-truth
labels or the full generative model (for example for the BetaVAE and the FactorVAE metric). Hence,
one may substantially bias the results of a study by tuning hyperparameters based on (supervised)
disentanglement metrics. Furthermore, we argue that it is not sufficient to fix a set of hyperparameters
a priori and then show that one of those hyperparameters and a specific random seed achieves a good
disentanglement score as it amounts to showing the existence of a good model, but does not guide
the practitioner in finding it. Finally, in many practical settings, we might not even have access to
adequate labels as it may be hard to identify the true underlying factor of variations, in particular, if
we consider data modalities that are less suitable to human interpretation than images.

In the remainder of this section, we hence investigate and assess different ways how hyperparameters
and good model runs could be chosen. In this study, we focus on choosing the learning model and
the regularization strength corresponding to that loss function. However, we note that in practice this
problem is likely even harder as a practitioner might also want to tune other modeling choices such
architecture or optimizer.

General recipes for hyperparameter selection. We first investigate whether we may find generally
applicable “rules of thumb” for choosing the hyperparameters. For this, we plot in Figure 4 (left)
the FactorVAE score against different regularization strengths for each model on the Cars3D data
set whereas Figure 16 in Appendix J.5 shows the same plot for all data sets and disentanglement
metrics. The values correspond to the median obtained values across 50 random seeds for each
model, hyperparameter and data set. Overall, there seems to be no model consistently dominating
all the others and for each model there does not seem to be a consistent strategy in choosing the
regularization strength to maximize disentanglement scores. Furthermore, even if we could identify
a good objective function and corresponding hyperparameter value, we still could not distinguish
between a good and a bad training run.

Model selection based on unsupervised scores. Another approach could be to select hy-
perparameters based on unsupervised scores such as the reconstruction error, the KL diver-
gence between the prior and the approximate posterior, the Evidence Lower BOund or the esti-
mated total correlation of the sampled representation (mean representation gives similar results).

Table 1: Probability of outperforming random model selec-
tion on a different random seed. A random disentanglement
metric and data set is sampled and used for model selection.
That model is then compared to a randomly selected model:
(i) on the same metric and data set, (ii) on the same metric
and a random different data set, (iii) on a random different
metric and the same data set, and (iv) on a random differ-
ent metric and a random different data set. The results are
averaged across 10 000 random draws.

Random data set Same data set

Random metric 54.9% 62.6%
Same metric 59.3% 80.7%

This would have the advantage that
we could select specific trained mod-
els and not just good hyperparam-
eter settings whose median trained
model would perform well. To test
whether such an approach is fruit-
ful, we compute the rank correlation
between these unsupervised metrics
and the disentanglement metrics and
present it in Figure 4 (center) for
Shapes3D and in Figure 16 of Ap-
pendix J.5 for all the different data
sets. While we do observe some cor-
relations, no clear pattern emerges
which leads us to conclude that this
approach is unlikely to be successful
in practice.
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Hyperparameter selection based on transfer. The final strategy for hyperparameter selection
that we consider is based on transferring good settings across data sets. The key idea is that good
hyperparameter settings may be inferred on data sets where we have labels available (such as dSprites)
and then applied to novel data sets.

Figure 4 (right) shows the rank correlations obtained between different data sets for the DCI dis-
entanglement (whereas Figure 17 in Appendix J.5 shows it for all data sets). We find a strong and
consistent correlation between dSprites and Color-dSprites. While these results suggest that some
transfer of hyperparameters is possible, it does not allow us to distinguish between good and bad
random seeds on the target data set.

To illustrate this, we compare such a transfer based approach to hyperparameter selection to random
model selection as follows: First, we sample one of our 50 random seeds, a random disentanglement
metric and a data set and use them to select the hyperparameter setting with the highest attained score.
Then, we compare that selected hyperparameter setting to a randomly selected model on either the
same or a random different data set, based on either the same or a random different metric and for
a randomly sampled seed. Finally, we report the percentage of trials in which this transfer strategy
outperforms or performs equally well as random model selection across 10 000 trials in Table 1. If
we choose the same metric and the same data set (but a different random seed), we obtain a score of
80.7%. If we aim to transfer for the same metric across data sets, we achieve around 59.3%. Finally,
if we transfer both across metrics and data sets, our performance drops to 54.9%.

Implications. Unsupervised model selection remains an unsolved problem. Transfer of good
hyperparameters between metrics and data sets does not seem to work as there appears to be no
unsupervised way to distinguish between good and bad random seeds on the target task.

4.5 Are these disentangled representations useful for downstream tasks in terms of the
sample complexity of learning?
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Figure 6: Statistical efficiency of the FactorVAE
Score for learning a GBT downstream task on
dSprites.

One of the key motivations behind disentangled
representations is that they are assumed to
be useful for later downstream tasks. In
particular, it is argued that disentanglement
should lead to a better sample complexity of
learning [4, 52, 46]. In this section, we consider
the simplest downstream classification task
where the goal is to recover the true factors of
variations from the learned representation using
either multi-class logistic regression (LR) or
gradient boosted trees (GBT).

Figure 5 shows the rank correlations between
the disentanglement metrics and the downstream
performance on dSprites. We observe that all
metrics except Modularity seem to be correlated
with increased downstream performance on the
different variations of dSprites and to some de-
gree on Shapes3D but not on the other data sets.
However, it is not clear whether this is due to the
fact that disentangled representations perform
better or whether some of these scores actually
also (partially) capture the informativeness of
the evaluated representation. Furthermore, the
full results in Figure 19 of Appendix J.6 indicate
that the correlation is weaker or inexistent on
other data sets (e.g. Cars3D).

To assess the sample complexity argument we
compute for each trained model a statistical ef-
ficiency score which we define as the average
accuracy based on 100 samples divided by the
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average accuracy based on 10 000 samples. Figure 6 show the sample efficiency of learning (based
on GBT) versus the FactorVAE Score on dSprites. We do not observe that higher disentanglement
scores reliably lead to a higher sample efficiency. This finding which appears to be consistent with
the results in Figures 20-23 of Appendix J.6.

Implications. While the empirical results in this section are negative, they should also be interpreted
with care. After all, we have seen in previous sections that the models considered in this study fail
to reliably produce disentangled representations. Hence, the results in this section might change
if one were to consider a different set of models, for example semi-supervised or fully supervised
one. Furthermore, there are many more potential notions of usefulness such as interpretability and
fairness that we have not considered in our experimental evaluation. Nevertheless, we argue that
the lack of concrete examples of useful disentangled representations necessitates that future work on
disentanglement methods should make this point more explicit. While prior work [54, 34, 41, 20, 21]
successfully applied disentanglement methods such as β-VAE on a variety of downstream tasks, it is
not clear to us that these approaches and trained models performed well because of disentanglement.

5 Conclusions

In this work we first theoretically show that the unsupervised learning of disentangled representations
is fundamentally impossible without inductive biases (Appendix A). We then performed a large-scale
empirical study with six state-of-the-art disentanglement methods, six disentanglement metrics on
seven data sets and conclude the following: (i) A factorizing aggregated posterior (which is sampled)
does not seem to necessarily imply that the dimensions in the representation (which is taken to be
the mean) are uncorrelated. (ii) Random seeds and hyperparameters seem to matter more than the
model but tuning seem to require supervision. (iii) We did not observe that increased disentanglement
implies a decreased sample complexity of learning downstream tasks. Based on these findings, we
suggest three main directions for future research:

Inductive biases and implicit and explicit supervision. Our theoretical impossibility result in
Appendix A highlights the need of inductive biases while our experimental results indicate that the
role of supervision is crucial. As currently there does not seem to exist a reliable strategy to choose
hyperparameters in the unsupervised learning of disentangled representations, we argue that future
work should make the role of inductive biases and implicit and explicit supervision more explicit. We
would encourage and motivate future work on disentangled representation learning that deviates from
the static, purely unsupervised setting considered in this work. Promising settings (that have been
explored to some degree) seem to be for example (i) disentanglement learning with interactions [57],
(ii) when weak forms of supervision e.g. through grouping information are available [5], or (iii) when
temporal structure is available for the learning problem. The last setting seems to be particularly
interesting given recent identifiability results in non-linear ICA [24].

Concrete practical benefits of disentangled representations. In our experiments we investigated
whether higher disentanglement scores lead to increased sample efficiency for downstream tasks
and did not find evidence that this is the case. While these results only apply to the setting and
downstream task used in our study, we are also not aware of other prior work that compellingly shows
the usefulness of disentangled representations. Hence, we argue that future work should aim to show
concrete benefits of disentangled representations. Interpretability and fairness as well as interactive
settings seem to be particularly promising candidates to evaluate usefulness. One potential approach
to include inductive biases, offer interpretability, and generalization is the concept of independent
causal mechanisms and the framework of causal inference [44, 46].

Experimental setup and diversity of data sets. Our study also highlights the need for a sound,
robust, and reproducible experimental setup on a diverse set of data sets in order to draw valid
conclusions. We have observed that it is easy to draw spurious conclusions from experimental results
if one only considers a subset of methods, metrics and data sets. Hence, we argue that it is crucial
for future work to perform experiments on a wide variety of data sets to see whether conclusions
and insights are generally applicable. This is particularly important in the setting of disentanglement
learning as experiments are largely performed on toy-like data sets. We are hence interested in
insights that generalize across multiple data sets rather than the absolute performance on specific
data sets. For this reason, we released disentanglement_lib, the library we created to train
and evaluate the different disentanglement methods end-to-end. We also released more than 10 000
trained models to provide a solid baseline for future methods and metrics.
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A Impossibility result

The first question that we investigate is whether unsupervised disentanglement learning is even
possible for arbitrary generative models. Theorem 1 essentially shows that without inductive biases
both on models and data sets the task is fundamentally impossible. The proof is provided in
Appendix B.

Theorem 1. For d > 1, let z ∼ P denote any distribution which admits a density p(z) =
∏d
i=1 p(zi).

Then, there exists an infinite family of bijective functions f : supp(z)→ supp(z) such that ∂fi(u)
∂uj

6=
0 almost everywhere for all i and j (i.e., z and f(z) are completely entangled) and P (z ≤ u) =
P (f(z) ≤ u) for all u ∈ supp(z) (i.e., they have the same marginal distribution).

Consider the commonly used “intuitive” notion of disentanglement which advocates that a change
in a single ground-truth factor should lead to a single change in the representation. In that setting,
Theorem 1 implies that unsupervised disentanglement learning is impossible for arbitrary generative
models with a factorized prior3 in the following sense: Assume we have p(z) and some P (x|z)
defining a generative model. Consider any unsupervised disentanglement method and assume
that it finds a representation r(x) that is perfectly disentangled with respect to z in the generative
model. Then, Theorem 1 implies that there is an equivalent generative model with the latent variable
ẑ = f(z) where ẑ is completely entangled with respect to z and thus also r(x): as all the entries
in the Jacobian of f are non-zero, a change in a single dimension of z implies that all dimensions
of ẑ change. Furthermore, since f is deterministic and p(z) = p(ẑ) almost everywhere, both
generative models have the same marginal distribution of the observations x by construction, i.e.,
P (x) =

∫
p(x|z)p(z)dz =

∫
p(x|ẑ)p(ẑ)dẑ. Since the (unsupervised) disentanglement method only

has access to observations x, it hence cannot distinguish between the two equivalent generative
models and thus has to be entangled to at least one of them.

This may not be surprising to readers familiar with the causality and ICA literature as it is consistent
with the following argument: After observing x, we can construct infinitely many generative models
which have the same marginal distribution of x. Any one of these models could be the true causal
generative model for the data, and the right model cannot be identified given only the distribution of
x [46]. Similar results have been obtained in the context of non-linear ICA [25]. The main novelty
of Theorem 1 is that it allows the explicit construction of latent spaces z and ẑ that are completely
entangled with each other in the sense of [4]. We note that while this result is very intuitive for
multivariate Gaussians it also holds for distributions which are not invariant to rotation, for example
multivariate uniform distributions.

While Theorem 1 shows that unsupervised disentanglement learning is fundamentally impossible
for arbitrary generative models, this does not necessarily mean it is an impossible endeavour in
practice. After all, real world generative models may have a certain structure that could be exploited
through suitably chosen inductive biases. However, Theorem 1 clearly shows that inductive biases
are required both for the models (so that we find a specific set of solutions) and for the data sets (such
that these solutions match the true generative model). We hence argue that the role of inductive biases
should be made explicit and investigated further as done in our experimental study.

B Proof of Theorem 1

Proof. To show the claim, we explicitly construct a family of functions f using a sequence of
bijective functions. Let d > 1 be the dimensionality of the latent variable z and consider the function
g : supp(z)→ [0, 1]d defined by

gi(v) = P (zi ≤ vi) ∀i = 1, 2, . . . , d.

Since P admits a density p(z) =
∏
i p(zi), the function g is bijective and, for almost every v ∈

supp(z), it holds that ∂gi(v)∂vi
6= 0 for all i and ∂gi(v)

∂vj
= 0 for all i 6= j. Furthermore, it is easy to see

that, by construction, g(z) is a independent d-dimensional uniform distribution. Similarly, consider
the function h : (0, 1]d → Rd defined by

hi(v) = ψ−1(vi) ∀i = 1, 2, . . . , d,

3Theorem 1 only applies to factorized priors; however, we expect that a similar result can be extended to
non-factorizing priors.
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where ψ(·) denotes the cumulative density function of a standard normal distribution. Again, by
definition, h is bijective with ∂hi(v)

∂vi
6= 0 for all i and ∂hi(v)

∂vj
= 0 for all i 6= j. Furthermore, the

random variable h(g(z)) is a d-dimensional standard normal distribution.

Let A ∈ Rd×d be an arbitrary orthogonal matrix with Aij 6= 0 for all i = 1, 2, . . . , d and j =
1, 2, . . . , d. An infinite family of such matrices can be constructed using a Householder transformation:

Choose an arbitrary α ∈ (0, 0.5) and consider the vector v with v1 =
√
α and vi =

√
1−α
d−1 for

i = 2, 3, . . . , d. By construction, we have vTv = 1 and both vi 6= 0 and vi 6=
√

1
2 for all

i = 1, 2, . . . , d. Define the matrix A = Id − 2vvT and note that Aii = 1 − 2v2i 6= 0 for all
1, 2, . . . , d as well as Aij = −vivj 6= 0 for all i 6= j. Furthermore, A is orthogonal since

ATA =
(
Id − 2vvT

)T (
Id − 2vvT

)
= Id − 4vvT + 4v(vTv)vT = Id.

Since A is orthogonal, it is invertible and thus defines a bijective linear operator. The random
variable Ah(g(z)) ∈ Rd is hence an independent, multivariate standard normal distribution since the
covariance matrix ATA is equal to Id.

Since h is bijective, it follows that h−1(Ah(g(z))) is an independent d-dimensional uniform distri-
bution. Define the function f : supp(z)→ supp(z)

f(u) = g−1(h−1(Ah(g(u))))

and note that by definition f(z) has the same marginal distribution as z under P , i.e., P (z ≤ u) =
P (f(z) ≤ u) for all u. Finally, for almost every u ∈ supp(z), it holds that

∂fi(u)

∂uj
=

Aij · ∂hj(g(u))
∂vj

· ∂gj(u)
∂uj

∂hi(h
−1
i (Ah(g(u)))

∂vi
· ∂gi(g

−1(h−1(Ah(g(u)))))
∂vi

6= 0,

as claimed. Since the choice of A was arbitrary, there exists an infinite family of such functions
f .

C Unsupervised learning of disentangled representations with VAEs

Variants of variational autoencoders [30] are considered the state-of-the-art for unsupervised disen-
tanglement learning. One assumes a specific prior P (z) on the latent space and then parameterizes
the conditional probability P (x|z) with a deep neural network. Similarly, the distribution P (z|x)
is approximated using a variational distribution Q(z|x), again parametrized using a deep neural
network. One can then derive the following approximation to the maximum likelihood objective,

max
φ,θ

Ep(x)[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))] (1)

which is also know as the evidence lower bound (ELBO). By carefully considering the KL term,
one can encourage various properties of the resulting presentation. We will briefly review the main
approaches.

Bottleneck capacity. Higgins et al. [19] propose the β-VAE, introducing a hyperparameter in front
of the KL regularizer of vanilla VAEs. They maximize the following expression:

Ep(x)[Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x)‖p(z))]

By setting β > 1, the encoder distribution will be forced to better match the factorized unit Gaussian
prior. This procedure introduces additional constraints on the capacity of the latent bottleneck,
encouraging the encoder to learn a disentangled representation for the data. Burgess et al. [6]
argue that when the bottleneck has limited capacity, the network will be forced to specialize on the
factor of variation that most contributes to a small reconstruction error. Therefore, they propose to
progressively increase the bottleneck capacity, so that the encoder can focus on learning one factor of
variation at the time:

Ep(x)[Eqφ(z|x)[log pθ(x|z)]− γ|DKL(qφ(z|x)‖p(z))− C|]
where C is annealed from zero to some value which is large enough to produce good reconstruction.
In the following, we refer to this model as AnnealedVAE.
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Penalizing the total correlation. Let I(x; z) denote the mutual information between x and z and
note that the second term in equation 1 can be rewritten as

Ep(x)[DKL(qφ(z|x)‖p(z))] = I(x; z) +DKL(q(z)‖p(z)).

Therefore, when β > 1, β-VAE penalizes the mutual information between the latent representation
and the data, thus constraining the capacity of the latent space. Furthermore, it pushes q(z), the so
called aggregated posterior, to match the prior and therefore to factorize, given a factorized prior. Kim
& Mnih [29] argues that penalizing I(x; z) is neither necessary nor desirable for disentanglement.
The FactorVAE [29] and the β-TCVAE [7] augment the VAE objective with an additional regularizer
that specifically penalizes dependencies between the dimensions of the representation:

Ep(x)[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))]− γDKL(q(z)‖
d∏
j=1

q(zj)).

This last term is also known as total correlation [59]. The total correlation is intractable and vanilla
Monte Carlo approximations require marginalization over the training set. [29] propose an estimate
using the density ratio trick [43, 55] (FactorVAE). Samples from

∏d
j=1 q(zj) can be obtained shuffling

samples from q(z) [1]. Concurrently, Chen et al. [7] propose a tractable biased Monte-Carlo estimate
for the total correlation (β-TCVAE).

Disentangled priors. Kumar et al. [32] argue that a disentangled generative model requires a
disentangled prior. This approach is related to the total correlation penalty, but now the aggregated
posterior is pushed to match a factorized prior. Therefore

Ep(x)[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))]− λD(q(z)‖p(z)),

where D is some (arbitrary) divergence. Since this term is intractable when D is the KL divergence,
they propose to match the moments of these distribution. In particular, they regularize the deviation
of either Covp(x)[µφ(x)] or Covqφ [z] from the identity matrix in the two variants of the DIP-VAE.
This results in maximizing either the DIP-VAE-I objective

Ep(x)[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))]− λod
∑
i6=j

[
Covp(x)[µφ(x)]

]2
ij
−

λd
∑
i

([
Covp(x)[µφ(x)]

]
ii
− 1
)2

or the DIP-VAE-II objective

Ep(x)[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))]− λod
∑
i6=j

[
Covqφ [z]

]2
ij
−

λd
∑
i

([
Covqφ [z]

]
ii
− 1
)2
.
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D Implementation of metrics

All our metrics consider the expected representation of training samples (except total correlation for
which we also consider the sampled representation as described in Section 4).

BetaVAE metric. Higgins et al. [19] suggest to fix a random factor of variation in the underlying
generative model and to sample two mini batches of observations x. Disentanglement is then
measured as the accuracy of a linear classifier that predicts the index of the fixed factor based on
the coordinate-wise sum of absolute differences between the representation vectors in the two mini
batches. We sample two batches of 64 points with a random factor fixed to a randomly sampled value
across the two batches and the others varying randomly. We compute the mean representations for
these points and take the absolute difference between pairs from the two batches. We then average
these 64 values to form the features of a training (or testing) point. We train a Scikit-learn logistic
regression with default parameters on 10 000 points. We test on 5000 points.

FactorVAE metric Kim & Mnih [29] address several issues with this metric by using a majority
vote classifier that predicts the index of the fixed ground-truth factor based on the index of the
representation vector with the least variance. First, we estimate the variance of each latent dimension
by embedding 10 000 random samples from the data set and we exclude collapsed dimensions with
variance smaller than 0.05. Second, we generate the votes for the majority vote classifier by sampling
a batch of 64 points, all with a factor fixed to the same random value. Third, we compute the variance
of each dimension of their latent representation and divide by the variance of that dimension we
computed on the data without interventions. The training point for the majority vote classifier consists
of the index of the dimension with the smallest normalized variance. We train on 10 000 points and
evaluate on 5000 points.

Mutual Information Gap. Chen et al. [7] argue that the BetaVAE metric and the FactorVAE
metric are neither general nor unbiased as they depend on some hyperparameters. They compute
the mutual information between each ground truth factor and each dimension in the computed
representation r(x). For each ground-truth factor zk, they then consider the two dimensions in r(x)
that have the highest and second highest mutual information with zk. The Mutual Information Gap
(MIG) is then defined as the average, normalized difference between the highest and second highest
mutual information of each factor with the dimensions of the representation. The original metric was
proposed evaluating the sampled representation. Instead, we consider the mean representation, in
order to be consistent with the other metrics. We estimate the discrete mutual information by binning
each dimension of the representations obtained from 10 000 points into 20 bins. Then, the score is
computed as follows:

1

K

K∑
k=1

1

Hzk

(
I(vjk , zk)−max

j 6=jk
I(vj , zk)

)
Where zk is a factor of variation, vj is a dimension of the latent representation and jk =
arg maxj I(vj , zk).

Modularity. Ridgeway & Mozer [49] argue that two different properties of representations should
be considered, i.e., Modularity and Explicitness. In a modular representation each dimension of r(x)
depends on at most a single factor of variation. In an explicit representation, the value of a factor
of variation is easily predictable (i.e. with a linear model) from r(x). They propose to measure the
Modularity as the average normalized squared difference of the mutual information of the factor of
variations with the highest and second-highest mutual information with a dimension of r(x). They
measure Explicitness as the ROC-AUC of a one-versus-rest logistic regression classifier trained
to predict the factors of variation. In this study, we focus on Modularity as it is the property that
corresponds to disentanglement. For the modularity score, we sample 10 000 points for which we
obtain the latent representations. We discretize these points into 20 bins and compute the mutual
information between representations and the values of the factors of variation. These values are stored
in a matrix m. For each dimension of the representation i, we compute a vector ti as:

ti,f =

{
θi if f = arg maxgmi,g

0 otherwise
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where θi = maxgmig . The modularity score is the average over the dimensions of the representation
of 1− δi where:

δi =

∑
f (mif − tif )2

θ2i (N − 1)

and N is the number of factors.

DCI Disentanglement. Ridgeway & Mozer [49] consider three properties of representations, i.e.,
Disentanglement, Completeness and Informativeness. First, Eastwood & Williams [15] compute
the importance of each dimension of the learned representation for predicting a factor of variation.
The predictive importance of the dimensions of r(x) can be computed with a Lasso or a Random
Forest classifier. Disentanglement is the average of the difference from one of the entropy of the
probability that a dimension of the learned representation is useful for predicting a factor weighted
by the relative importance of each dimension. Completeness, is the average of the difference from
one of the entropy of the probability that a factor of variation is captured by a dimension of the
learned representation. Finally, the Informativeness can be computed as the prediction error of
predicting the factors of variations. We sample 10 000 and 5000 training and test points respectively.
For each factor, we fit gradient boosted trees from Scikit-learn with the default setting. From this
model, we extract the importance weights for the feature dimensions. We take the absolute value of
these weights and use them to form the importance matrix R, whose rows correspond to factors and
columns to the representation. To compute the disentanglement score, we first subtract from 1 the
entropy of each column of this matrix (we treat the columns as a distribution by normalizing them).
This gives a vector of length equal to the dimensionality of the latent space. Then, we compute the
relative importance of each dimension by ρi =

∑
j Rij/

∑
ij Rij and the disentanglement score as∑

i ρi(1−H(Ri)).

SAP score. Kumar et al. [32] propose to compute the R2 score of the linear regression predicting
the factor values from each dimension of the learned representation. For discrete factors, they propose
to train a classifier. The Separated Attribute Predictability (SAP) score is the average difference of
the prediction error of the two most predictive latent dimensions for each factor. We sample 10 000
points for training and 5000 for testing. We then compute a score matrix containing the prediction
error on the test set for a linear SVM with C = 0.01 predicting the value of a factor from a single
latent dimension. The SAP score is computed as the average across factors of the difference between
the top two most predictive latent dimensions.

Downstream task. We sample training sets of different sizes: 10, 100, 1000 and 10 000 points. We
always evaluate on 5000 samples. We consider as a downstream task the prediction of the values of
each factor from r(x). For each factor we fit a different model and report then report the average test
accuracy across factors. We consider two different models. First, we train a cross validated logistic
regression from Scikit-learn with 10 different values for the regularization strength (Cs = 10) and 5
folds. Finally, we train a gradient boosting classifier from Scikit-learn with default parameters.

Total correlation based on fitted Gaussian. We sample 10 000 points and obtain their latent
representation r(x) by either sampling from the encoder distribution of by taking its mean. We
then compute the mean µr(x) and covariance matrix Σr(x) of these points and compute the total
correlation of a Gaussian with mean µr(x) and covariance matrix Σr(x), i.e.,

DKL

N (µr(x),Σr(x))
∥∥∥∏

j

N (µr(x)j ,Σr(x)jj )


where j indexes the dimensions in the latent space. We choose this approach for the following reasons:
In this study, we compute statistics of r(x) which can be either sampled from the probabilistic encoder
or taken to be its mean. We argue that estimating the total correlation as in [29] is not suitable for
this comparison as it consistently underestimate the true value (see Figure 7 in [29]) and depends on
a non-convex optimization procedure (for fitting the discriminator). The estimate of [7] is also not
suitable as the mean representation is a deterministic function for the data, therefore we cannot use
the encoder distribution for the estimate. Furthermore, we argue that the total correlation based on the
fitted Gaussian provides a simple and robust way to detect if a representation is not factorizing based
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on the first two moments. In particular, if it is high, it is a strong signal that the representation is not
factorizing (while a low score may not imply the opposite). We note that this procedure is similar to
the penalty of DIP-VAE-I. Therefore, it is not surprising that DIP-VAE-I achieves a low score for the
mean representation.

E Experimental conditions and guiding principles.

In our study, we seek controlled, fair and reproducible experimental conditions. We consider the
case in which we can sample from a well defined and known ground-truth generative model by first
sampling the factors of variations from a distribution P (z) and then sampling an observation from
P (x|z). Our experimental protocol works as follows: During training, we only observe the samples
of x obtained by marginalizing P (x|z) over P (z). After training, we obtain a representation r(x)
by either taking a sample from the probabilistic encoder Q(z|x) or by taking its mean. Typically,
disentanglement metrics consider the latter as the representation r(x). During the evaluation, we
assume to have access to the whole generative model, i.e. we can draw samples from both P (z)
and P (x|z). In this way, we can perform interventions on the latent factors as required by certain
evaluation metrics. We explicitly note that we effectively consider the statistical learning problem
where we optimize the loss and the metrics on the known data generating distribution. As a result, we
do not use separate train and test sets but always take i.i.d. samples from the known ground-truth
distribution. This is justified as the statistical problem is well defined and it allows us to remove the
additional complexity of dealing with overfitting and empirical risk minimization.

F Limitations of our study.

While we aim to provide a useful and fair experimental study, there are clear limitations to the
conclusions that can be drawn from it due to design choices that we have taken. In all these choices,
we have aimed to capture what is considered the state-of-the-art inductive bias in the community.

On the data set side, we only consider images with a heavy focus on synthetic images. We do not
explore other modalities and we only consider the toy scenario in which we have access to a data
generative process with uniformly distributed factors of variations. Furthermore, all our data sets
have a small number of independent discrete factors of variations without any confounding variables.

For the methods, we only consider the inductive bias of convolutional architectures. We do not test
fully connected architectures or additional techniques such as skip connections. Furthermore, we do
not explore different activation functions, reconstruction losses or different number of layers. We
also do not vary any other hyperparameters other than the regularization weight. In particular, we do
not evaluate the role of different latent space sizes, optimizers and batch sizes. We do not test the
sample efficiency of the metrics but simply set the size of the train and test set to large values.

Implementing the different disentanglement methods and metrics has proven to be a difficult endeav-
our. Few “official” open source implementations are available and there are many small details to
consider. We take a best-effort approach to these implementations and implemented all the methods
and metrics from scratch as any sound machine learning practitioner might do based on the original
papers. When taking different implementation choices than the original papers, we explicitly state
and motivate them.

Inductive biases. To fairly evaluate the different approaches, we separate the effect of regularization
(in the form of model choice and regularization strength) from the other inductive biases (e.g., the
choice of the neural architecture). Each method uses the same convolutional architecture, optimizer,
hyperparameters of the optimizer and batch size. All methods use a Gaussian encoder where the mean
and the log variance of each latent factor is parametrized by the deep neural network, a Bernoulli
decoder and latent dimension fixed to 10. We note that these are all standard choices in prior work
[19, 29].

We choose six different regularization strength, i.e., hyperparameter values, for each of the considered
methods. The key idea was to take a wide enough set to ensure that there are useful hyperparameters
for different settings for each method and not to focus on specific values known to work for specific
data sets. However, the values are partially based on the ranges that are prescribed in the literature
(including the hyperparameters suggested by the authors).
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Table 2: Encoder and Decoder architecture for the main experiment.

Encoder Decoder

Input: 64× 64× number of channels Input: R10

4× 4 conv, 32 ReLU, stride 2 FC, 256 ReLU
4× 4 conv, 32 ReLU, stride 2 FC, 4× 4× 64 ReLU
4× 4 conv, 64 ReLU, stride 2 4× 4 upconv, 64 ReLU, stride 2
4× 4 conv, 64 ReLU, stride 2 4× 4 upconv, 32 ReLU, stride 2
FC 256, F2 2× 10 4× 4 upconv, 32 ReLU, stride 2

4× 4 upconv, number of channels, stride 2

G Differences with previous implementations.

As described above, we use a single choice of architecture, batch size and optimizer for all the
methods which might deviate from the settings considered in the original papers. However, we argue
that unification of these choices is the only way to guarantee a fair comparison among the different
methods such that valid conclusions may be drawn in between methods. The largest change is that
for DIP-VAE and for β-TCVAE we used a batch size of 64 instead of 400 and 2048 respectively.
However, Chen et al. [7] shows in Section H.2 of the Appendix that the bias in the mini-batch
estimation of the total correlation does not significantly affect the performances of their model even
with small batch sizes. For DIP-VAE-II, we did not implement the additional regularizer on the third
order central moments since no implementation details are provided and since this regularizer is only
used on specific data sets.

Our implementations of the disentanglement metrics deviate from the implementations in the original
papers as follows: First, we strictly enforce that all factors of variations are treated as discrete
variables as this corresponds to the assumed ground-truth model in all our data sets. Hence, we used
classification instead of regression for the SAP score and the disentanglement score of [15]. This is
important as it does not make sense to use regression on true factors of variations that are discrete
(e.g., shape on dSprites). Second, wherever possible, we resorted to using the default, well-tested
Scikit-learn [45] implementations instead of using custom implementations with potentially hard to
set hyperparameters. Third, for the Mutual Information Gap [7], we estimate the discrete mutual
information (as opposed to continuous) on the mean representation (as opposed to sampled) on a
subset of the samples (as opposed to the whole data set). We argue that this is the correct choice as the
mean is usually taken to be the representation. Hence, it would be wrong to consider the full Gaussian
encoder or samples thereof as that would correspond to a different representation. Finally, we fix the
number of sampled train and test points across all metrics to a large value to ensure robustness.

H Main experiment hyperparameters

In our study, we fix all hyperparameters except one per each model. Model specific hyperparameters
can be found in Table 3. The common architecture is depicted in Table 2 along with the other fixed
hyperparameters in Table 4a. For the discriminator in FactorVAE we use the architecture in Table 4b
with hyperparameters in Table 4c. All the hyperparameters for which we report single values were
not varied and are selected based on the literature.

I Data sets and preprocessing

All the data sets contains images with pixels between 0 and 1. Color-dSprites: Every time we
sample a point, we also sample a random scaling for each channel uniformly between 0.5 and 1.
Noisy-dSprites: Every time we sample a point, we fill the background with uniform noise. Scream-
dSprites: Every time we sample a point, we sample a random 64× 64 patch of The Scream painting.
We then change the color distribution by adding a random uniform number to each channel and divide
the result by two. Then, we embed the dSprites shape by inverting the colors of each of its pixels.
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Table 3: Model’s hyperparameters. We allow a sweep over a single hyperparameter for each model.

Model Parameter Values
β-VAE β [1, 2, 4, 6, 8, 16]
AnnealedVAE cmax [5, 10, 25, 50, 75, 100]

iteration threshold 100000
γ 1000

FactorVAE γ [10, 20, 30, 40, 50, 100]
DIP-VAE-I λod [1, 2, 5, 10, 20, 50]

λd 10λod
DIP-VAE-II λod [1, 2, 5, 10, 20, 50]

λd λod
β-TCVAE β [1, 2, 4, 6, 8, 10]

Table 4: Other fixed hyperparameters.

(a) Hyperparameters common to
each of the considered methods.

Parameter Values

Batch size 64
Latent space dimension 10
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0001
Decoder type Bernoulli
Training steps 300000

(b) Architecture for the discrimi-
nator in FactorVAE.

Discriminator
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 2

(c) Parameters for the discrimina-
tor in FactorVAE.

Parameter Values
Batch size 64
Optimizer Adam
Adam: beta1 0.5
Adam: beta2 0.9
Adam: epsilon 1e-8
Adam: learning rate 0.0001

J Detailed experimental results

Given the breadth of the experimental study, we summarized our key findings in Section 4 and
presented figures that we picked to be representative of our results. This section contains a self-
contained presentation of all our experimental results. In particular, we present a complete set of
plots for the different methods, data sets and disentanglement metrics.

J.1 Can one achieve a good reconstruction error across data sets and models?

First, we check for each data set that we manage to train models that achieve reasonable recon-
structions. Therefore, for each data set we sample a random model and show real samples next to
their reconstructions. The results are depicted in Figure 7. As expected, the additional variants of
dSprites with continuous noise variables are harder than the original data set. On Noisy-dSprites
and Color-dSprites the models produce reasonable reconstructions with the noise on Noisy-dSprites
being ignored. Scream-dSprites is even harder and we observe that the shape information is lost.
On the other data sets, we observe that reconstructions are blurry but objects are distinguishable.
SmallNORB seems to be the most challenging data set.

J.2 Can current methods enforce a uncorrelated aggregated posterior and representation?

We investigate whether the considered unsupervised disentanglement approaches are effective at
enforcing a factorizing and thus uncorrelated aggregated posterior. For each trained model, we sample
10 000 images and compute a sample from the corresponding approximate posterior. We then fit a
multivariate Gaussian distribution over these 10 000 samples by computing the empirical mean and
covariance matrix. Finally, we compute the total correlation of the fitted Gaussian and report the
median value for each data set, method and hyperparameter value.
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(a) DIP-VAE-I trained on dSprites. (b) β-VAE trained on Noisy-dSprites.

(c) FactorVAE trained on Color-dSprites. (d) FactorVAE trained on Scream-dSprites.

(e) AnneaeledVAE trained on Shapes3D. (f) β-TCVAE trained on SmallNORB.

(g) Reconstructions for a DIP-VAE-II trained on Cars3D.

Figure 7: Reconstructions for different data sets and methods. Odd columns show real samples and
even columns their reconstruction. As expected, the additional variants of dSprites with continuous
noise variables are harder than the original data set. On Noisy-dSprites and Color-dSprites the models
produce reasonable reconstructions with the noise on Noisy-dSprites being ignored. Scream-dSprites
is even harder and we observe that the shape information is lost. On the other data sets, we observe
that reconstructions are blurry but objects are distinguishable.
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Figure 8: Total correlation of sampled representation plotted against regularization strength for
different data sets and approaches (except AnnealedVAE). The total correlation of the sampled
representation decreases as the regularization strength is increased.
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Figure 9: Total correlation of mean representation plotted against regularization strength for different
data sets and approaches (except AnnealedVAE). The total correlation of the mean representation
does not necessarily decrease as the regularization strength is increased.
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Figure 10: Log total correlation of mean vs sampled representations. For a large number of models,
the total correlation of the mean representation is higher than that of the sampled representation.

Figure 8 shows the total correlation of the sampled representation plotted against the regularization
strength for each data set and method except AnnealedVAE. On all data sets except SmallNORB, we
observe that plain vanilla variational autoencoders (i.e. the β-VAE model with β = 1) exhibit the
highest total correlation. For β-VAE and β-TCVAE, it can be clearly seen that the total correlation of
the sampled representation decreases on all data sets as the regularization strength (in the form of β)
is increased. The two variants of DIP-VAE exhibit low total correlation across the data sets except
DIP-VAE-I which incurs a slightly higher total correlation on SmallNORB compared to a vanilla
VAE. Increased regularization in the DIP-VAE objective also seems to lead a reduced total correlation,
even if the effect is not as pronounced as for β-VAE and β-TCVAE. While FactorVAE achieves a low
total correlation on all data sets except on SmallNORB, we observe that the total correlation does
not seem to decrease with increasing regularization strength. We further observe that AnnealedVAE
(shown in Figure 24) is much more sensitive to the regularization strength. However, on all data sets
except Scream-dSprites (on which AnnealedVAE performs poorly), the total correlation seems to
decrease with increased regularization strength.

While many of the considered methods aim to enforce a factorizing aggregated posterior, they use
the mean vector of the Gaussian encoder as the representation and not a sample from the Gaussian
encoder. This may seem like a minor, irrelevant modification; however, it is not clear whether a
factorizing aggregated posterior also ensures that the dimensions of the mean representation are
uncorrelated. To test whether this is true, we compute the mean of the Gaussian encoder for the same
10 000 samples, fit a multivariate Gaussian and compute the total correlation of that fitted Gaussian.
Figure 9 shows the total correlation of the mean representation plotted against the regularization
strength for each data set and method except AnnealedVAE. We observe that, for β-VAE and β-
TCVAE, increased regularization leads to a substantially increased total correlation of the mean
representations. This effect can also be observed for for FactorVAE, albeit in a less extreme fashion.
For DIP-VAE-I, we observe that the total correlation of the mean representation is consistently low.
This is not surprising as the DIP-VAE-I objective directly optimizes the covariance matrix of the
mean representation to be diagonal which implies that the corresponding total correlation (as we
compute it) is low. The DIP-VAE-II objective which enforces the covariance matrix of the sampled
representation to be diagonal seems to lead to a factorized mean representation on some data sets
(for example Shapes3D and Cars3D), but also seems to fail on others (dSprites). For AnnealedVAE
(shown in Figure 25), we overall observe mean representations with a very high total correlation.
In Figure 10, we further plot the log total correlations of the sampled representations versus the
mean representations for each of the trained models. It can be clearly seen that for a large number
of models, the total correlation of the mean representations is much higher than that of the sampled
representations. The same trend can be seen computing the average discrete mutual information of
the representation. In this case, the DIP-VAE-I exhibit increasing mutual information in both the
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mean and sampled representation. This is to be expected as DIP-VAE-I enforces a variance of one for
the mean representation.

Implications. Overall, these results lead us to conclude with minor exceptions that the considered
methods are effective at enforcing an aggregated posterior whose individual dimensions are not
correlated but that this does not seem to imply that the dimensions of the mean representation (usually
used for representation) are uncorrelated.

J.3 How much do existing disentanglement metrics agree?

As there exists no single, common definition of disentanglement, an interesting question is to see
how much different proposed metrics agree. Figure 11 shows pairwise scatter plots of the different
considered metrics on dSprites where each point corresponds to a trained model, while Figure 12
shows the Spearman rank correlation between different disentanglement metrics on different data sets.
Overall, we observe that all metrics except Modularity seem to be correlated strongly on the data
sets dSprites, Color-dSprites and Scream-dSprites and mildly on the other data sets. There appear
to be two pairs among these metrics that capture particularly similar notions: the BetaVAE and the
FactorVAE score as well as the Mutual Information Gap and DCI Disentanglement.

Implication. All disentanglement metrics except Modularity appear to be correlated. However, the
level of correlation changes between different data sets.

J.4 How important are different models and hyperparameters for disentanglement?

The primary motivation behind the considered methods is that they should lead to improved disentan-
glement scores. This raises the question how disentanglement is affected by the model choice, the
hyperparameter selection and randomness (in the form of different random seeds). To investigate this,
we compute all the considered disentanglement metrics for each of our trained models. In Figure 13,
we show the range of attainable disentanglement scores for each method on each data set. We observe
that these ranges are heavily overlapping for different models leading us to (qualitatively) conclude
that the choice of hyperparameters and the random seed seems to be substantially more important
than the choice of objective function. While certain models seem to attain better maximum scores
on specific data sets and disentanglement metrics, we do not observe any consistent pattern that one
model is consistently better than the other. Furthermore, we note that in our study we have fixed the
range of hyperparameters a priori to six different values for each model and did not explore additional
hyperparameters based on the results (as that would bias our study). However, this also means that
specific models may have performed better than in Figure 13 if we had chosen a different set of
hyperparameters. In Figure 14, we further show the impact of randomness in the form of random
seeds on the disentanglement scores. Each violin plot shows the distribution of the disentanglement
metric across all 50 trained models for each model and hyperparameter setting on Cars3D. We clearly
see that randomness (in the form of different random seeds) has a substantial impact on the attained
result and that a good run with a bad hyperparameter can beat a bad run with a good hyperparameter
in many cases.

Finally, we perform a variance analysis by trying to predict the different disentanglement scores using
ordinary least squares for each data set: If we allow the score to depend only on the objective function
(categorical variable), we are only able to explain 37% of the variance of the scores on average.
Similarly, if the score depends on the Cartesian product of objective function and regularization
strength (again categorical), we are able to explain 59% of the variance while the rest is due to the
random seed. In Table 5, we report the percentage of variance explained for the different metrics in
each data set considering the regularization strength or not.

Implication. The disentanglement scores of unsupervised models are heavily influenced by ran-
domness (in the form of the random seed) and the choice of the hyperparameter (in the form of the
regularization strength). The objective function appears to have less impact.

J.5 Are there reliable recipes for model selection?

In this section, we investigate how good hyperparameters can be chosen and how we can distinguish
between good and bad training runs. In this paper, we advocate that model selection should not
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Figure 11: Pairwise scatter plots of different disentanglement metrics on dSprites. All the metrics
except Modularity appear to be correlated. The strongest correlation seems to be between MIG and
DCI Disentanglement.
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Figure 12: Rank correlation of different metrics on different data sets. Overall, we observe that all
metrics except Modularity seem to be strongly correlated on the data sets dSprites, Color-dSprites
and Scream-dSprites and mildly on the other data sets. There appear to be two pairs among these
metrics that capture particularly similar notions: the BetaVAE and the FactorVAE score as well as the
Mutual Information Gap and DCI Disentanglement.

25



0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
a
lu

e

Metric = BetaVAE Score

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Metric = FactorVAE Score

0.1

0.0

0.1

0.2

0.3

0.4

0.5 Metric = MIG

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Metric = DCI Disentanglement

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00 Metric = Modularity

0.02

0.00

0.02

0.04

0.06

0.08

0.10

D
a
ta

se
t =

 d
S
p
rite

s

Metric = SAP

0.5

0.6

0.7

0.8

0.9

V
a
lu

e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.02

0.00

0.02

0.04

0.06

0.08

0.10

D
a
ta

se
t =

 C
o
lo

r-d
S
p
rite

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
a
lu

e

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.5

0.6

0.7

0.8

0.9

1.0

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
a
ta

se
t =

 N
o
isy

-d
S
p
rite

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
a
lu

e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
a
ta

se
t =

 S
cre

a
m

-d
S
p
rite

s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
a
lu

e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0.05

0.00

0.05

0.10

0.15

0.20

D
a
ta

se
t =

 S
m

a
llN

O
R

B

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

V
a
lu

e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
a
ta

se
t =

 C
a
rs3

D

0 1 2 3 4 5
Model

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

V
a
lu

e

0 1 2 3 4 5
Model

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Model

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
Model

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5
Model

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0 1 2 3 4 5
Model

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
a
ta

se
t =

 S
h
a
p
e
s3

D

Figure 13: Score for each method for each score (column) and data set (row). Models are abbreviated
(0=β-VAE, 1=FactorVAE, 2=β-TCVAE, 3=DIP-VAE-I, 4=DIP-VAE-II, 5=AnnealedVAE). The
scores are heavily overlapping and we do not observe a consistent pattern. We conclude that
hyperparameters matter more than the model choice.
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Table 5: Variance of the disentanglement scores explained by the objective function or its cartesian
product with the hyperparameters. The variance explained is computed regressing using ordinary
least squares.

(a) Percentage of variance explained regressing the disentanglement scores on the different data sets from the
objective function only. We abbreviate the DCI Disentanglement as “DCI Dis.”.

BetaVAE Score DCI Disentanglement FactorVAE Score MIG Modularity SAP

Cars3D 1% 36% 26% 34% 37% 13%
Color-dSprites 30% 39% 52% 26% 23% 29%
Noisy-dSprites 17% 21% 17% 11% 41% 6%
Scream-dSprites 89% 50% 76% 45% 60% 56%
Shapes3D 31% 21% 14% 20% 26% 10%
SmallNORB 68% 71% 58% 71% 62% 62%
dSprites 29% 41% 47% 26% 29% 31%

(b) Percentage of variance explained regressing the disentanglement scores on the different data sets from the
Cartesian product of objective function and regularization strength. We abbreviate the DCI Disentanglement as
“DCI Dis.”.

BetaVAE Score DCI Disentanglement FactorVAE Score MIG Modularity SAP

Cars3D 4% 69% 42% 59% 51% 17%
Color-dSprites 69% 80% 61% 76% 40% 56%
Noisy-dSprites 26% 42% 25% 29% 50% 20%
Scream-dSprites 93% 74% 83% 66% 68% 75%
Shapes3D 61% 78% 53% 59% 49% 35%
SmallNORB 87% 89% 81% 88% 72% 82%
dSprites 59% 77% 54% 72% 39% 56%

depend on the considered disentanglement score for the following reasons: The point of unsupervised
learning of disentangled representation is that there is no access to the labels as otherwise we could
incorporate them and would have to compare to semi-supervised and fully supervised methods. All
the disentanglement metrics considered in this paper require a substantial amount of ground-truth
labels or the full generative model (for example for the BetaVAE and the FactorVAE metric). Hence,
one may substantially bias the results of a study by tuning hyperparameters based on (supervised)
disentanglement metrics. Furthermore, we argue that it is not sufficient to fix a set of hyperparameters
a priori and then show that one of those hyperparameters and a specific random seed achieves a good
disentanglement score as it amounts to showing the existence of a good model, but does not guide
the practitioner in finding it. Finally, in many practical settings, we might not even have access to
adequate labels as it may be hard to identify the true underlying factor of variations, in particular, if
we consider data modalities that are less suitable to human interpretation than images.

In the remainder of this section, we hence investigate and assess different ways how hyperparameters
and good model runs could be chosen. In this study, we focus on choosing the learning model and
the regularization strength corresponding to that loss function. However, we note that in practice this
problem is likely even harder as a practitioner might also want to tune other modeling choices such
architecture or optimizer.

General recipes for hyperparameter selection. We first investigate whether we may find gener-
ally applicable “rules of thumb” for choosing the hyperparameters. For this, we plot in Figure 15
different disentanglement metrics against different regularization strengths for each model and each
data set. The values correspond to the median obtained values across 50 random seeds for each
model, hyperparameter and data set. There seems to be no model dominating all the others and for
each model there does not seem to be a consistent strategy in choosing the regularization strength to
maximize disentanglement scores. Furthermore, even if we could identify a good objective function
and corresponding hyperparameter value, we still could not distinguish between a good and a bad
training run.
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Table 6: Probability of outperforming random model selection on a different random seed. A random
disentanglement metric and data set is sampled and used for model selection. That model is then
compared to a randomly selected model: (i) on the same metric and data set, (ii) on the same metric
and a random different data set, (iii) on a random different metric and the same data set, and (iv) on
a random different metric and a random different data set. The results are averaged across 10 000
random draws.

Random different data set Same data set

Random different metric 54.9% 62.6%
Same metric 59.3% 80.7%

Model selection based on unsupervised scores. Another approach could be to select hyperparam-
eters based on unsupervised scores such as the reconstruction error, the KL divergence between the
prior and the approximate posterior, the Evidence Lower Bound or the estimated total correlation
of the sampled representation. This would have the advantage that we could select specific trained
models and not just good hyperparameter settings whose median trained model would perform
well. To test whether such an approach is fruitful, we compute the rank correlation between these
unsupervised metrics and the disentanglement metrics and present it in Figure 16. While we do
observe some correlations, no clear pattern emerges which leads us to conclude that this approach is
unlikely to be successful in practice.

Hyperparameter selection based on transfer. The final strategy for hyperparameter selection
that we consider is based on transferring good settings across data sets. The key idea is that good
hyperparameter settings may be inferred on data sets where we have labels available (such as dSprites)
and then applied to novel data sets. To test this idea, we plot in Figure 18 the different disentanglement
scores obtained on dSprites against the scores obtained on other data sets. To ensure robustness of the
results, we again consider the median across all 50 runs for each model, regularization strength, and
data set. We observe that the scores on Color-dSprites seem to be strongly correlated with the scores
obtained on the regular version of dSprites. Figure 17 further shows the rank correlations obtained
between different data sets for each disentanglement scores. This confirms the strong and consistent
correlation between dSprites and Color-dSprites. While these result suggest that some transfer of
hyperparameters is possible, it does not allow us to distinguish between good and bad random seeds
on the target data set.

To illustrate this, we compare such a transfer based approach to hyperparameter selection to random
model selection as follows: We first randomly sample one of our 50 random seeds and consider
the set of trained models with that random seed. First, we sample one of our 50 random seeds, a
random disentanglement metric and a data set and use them to select the hyperparameter setting with
the highest attained score. Then, we compare that selected hyperparameter setting to a randomly
selected model on either the same or a random different data set, based on either the same or a random
different metric and for a randomly sampled seed. Finally, we report the percentage of trials in which
this transfer strategy outperforms or performs equally well as random model selection across 10 000
trials in Table 6. If we choose the same metric and the same data set (but a different random seed), we
obtain a score of 80.7%. If we aim to transfer for the same metric across data sets, we achieve around
59.3%. Finally, if we transfer both across metrics and data sets, our performance drops to 54.9%.

Implications. Unsupervised model selection remains an unsolved problem. Transfer of good
hyperparameters between metrics and data sets does not seem to work as there appears to be no
unsupervised way to distinguish between good and bad random seeds on the target task.

J.6 Are these disentangled representations useful for downstream tasks in terms of the
sample complexity of learning?

One of the key motivations behind disentangled representations is that they are assumed to be
useful for later downstream tasks. In particular, it is argued that disentanglement should lead
to a better sample complexity of learning [4, 52, 46]. In this section, we consider the simplest
downstream classification task where the goal is to recover the true factors of variations from
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the learned representation using either multi-class logistic regression (LR) or gradient boosted
trees (GBT). Our goal is to investigate the relationship between disentanglement and the average
classification accuracy on these downstream tasks as well as whether better disentanglement leads to
a decreased sample complexity of learning.

To compute the classification accuracy for each trained model, we sample true factors of variations
and observations from our ground truth generative models. We then feed the observations into our
trained model and take the mean of the Gaussian encoder as the representations. Finally, we predict
each of the ground-truth factors based on the representations with a separate learning algorithm. We
consider both a 5-fold cross-validated multi-class logistic regression as well as gradient boosted
trees of the Scikit-learn package. For each of these methods, we train on 10, 100, 1000 and 10 000
samples. We compute the average accuracy across all factors of variation using an additional set
10 000 randomly drawn samples.

Figure 19 shows the rank correlations between the disentanglement metrics and the downstream
performance for all considered data sets. We observe that all metrics except Modularity seem to
be correlated with increased downstream performance on the different variations of dSprites and to
some degree on Shapes3D. However, it is not clear whether this is due to the fact that disentangled
representations perform better or whether some of these scores actually also (partially) capture the
informativeness of the evaluated representation. Furthermore, the correlation is weaker or inexistent
on other data sets (e.g., Cars3D).

To assess the sample complexity argument we compute for each trained model a statistical efficiency
score which we define as the average accuracy based on 100 samples divided by the average accuracy
based on 10 000 samples for either the logistic regression or the gradient boosted trees. The key idea
is that if disentangled representations lead to sample efficiency, then they should also exhibit a higher
statistical efficiency score. The corresponding results are shown in Figures 20 and 21 where we plot
the statistical efficiency versus different disentanglement metrics for different data sets and models
and in Figure 19 where we show rank correlations. Overall, we do not observe conclusive evidence
that models with higher disentanglement scores also lead to higher statistical efficiency. We note
that some AnnealedVAE models seem to exhibit a high statistical efficiency on Scream-dSprites and
to some degree on Noisy-dSprites. This can be explained by the fact that these models have low
downstream performance and that hence the accuracy with 100 samples is similar to the accuracy
with 10 000 samples. We further observe that DCI Disentanglement and MIG seem to be lead to
a better statistical efficiency on the the data set Shapes3D for gradient boosted trees. Figures 22
and 23 show the downstream performance for three groups with increasing levels of disentanglement
(measured in DCI Disentanglement and MIG respectively). We observe that indeed models with
higher disentanglement scores seem to exhibit better performance for gradient boosted trees with 100
samples. However, considering all data sets, it appears that overall increased disentanglement is rather
correlated with better downstream performance (on some data sets) and not statistical efficiency. We
do not observe that higher disentanglement scores reliably lead to a higher sample efficiency.

Implications. While the empirical results in this section are negative, they should also be interpreted
with care. After all, we have seen in previous sections that the models considered in this study fail
to reliably produce disentangled representations. Hence, the results in this section might change
if one were to consider a different set of models, for example semi-supervised or fully supervised
one. Furthermore, there are many more potential notions of usefulness such as interpretability and
fairness that we have not considered in our experimental evaluation. Nevertheless, we argue that the
lack of concrete examples of useful disentangled representations necessitates that future work on
disentanglement methods should make this point more explicit. While prior work [54, 34, 41, 20, 21]
successfully applied disentanglement methods such as β-VAE on a variety of downstream tasks, it is
not clear to us that these approaches and trained models performed well because of disentanglement.
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Figure 14: Distribution of scores for different models, hyperparameters and regularization strengths
on Cars3D. We clearly see that randomness (in the form of different random seeds) has a substantial
impact on the attained result and that a good run with a bad hyperparameter can beat a bad run with a
good hyperparameter in many cases.
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Figure 15: Score vs hyperparameters for each score (column) and data set (row). There seems to be
no model dominating all the others and for each model there does not seem to be a consistent strategy
in choosing the regularization strength.
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Figure 16: Rank correlation between unsupervised scores and supervised disentanglement metrics.
The unsupervised scores we consider do not seem to be useful for model selection.
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Figure 17: Rank-correlation of different disentanglement metrics across different data sets. Good
hyperparameters only seem to transfer between dSprites and Color-dSprites but not in between the
other data sets.
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Figure 18: Disentanglement scores on dSprites vs other data sets. Good hyperparameters only seem
to transfer consistently from dSprites to Color-dSprites.
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Figure 19: Rank-correlation between the metrics and the performance on downstream task on different
data sets. We observe some correlation between most disentanglement metrics and downstream
performance. However, the correlation varies across data sets.
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Figure 20: Statistical efficiency (accuracy with 100 samples ÷ accuracy with 10 000 samples) based
on a logistic regression versus disentanglement metrics for different models and data sets. We do not
observe that higher disentanglement scores lead to higher statistical efficiency.
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Figure 21: Statistical efficiency (accuracy with 100 samples ÷ accuracy with 10 000 samples) based
on gradient boosted trees versus disentanglement metrics for different models and data sets. We do
not observe that higher disentanglement scores lead to higher statistical efficiency (except for DCI
Disentanglement and Mutual Information Gap on Shapes3D and to some extend in Cars3D).
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Figure 22: Downstream performance for three groups with increasing DCI Disentanglement scores.
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Figure 23: Downstream performance for three groups with increasing MIG scores.
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Figure 24: Total correlation of sampled representation plotted against regularization strength for
different data sets and approaches (including AnnealedVAE).
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Figure 25: Total correlation of mean representation plotted against regularization strength for different
data sets and approaches (including AnnealedVAE).
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Figure 26: The average mutual information of the dimensions of the sampled representation generally
decrease except for DIP-VAE-I.
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Figure 27: The average mutual information of the dimensions of the mean representation generally
increase.
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