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Abstract
Cell nuclei detection is the basis for many tasks in Computational Pathology ranging from cancer
diagnosis to survival analysis. It is a challenging task due to the significant inter/intra-class variation
of cellular morphology. The problem is aggravated by the need for additional accurate localization
of the nuclei for downstream applications. Most of the existing methods regress the probability of
each pixel being a nuclei centroid, while relying on post-processing to implicitly infer the rough
location of nuclei centers. To solve this problem we propose a novel multi-task learning framework
called vector oriented confidence accumulation (VOCA) based on deep convolutional encoder-
decoder. The model learns a confidence score, localization vector and weight of contribution for
each pixel. The three tasks are trained concurrently and the confidence of pixels are accumulated
according to the localization vectors in detection stage to generate a sparse map that describes
accurate and precise cell locations. A detailed comparison to the state-of-the-art based on a publicly
available colorectal cancer dataset showed superior detection performance and significantly higher
localization accuracy.

1. Introduction

Object detection in natural images has been defined as fitting tight bounding boxes around rec-
ognized objects. The best examples are the prevailing Fast/Faster-RCNN models (Girshick et al.,
2014; Girshick, 2015; Ren et al., 2015) and closely related techniques (Redmon et al., 2016; Liu
et al., 2016; He et al., 2017). Cell nuclei detection on histopathology slides requires identification
of millions of densely packed small objects per image. This is in contrast to these earlier deep
learning works in which usually a few dominant objects are annotated. Due to the several orders of
magnitude increase in numbers of objects detected per image, the performance of region proposal
based detectors is sub-optimal on cell detection in histology images (Jeong et al., 2017). Further,
obtaining annotation of thousands of nuclei bounding boxes is impractical due to the common case
of weak nuclei boundaries and high workload of pathologists. To this end, these problems are usu-
ally formulated as predicting the (x,y) coordinates of the objects’ center supervised by point labels
(Fuchs et al., 2009).

Most deep learning approaches to cell nuclei detection are based on convolutional neural networks
that predict the probability of each pixel being a nucleus centroid (Cireşan et al., 2013; Wang et al.,
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2014; Xie et al., 2015b; Chen and Srinivas, 2016; Sirinukunwattana et al., 2016; Zhou et al., 2017;
Raza et al., 2018). The final detection of the objects is achieved by identifying the peaks in the
probability map using mean shift (Fuchs et al., 2009) or non-maximum suppression (Neubeck and
Van Gool, 2006). Fast auto-encoded regression has recently been employed as a technique to ex-
plore improved speed and scalability in cell detection over the traditional sliding-window system
(Xie et al., 2015a; Chen and Srinivas, 2016; Zhou et al., 2017). Current methods are designed to
recognize the cell nuclei and rely on post-processing and ad hoc fine-tuning to implicitly infer cell
locations, which leads to accumulation of localization error as the number of detected objects gets
larger. We must emphasize that while the challenging cell detection is not a clinically useful end
as a standalone task, the accurate coordinates of cell nuclei are simply the prerequisite for many
downstream applications (e.g. multi-class cell detection for tumor micro-environment analysis, tu-
mor architecture, etc).

To solve this problem, we propose a novel multi-task deep learning method for cell detection. Based
on convolutional encoder-decoder, the model concurrently learns 1) binary confidence score, 2) lo-
calization vector and 3) weight of contribution for each pixel. In detection stage, the confidence
scores are weighted and accumulated to the positions pointed by the localization vectors. We
call this method vector oriented confidence accumulation (VOCA). We demonstrate that the three
closely correlated but distinct tasks are mutually beneficial when trained as an integrated model
(Section 5.1). VOCA explicitly learns the location of nuclei centroid and thus produces profoundly
peaked accumulator maps which describe accurate and precise nuclei locations, and enables fast
and robust post-processing (Section 5.2). Comparison experiments based on a publicly available
colorectal cancer dataset (Sirinukunwattana et al., 2016) shows that our proposed method outper-
forms the existing methods in terms of F1 score for cell detection, and gives significantly higher
nuclei localization accuracy (Section 5.3).

2. Related work

Early attempts at cell nuclei detection utilized human expert-designed features describing intensity
distribution and morphological patterns (Cosatto et al., 2008; Al-Kofahi et al., 2010; Kuse et al.,
2011; Arteta et al., 2012; Ali and Madabhushi, 2012; Veta et al., 2013; Vink et al., 2013). It is
notable that many of these works confabulate the related but separate concepts of nuclei detection
and segmentation. This confusion is likely because hand-crafted features are often shape oriented.
These approaches tend to be brittle due to the significant heterogeneity of histology slides and cel-
lular morphology and require additional engineering and tuning between different datasets.

Recent works employing deep learning for cell nuclei detection have achieved state-of-the-art re-
sults. Cireşan et al. (2013) utilized deep neural network to differentiate between mitotic nuclei and
background. Cruz-Roa et al. (2013) and Xu et al. (2016) learned unsupervised features via auto-
encoders for cell detection, which was extended by Wang et al. (2014) by combining hand-crafted
features with deep learning. While object detection at its heart is the combination of object recog-
nition and localization, these works depending on pixel-wise binary classification only considered
the first task. Xie et al. (2015b) proposed a structured regression approach to predict the probability
of each position being a nucleus centroid. Their regression targets embedded the localization infor-
mation by formulating the score as a function of the distance (d) between each pixel and the nearest
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ground truth nucleus. This spirit of integrating the two tasks was also followed by many other works.
For example, Chen and Srinivas (2016) labeled pixels for lymphocytes detection by thresholding d.
Sirinukunwattana et al. (2016) proposed a spatially constrained CNN (SC-CNN) regressing to a
similar map and published a dataset for nuclei detection on colorectal cancer images. Zhou et al.
(2017) developed a sibling fully convolutional network (FCN) architecture for simultaneous cell
detection and fine-grained classification. Raza et al. (2018) proposed a framework to deconvolve
filter-mapped CNN output for cell detection on lung cancer slides. Considering the variation in
nuclei size, Koohababni et al. (2018) formulated each nucleus as a Gaussian peak with a maximum
value on its centroid, and directly regress the means and standard deviations with a small image
patch as input. Tofighi et al. (2018) utilized additional annotation to combine shape priors with
deep features for cell detection. Notably, Ahmad et al. (2018) learned features by correlation filters
and achieved state-of-the-art performance for nuclei detection on the previously mentioned colorec-
tal dataset (Sirinukunwattana et al., 2016) against which several of the above mentioned works were
benchmarked. In contrast to these works, VOCA formulates the cell nuclei detection problem as
a multi-task approach, which disentangles rather than integrates the objectives, hypothesizing that
simpler objectives can potentially improve model training and understanding.

3. Method

3.1. Deep multi-task learning

We propose a novel CNN based deep multi-task learning method for cell detection. Each pixel of a
training image is scored with 3 tasks. Let pI[i, j] be the pixel at coordinate (i, j) of input image I,
and cI[u,v] be the nearest ground truth annotation for a cell nuclei which is at position (u,v). Con fI ,
LocI , and WtI be the target maps of confidence score, localization vector and weight of contribution
of image I respectively. First,

Con fI[i, j] =

{
1, if ‖(u− i,v− j)‖2 < r
0, otherwise

(1)

r is the hyperparameter thresholding the proximity of cells. The confidence score target map indi-
cates whether each pixel should be regarded as a nucleus. The second task

LocI[i, j] = (u− i,v− j), if Con fI[i, j] = 1 (2)

is a vector describing the direction and magnitude that pI(i, j) needs to move to the location of its
assigned ground truth cI(u,v). Note that only pixels labeled as foreground by the confidence map
(Con fI[i, j] = 1) are trained with this task. The third task scores pI[i, j] as:

WtI[i, j] = ∑
cI [u′,v′]

1‖(u′−i,v′− j)‖2<r(cI[u′,v′]) (3)

where 1||(u′−i,v′− j)||2<r(cI[u′,v′]) is an indicator function of whether a ground truth cell nucleus
cI[u′,v′] is within euclidean distance r to pI[i, j]. This task counts the number of cell nuclei that
intersect at pI[i, j]. Since the pixels lying in the intersection of cells are shared in confidence accu-
mulation (cf. Section 3.3), their contribution should be up-weighted accordingly by Wt.
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Figure 1: Residual encoder-decoder architecture of our proposed method.

We used binary cross entropy weighted by the inverse of class frequencies as the loss function for
confidence score (Lcon f ). Inspired by Girshick (2015), we used smooth l1 loss for localization vector
and weight of contribution (Lloc, Lwt) to avoid gradient explosion. The joint loss function is a linear
combination of the three losses:

L = Lcon f +λ1Lloc +λ2Lwt (4)

where λ1 and λ2 are parameters weighting the contribution of different tasks. We kept both λ1 and
λ2 at 1 in all of our experiments unless discussed (cf. Section 5.1).

3.2. Network architecture

Instead of computing a small patch around each pixel in the sliding-window manner, we used an
FCN-like structure (Long et al., 2015) with rich features in the decoding part (Chen and Srinivas,
2016) to learn the task maps. This design shared convolutional layers and largely reduced the
effective input size from the sliding-window approaches. The network abstracts and decodes distinct
features for different tasks. The bottom panel of Figure 1 shows the 3 task maps. The confidence
score map describes the proximity of nuclei as surrounding disks. The localization vector map is
composed of two gradient images zeroed at nuclei position in both x and y dimensions. The last
map correctly up-weighted the pixels at nuclei intersections. All colors were inverted for improved
visualization.

Our proposed model takes input of size 127×127×3 and feeds it forward to 4 encoding and 4 de-
coding blocks followed by 3 1×1 conv layers to produce the task maps. We used residual layers for
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each block of the encoder-decoder (cf. Figure 1). Rather than max pooling, down/up-sampling was
conducted within every block by 3×3 conv/deconv layers at stride 2 to retain location information.
Changing the receptive field size of the last encoding block by either decreasing or increasing the
number of encoding blocks degraded the detection performance in our experiments. We surmise
that having a receptive field that is approximately the size of cell nuclei (16×16) on cancer slides at
20× magnification allows the network to learn higher level semantics useful for the tasks. On top
of the last 1×1 conv layers, we used sigmoid activation for confidence score maps, since it is stable
to our binary cross entropy loss Lcon f . Identity function was employed as the activation to account
for both negative and positive values of the regression target. For the weight of contribution map
we selected ReLU as the activation to learn the positive cell counts.

3.3. Vector oriented confidence accumulation

In detection stage, the predicted task maps are combined intuitively to generate an accumulator map
(cf. Figure 1). Let P be a map initialized with zeros. For every coordinate (i, j), the localization
vector accumulates the weighted confidence score of pixel to the target position :

P[i′, j′] = P[i′, j′]+ ˆWt[i, j]× ˆCon f [i, j], where (i′, j′) = (i, j)+ ˆLoc[i, j] (5)

The confidence accumulation amplifies the stratification between fore-ground and back-ground and
produces sparse response, which enhances the speed and robustness of the follow-up non-maximum
suppression on P to output the final detection results.

4. Dataset and implementation details

We validated our method on the publicly available colorectal cancer dataset released by Sirinukun-
wattana et al. (2016)1. The dataset contains 100 images of size 500× 500 at 20× magnification,
which were cropped from 10 whole-slide images of 9 patients with colorectal adenocarcinomas. On
these images there are in total 29,747 cell nuclei marked at/around the center. We randomly split
the dataset for 2-fold cross validation. The image ids for each subsample is attached in Appendix
A.

The network was implemented with PyTorch (Paszke et al., 2017). Images of size 127×127 were
further cropped from the dataset by a uniform grid of stride 17 for translational augmentation and to
match the model input size. We used batch size 8 and learning rate 0.0005 with a decay factor of 0.1
after every 3 epochs. A momentum of 0.9 was used. Input images were normalized by the mean and
standard deviation calculated on the training dataset. For further data augmentation, each image has
50% chance to be flipped horizontally and then 50% chance to be flipped vertically, finally equal
chances to be rotated by 0o, 90o, 180o and 270o counterclockwise. The model was trained on a
single GPU within 4 hours for 10 epochs.
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Table 1: Pixel-wise classification accuracy (Acc) and localization loss (Lloc) of training configura-
tions with different combinations of losses.

Configuration
Fold 1 Fold 2

Acc Lloc Acc Lloc

Conf 0.879 - 0.882 -
Loc - 3.969 - 4.077
Conf+Loc 0.886 3.971 0.887 4.071
Conf+Loc+Wt 0.886 3.967 0.887 4.061

5. Experiments and discussion

5.1. Pixel-wise classification accuracy and localization loss

We first evaluated the effectiveness of multi-task learning. We experimented with different values
of the proximity parameter r in Equation (1) and set it to 12 for all following comparisons as it gave
the best F1 score in our cross validation (cf. Section 5.3). A pixel pI[i, j] is classified correctly if

ˆCon f [i, j]> 0.5 and Con f [i, j] = 1. The pixel-wise classification accuracy (Acc) is then defined as
the average accuracy of fore-ground and back-ground pixels since we have quite imbalanced sample
sizes. As we mentioned before, the localization loss (Lloc) was calculated as the averaged sum of
smooth l1 losses of both x and y dimensions for all pixels. In Table 1 we presented the Acc and Lloc
of different training configurations. Conf+Loc+Wt means that all three losses were trained concur-
rently. Conf means that only Lcon f was used for training. The rest configurations are defined in a
similar fashion.

The results imply that the three related tasks are mutually beneficial. Especially the classification
accuracy was improved if trained together with localization loss. This improvement (from 0.879 to
0.886 for Fold 1, and from 0.882 to 0.887 for Fold 2) was comparable to other optimization of the
pipeline. Lcon f and Lwt converges about 3 times faster than Lloc during training. We surmise that
regression of localization vector is a more challenging objective therefore contributed more to the
learning of common features. We tried various values of λ1 in Equation 4 (while keeping λ2 as 1):
0.1, 1, and 10, but 1 resulted in the best performance. A natural extension of our work would be
experimentation with more combinations of the weighting parameters λ1 and λ2. It is notable that
the Lloc almost falls under 4, which is in l1 form since > 1. It means that the average localization
error on each dimension is only 2 pixels. This observation is consistent with the crisp accumulator
maps in Figure 2 and the high localization accuracy shown in Table 2.

5.2. Accumulator map and qualitative results

We present in Figure 2 the accumulator maps and qualitative detection results generated by VOCA.
For comparison, we also implemented a pixel-wise peak regression model (PR) similar to Xie et al.
(2015b). The PR model replaces the multi-task maps of VOCA by a single regression map, in

1. The dataset is available at https://www2.warwick.ac.uk/fac/sci/dcs/research/tia/data

532



VOCA

Figure 2: Accumulator maps and cell detection results of VOCA compared to peak regression (PR).
The figure is best viewed on screen with magnification 400%

which the pixels are scored as PI(i, j) =

{
1

(1+0.8×||(u−i,v− j)||2 , if ||(u− i,v− j)||2 < 6

0, otherwise
. It is a representative

of several other existing methods (Chen and Srinivas, 2016; Sirinukunwattana et al., 2016; Raza
et al., 2018) which also embed recognization and localization to a single map. In detection results
(cf. Figure 2 left panel), the yellow circles represent the predicted location and the green crosses
are ground truth annotation. Only predictions above the confidence threshold that gives the best F1
score were shown.

As shown in the zoomed-in panels in Figure 2, the predicted confidence scores (cf. con f map in Fig-
ure 1) were accumulated precisely to the target locations. Pixels with high accumulated confidence
are within distance of 1 to 2 pixels to the peaks, while the majority of the background becomes zero-
valued after confidence “movement”. Post-processing on the clean accumulator maps of VOCA is
fast. For example, it speeds up non-maximum suppression whose running time is O(ln(n)), where
n is the number of positively valued pixels. In our experiments it took on average 0.2 seconds to
process each map of size 500×500, which is about 30 times as fast as on the probability maps pro-
duced by PR (cf. Figure 2 mid panel). Besides precision, nuclei localization of VOCA also showed
high accuracy as most of the yellow circles (predictions) are rigorously centered at the green crosses
(ground truth). The quantitative measurement of the localization accuracy will be presented in Sec-
tion 5.3.

5.3. Quantitative performance and localization accuracy

Non-maximum suppression on the crisp accumulator maps produced by VOCA is not only fast but
also robust. A distance threshold of 4 pixels can already suppress most of the non-peak positions.
The accumulated scores within 2 pixels of a nucleus coordinate given by non-maximum suppression
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Table 2: Comparison of precision, recall, F1 score and localization accuracy

Methods Precision Recall F1 score Median Distance (Q1, Q3)

LIPSyM 0.725 0.517 0.604 2.236 (1.414, 7.211)
SSAE 0.617 0.644 0.630 4.123 (2.236, 10)
SC-CNN 0.781 0.823 0.802 2.236 (1.414, 5)

SP-CNN 0.803 0.843 0.823 -
MDN 0.788 0.882 0.832 -
SFCN-OPI 0.819 0.874 0.834 -
RBF-CF 0.83 0.86 0.84 -

VOCA-NW 0.814 0.854 0.834 2.0 (1.414, 2.236)
VOCA 0.831 0.863 0.847 2.0 (1.414, 2.236)

were summed as its final score. All scores were normalized to [0,1] for each image. The predicted
coordinates were then assigned to ground truth cell nuclei by Hungarian algorithm (Kuhn, 1955)
according to euclidean distance to ensure that at most 1 prediction will be considered true positive
for each ground truth. The predictions are regarded as true positive if and only if they are within 6
pixels of their assigned nuclei as suggested by Sirinukunwattana et al. (2016). We plotted precision-
recall curves by thresholding the final scores and obtained the optimal F1 score for comparison with
the existing methods validated on the same dataset (cf. Table 2). The corresponding precision and
recall were also reported.

The first panel of methods (LIPSyM (Kuse et al., 2011), SSAE (Xu et al., 2016), SC-CNN (Sir-
inukunwattana et al., 2016)) were (re-)validated by Sirinukunwattana et al. (2016) when they pub-
lished the dataset. The second panel includes the reported results on the same dataset of more recent
methods described in Section 2 (SP-CNN (Tofighi et al., 2018), MDN (Koohababni et al., 2018),
SFCN-OPI (Zhou et al., 2017), RBF-CF (Ahmad et al., 2018)). VOCA-non-weighted (VOCA-NW)
represents our configuration Conf+Loc (cf. Table 1) in which Wt was not trained and the confidence
was thus not weighted for accumulation. ”-” means the score is not available from the original paper.

VOCA achieved the best detection performance with F1 score as 0.847. It tends to have higher pre-
cision than the other methods at similar recall, which we surmise is caused by its amplification of
the stratification between fore-ground and back-ground by confidence accumulation. As Wt didn’t
help the training (cf. Table 1), the improved performance of VOCA over VOCA-NW should come
from the compensatory upweighting for pixel sharing during confidence accumulation. Theoreti-
cally VOCA-NW gives lower confidence scores for packed cells, since only a portion of the pixels
at their intersections (the dark areas in the Wt map in Figure 2) are accumulated to them (illustrated
in Appendix B). At certain threshold these cells will be filtered out as background by VOCA-NW
while they can be correctly detected by VOCA.

We measured the same metrics as Sirinukunwattana et al. (2016) to quantitatively describe the ac-
curacy of nuclei localization of VOCA. The Euclidean distance between each pair of ground truth
and its assigned prediction was recorded for both folds of cross validation. The median, 1st quartile
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and 3rd quartile of the distribution of the distances were reported. We emphasize again that the
accurate coordinates of cell nuclei are the prerequisite for many downstream applications, such as
tumor micro-environment analysis, and that low accuracy cell localization would result in accumu-
lated error which hinders these tasks. Considering the radius of a cell nucleus is only around 6 to 12
pixels at 20× magnification, localization error of 5 pixels like Sirinukunwattana et al. (2016) may
still introduce unignorable problems. VOCA explicitly learns nuclei localization via deep features
and significantly reduced the error of 75% of the predictions to below 2.236 pixels.

6. Conclusion

In this paper, we proposed a novel deep learning algorithm called vector oriented confidence accu-
mulation (VOCA) for large scale cell detection on histopathology images. The algorithm concur-
rently learns pixel-wise classification, localization and weight of contribution tasks that combine
into an accumulator map which describes profoundly accurate and precise nuclei locations. Ex-
tensive experiments on a public cell detection dataset of colon cancer validated the efficacy of our
proposed frame work and proved high detection performance and exceptional localization accuracy
compared to the state-of-the-art, which implies high potential of a robust decision support applica-
tion for various clinical and research purposes.
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Appendix A. Image ids for each subsample

Subsample 1: 6, 8, 10, 11, 13, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 32, 33, 39, 41, 42, 45, 46,
47, 48, 49, 51, 53, 55, 56, 59, 60, 63, 65, 67, 69, 70, 75, 76, 78, 79, 84, 86, 87, 92, 93, 95, 96, 98,
100
Subsample 2: 1, 2, 3, 4, 5, 7, 9, 12, 14, 15, 16, 22, 24, 30, 31, 34, 35, 36, 37, 38, 40, 43, 44, 50, 52,
54, 57, 58, 61, 62, 64, 66, 68, 71, 72, 73, 74, 77, 80, 81, 82, 83, 85, 88, 89, 90, 91, 94, 97, 99

Appendix B. Pixel sharing during confidence accumulation
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