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ABSTRACT

This paper presents a generic framework to remedy the misalignment in unsuper-
vised domain adaptation (UDA). Previous adversarial learning methods for UDA
condition domain alignment only on pseudo labels, but pseudo labels may be inac-
curate, hence bringing insufficient alleviation to the misalignment. Compared with
pseudo labels, class prototypes are more accurate and reliable since they are sum-
marized over all the instances and are able to represent the inherent semantic struc-
tures shared across domains. Therefore, we propose a novel Prototype-Assisted
Adversarial Learning (PAAL) scheme, which incorporates instance probabilistic
predictions and class prototypes together to provide reliable indicators for adver-
sarial domain adaptation. With the PAAL scheme, we align both the instance
feature representations and class prototypes to alleviate the misalignment among
semantically different instances. Also, we exploit the class prototypes as proxy
to minimize the intra-class variance in the target domain to mitigate the misalign-
ment among semantically similar instances. With these novelties, we constitute a
Prototype-Assisted Conditional Domain Adaptation (PACDA) framework which
achieves state-of-the-art results on two UDA tasks, i.e., object recognition (Office-
Home, ImageCLEF-DA, and Office) and synthetic-to-real semantic segmentation
(GTA5→Cityscapes and Synthia→Cityscapes).

1 INTRODUCTION

Unsupervised domain adaptation (UDA) aims to leverage the knowledge of a labeled data set (source
domain) to help train a predictive model for a unlabeled data set (target domain). Deep UDA meth-
ods bring noticeable performance gain to many tasks (Long et al., 2015; Saito et al., 2017; Richter
et al., 2016; Tsai et al., 2018; Lee et al., 2019; Vu et al., 2019a) by exploiting supervision from
heterogeneous sources. Some methods exploit maximum mean discrepancy (MMD) (Gretton et al.,
2008; Long et al., 2015) or other distribution statistics like central moments (Sun & Saenko, 2016;
Zellinger et al., 2017; Koniusz et al., 2017) for domain adaptation. Recently, generative adversarial
learning (Goodfellow et al., 2014) provides a promising alternative solution to UDA problem.

Since the labels of the target instances are not given in UDA, adversarial learning scheme for adap-
tation (Ganin & Lempitsky, 2015) suffers from the cross-domain misalignment, where the target
instances from a class A are potentially misaligned with source instances from another class B.
Inspired by the pseudo-labeling strategy from semi-supervised learning, previous methods either
used the pseudo labels in the target domain to perform joint distribution discrepancy minimization
(Long et al., 2013; 2015) or developed conditional adversarial learning methods that involve one
high-dimensional domain discriminator (Long et al., 2018) or multiple discriminators (Chen et al.,
2017b; Pei et al., 2018). Though effective, these conditional domain adversarial learning methods
align different instances from different domains relying only on their own predictions. Simple prob-
abilistic predictions or pseudo labels may not accurately represent the semantic information of input
instances, misleading the alignment. A toy example is given in Fig. 1(a). The pseudo label of the
chosen instance x is inclined to be class ‘square’ while the ground truth label is class ‘circle’. Only
guided by the instance prediction, the ‘circle’ class in the target domain and the ‘square’ class in the
source domain are easily confused, causing the misalignment in the adversarial domain adaptation.

To remedy the misalignment, we propose to exploit the class prototypes for adversarial domain
alignment, instead of using only the possibly inaccurate predictions. Prototypes are global feature
representations of different classes and are relevant to the inherent semantic structures shared across
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(a) conditional adversarial learning (b) prototype-assisted adversarial learning

Figure 1: Illustration of two adversarial learning schemes. Different from class-agnostic adversarial
learning that pursues the marginal distribution alignment but ignores the semantic consistency, (a)
conditional adversarial learning relies heavily on the instance-level pseudo labels to perform con-
ditional distribution alignment, while (b) our prototype-assisted adversarial learning integrates the
instance-level pseudo labels and global class prototypes to make the conditional indicators more
reliable. Class information is denoted in different shapes with source in solid and target in hollow.

domains. As shown in Fig. 1(b), class prototypes are expected to remedy the negative effects of
inaccurate probabilistic predictions. Motivated by this, we propose a Prototype-Assisted Adversarial
Learning (PAAL) scheme which complements instance predictions with class prototypes to obtain
more reliable conditional information for guiding the source-target feature representation alignment.

Specifically, we summarize the class prototypes from all instances according to their predictions. In
this way, on one hand, we lower the dependence of class prototypes on instance predictions which
may be inaccurate, and on the other hand, we encourage the instances with greater certainty to
contribute more to their corresponding class prototypes. The prototypes are updated dynamically
through a moving average strategy to make them more accurate and reliable. Then by broadcast-
ing class prototypes to each instance according to its probability prediction, the inaccurate semantic
distribution depicted by instance predictions can be alleviated. Based on reliable prototype-based
conditional information, we align both the instance feature representations and the class prototypes
through the proposed PAAL scheme to relieve the alignment among semantically dissimilar in-
stances. However, such a conditional domain alignment may promote the confusion among seman-
tically similar instances across domains to some degree. To further alleviate it, we introduce an
intra-class objective in the target domain to pursue the class compactness. Built on the proposed
PAAL scheme and this intra-class compactness objective, we develop a Prototype-Assisted Condi-
tional Domain Adaptation (PACDA) framework for solving UDA problems. Extensive experimental
evaluations on both object recognition and semantic segmentation tasks clearly demonstrate the ad-
vantages of our approaches over previous state-of-the-arts (Long et al., 2018; Xu et al., 2019; Luo
et al., 2019; Tsai et al., 2019).

The contributions of this work can be summarized into three folds: 1) To the best of our knowledge,
we are the first to leverage the class prototypes in conditional adversarial learning to prevent the
misalignment in UDA; 2) We propose a simple yet effective domain adversarial learning framework
PACDA to remedy the misalignment among semantically similar instances as well as semantically
dissimilar instances; 3) The proposed PAAL scheme and PACDA framework are generic, and our
framework achieves the state-of-the-art results on several unsupervised domain adaptation tasks
including object recognition and semantic segmentation.

2 RELATED WORK

Unsupervised Domain Adaptation. UDA is first modeled as the covariate shift problem (Shi-
modaira, 2000) where marginal distributions of different domains are different but their conditional
distributions are the same. To address it, (Dudı́k et al., 2006; Huang et al., 2007) exploit a non-
parametric instance re-weighting scheme. Another prevailing paradigm (Pan et al., 2010; Long et al.,
2013; Herath et al., 2017) aims to learn feature transformation with some popular cross-domain met-
rics, e.g., the empirical maximum mean discrepancy (MMD) statistics. Recently, a large number of
deep UDA works (Long et al., 2015; Haeusser et al., 2017; Saito et al., 2018; Tsai et al., 2018) have
been developed and boosted the performance of various vision tasks. Generally, they can be divided
into discrepancy-based and adversarial-based methods. Discrepancy-based methods (Tzeng et al.,
2014; Long et al., 2017) address the dataset shift by mitigating specific discrepancies defined on
different layers of a shared model between domains, e.g. resembling shallow feature transforma-
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tion by matching higher moment statistics of features from different domains (Zellinger et al., 2017;
Koniusz et al., 2017). Recently, adversarial learning has become a dominantly popular solution to
domain adaptation problems. It leverages an extra domain discriminator to promote domain confu-
sion. (Ganin & Lempitsky, 2015) designs a gradient reversal layer inside the classification network
and (Tzeng et al., 2017) utilizes an inverted label GAN loss to fool the discriminator.

Pseudo-labeling. UDA can be regarded as a semi-supervised learning (SSL) task where unlabeled
data are replaced by the target instances. Therefore, some popular SSL strategies, e.g., entropy
minimization (Grandvalet & Bengio, 2005; Vu et al., 2019b), mean-teacher (Tarvainen & Valpola,
2017; French et al., 2018), and virtual adversarial training (Miyato et al., 2018; Shu et al., 2018),
have been successfully applied to UDA. Pseudo-labeling is favored by most UDA methods due to its
convenience. For example, (Saito et al., 2017; Li et al., 2019) exploit the intermediate pseudo-labels
with tri-training and self-training, respectively. (Pan et al., 2019) obtains target-specific prototypes
with the help of pseudo labels and aligns prototypes across domains at different levels. Recently,
curriculum learning (Choi et al., 2019), self-paced learning (Zou et al., 2018) and re-weighting
schemes (Long et al., 2018) are further leveraged to tackle possible false pseudo-labels.

Conditional Domain Adaptation. Apart from the explicit integration with the last classifier layer,
pseudo-labels can also be incorporated into adversarial learning to enhance the feature-level domain
alignment. Concerning shallow methods (Long et al., 2013; Zhang et al., 2017), pseudo-labels can
help mitigate the joint distribution discrepancy via minimizing multiple class-wise MMD measures.
(Long et al., 2017) proposes to align the joint distributions of multiple domain-specific layers across
domains based on a joint maximum mean discrepancy criterion. Recently, (Chen et al., 2017b; Pei
et al., 2018) leverages the probabilities with multiple domain discriminators to enable fine-grained
alignment of different data distributions in an end-to-end manner. In contrast, (Long et al., 2018)
conditions the adversarial domain adaptation on discriminative information via the outer product
of feature representation and classifier prediction. Motivated by the semantically-consistent GAN,
(Cicek & Soatto, 2019) imposes a multi-way adversarial loss instead of a binary one on the domain
alignment. However, these methods all highly rely on the localized pseudo-labels to align label-
conditional feature distributions and ignore the global class-level semantics. As far as we know,
we are the first to exploit class prototypes to guide the domain adversarial learning. Compared
with (Pei et al., 2018; Long et al., 2018), our PACDA framework complements the original feature
representations with reliable semantic features and merely involves two low-dimensional domain
discriminators, making the domain alignment process simple, conditional, and reliable.

3 METHOD

In this section, we first begin with the basic settings of UDA and then give detailed descriptions on
the proposed PAAL scheme and the PACDA framework. Though proposed for image classification,
they can also be easily applied to semantic segmentation.

3.1 PROBLEM SETTINGS

In a vanilla UDA task, we are given label-rich source domain data {(xi
s,y

i
s)}

ns
i=1 sampled from

the joint distribution Ps(xs,ys) and unlabeled target domain data {xi
t}

nt
i=1 sampled from the joint

distribution Qt(xt,yt), where xi
s ∈ XS and yi

s ∈ YS denote an image and its corresponding label
from the source domain dataset, xi

t ∈ XT denotes an image from the target domain dataset and
Ps 6= Qt. The goal of UDA is to learn a discriminative model from XS , YS , and XT to predict
labels for unlabeled target samples XT .

As described in (Ganin et al., 2016), a vanilla domain adversarial learning framework consists of
a feature extractor network G, a classifier network F , and a discriminator network D. Given an
image x, we denote the feature representation vector extracted by G as f = G(x) ∈ Rd and the
probability prediction obtained by F as p = F (f) ∈ Rc where d means the feature dimension and
c means the number of classes. The vanilla domain adversarial learning method in (Ganin et al.,
2016) can be formulated as optimizing the following minimax optimization problem:

min
G,F

max
D
Ly(G,F )− λadvLadv(G,D), (1)

Ladv(G,D) = −Exi
s∼Ps

log[D(f i
s)]− Exj

t∼Qt
log[1−D(f j

t )], (2)
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Figure 2: Overview of the proposed PACDA framework which consists of a shared feature extractor
G, a shared classifier F , and two domain discriminators (Df , Dp). Mema represents the global class
prototype matrix while Ms,t is computed by source or target instances within current batch.

Ly(G,F ) = −E(xi
s,y

i
s)∼Ps

yi
s

T
log(pi

s), pi
s = F (G(xi

s)), (3)

where the binary domain classifier D : Rd → [0, 1] predicts the domain assignment probability over
the input features, Ly(G,F ) is the cross-entropy loss of source domain data as for the classification
task, and λadv is the trade-off parameter.

3.2 PROTOTYPE-ASSISTED ADVERSARIAL LEARNING (PAAL) SCHEME

The misalignment in UDA of multi-class distributions challenges the popular vanilla adversarial
learning. In previous works (Long et al., 2017; Pei et al., 2018; Long et al., 2018), target domain
data are conditioned only on corresponding pseudo labels predicted by the model for adversarial
domain alignment. The general optimization process of these methods is the same as aforementioned
vanilla domain adversarial learning, except that feature representations jointly with predictions are
considered by the discriminator D:

Lcond
adv (G,D) = −Exi

s∼Ps
log[D(f i

s,p
i
s)]− Exj

t∼Qt
log[1−D(f j

t ,p
j
t )], (4)

is the conditional adversarial loss that leverages the classification predictions ps and pt. A classic
previous work (Long et al., 2018) implicitly conditions the feature representation on the prediction
through the outer product f ⊗ p, and uses one shared discriminator to align the conditioned feature
representations. (Long et al., 2018) further proves that using the outer product can perform much
better than simple concatenation f ⊕ p. Different from (Long et al., 2018), (Chen et al., 2017b;
Pei et al., 2018) explicitly utilize multiple class-wise domain discriminators to align the feature
representations relying on the corresponding predictions.

However, the pseudo labels may be inaccurate due to the domain shift. Therefore, only conditioning
the alignment on pseudo labels can not safely remedy the misalignment. Compared with the pseudo
labels, the class prototypes are more robust and reliable in terms of representing the shared semantic
structures (Yang et al., 2018). To acquire more reliable and accurate conditional information for
domain adversarial learning, we propose to complement instance predictions with class prototypes
and reformulate the adversarial loss to:

Lpaal
adv (G,D) = −Exi

s∼Ps
log[D(f i

s,M
T
ema pi

s)]− Exj
t∼Qt

log[1−D(f j
t ,M

T
ema pj

t )]. (5)

Here Mema ∈ Rc×d denotes the global class prototype matrix in our prototype-assisted adversar-
ial learning loss Lpaal

adv (G,D). In reality, the reliable conditional information is obtained through
broadcasting the global class prototypes to each independent instance according to its prediction p.

We propose to summarize feature representations of the instances within the same class as the corre-
sponding prototype. Then the probability prediction is leveraged to obtain accurate class prototypes.
Using predictions as weights can adaptively control the contributions of typical and non-typical in-
stances to the class prototype, making class prototypes more reliable. Specifically, we first gather
the feature representation of each instance relying on its prediction to generate the batch-level class
prototypes. Then the global class prototypes can be obtained by virtue of an averaging strategy such
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as exponential moving average (ema) on the batch ones. This process can be formulated as

Mema = λemaMema + (1− λema)M ,where M = [m1, · · · ,mc], mk =
∑n

i p
k,if iT /

∑n
i p

k,i. (6)

Here n means the batch size, pk,i represents the probability of the i-th instance belonging to the
k-th semantic class, λema is an empirical weight, M ∈ Rc×d is the batch-level class prototype
matrix and Mema is the global one computed by certain source domain data and contributes to more
reliable conditional information exploited by discriminators. Similarly, batch-level class prototypes
are broadcast to each instance in this batch through MT

a pa which can be denoted as f̂a, a ∈ {s, t}.

3.3 PROTOTYPE-ASSISTED CONDITIONAL DOMAIN ADAPTATION (PACDA) FRAMEWORK

With our prototype-based conditional information, we further propose a Prototype-Assisted Con-
ditional Domain Adaptation (PACDA) framework. This framework aligns both instance-level and
prototype-level feature representations through PAAL and promotes the intra-class compactness in
target domain such that the misalignment can be substantially alleviated even though no supervision
is available in the target domain. Its overall architecture is shown in Fig. 2.

Besides the backbone feature extractorG and the task classifierF , there are two discriminators in our
framework PACDA, i.e., the instance-level feature discriminator Df and the prototype-level feature
discriminator Dp. We can formulate our general objective function as (w.l.o.g., Ladv ← Lpaal

adv ),

L(XS ,YS ,XT ) = Ly − λfadvL
f
adv − λ

p
advL

p
adv + λtLt, (7)

where λ denotes balance factors among different loss functions, Ly is the supervised classification
loss on source domain data described by Eq. (3), Lf

adv is the adversarial loss to align instance feature
representations across domains, Lp

adv is the adversarial loss to align class prototype representations
across domains, and Lt is the loss to promote the intra-class compactness in target domain.

Instance-Level Alignment Conditioning the instance feature representation on our prototype-based
conditional information, we seek to align feature representations across domains at the instance-level
through discriminatorDf . With the assistance of the accurate semantic structures embedded in class
prototypes, misalignment among semantically dissimilar instances can be effectively alleviated. We
can define the instance-level adversarial loss Ladv

f as

Lf
adv(G,F,Df ) = −Exi

s∼Ps
log[Df (f

i
s⊕MT

emap
i
s)]−Exj

t∼Qt
log[1−Df (f

j
t ⊕MT

emap
j
t )]. (8)

Prototype-Level Alignment Instance-level alignment only implicitly aligns the multi-class distribu-
tion across domains, which may not ensure the semantic consistency between two domains. Besides,
since in practice global class prototypes are collected from only source domain data, which possibly
cannot accurately represent inherent semantic structures in the target domain due to the domain shift.
Taking into account these two causes, we perform the prototype-level alignment with discriminator
Dp to explicitly align the class prototype representations across domains. The specific loss function
Lf
adv is defined as

Lp
adv(G,F,Dp) = −Exi

s∼Ps
log[Dp(f̂

i
s⊕MT

ema p
i
s)]−Exj

t∼Qt
log[1−Dp(f̂

j
t ⊕MT

ema p
j
t )]. (9)

Intra-Class Compactness Although adversarial alignment based on PAAL can relieve the mis-
alignment among obviously semantically different instances, it cannot well handle the misalignment
among semantically similar instances. Specifically, incorporating class prototypes into instance pre-
dictions would confuse semantically similar instances during domain alignment and result in the
misalignment among them. To solve this problem, our framework further promotes the intra-class
compactness in the target domain to enlarge the margin between instances of semantically similar
classes. Taking the prototypes as proxy, we minimize the following loss for target domain samples
to encourage the intra-class compactness:

Lt(G,F ) = Exjt∼Qt
‖f j

t − f̂ j
t ‖

2

2. (10)

Thus, the complete minimax optimization problem of our PACDA framework can be formulated as

min
G,F

max
Df ,Dp

Ly(G,F )− λfadvL
f
adv(G,F,Df )− λpadvL

p
adv(G,F,Dp) + λtLt(G,F ). (11)

With only two low-dimensional (2 × d) discriminators added, we effectively remedy the misalign-
ment in domain adversarial learning. Some theoretical insights with the help of domain adaptation
theory (Ben-David et al., 2010) is discussed in the Appendix.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments to verify the effectiveness and generalization ability of our methods, i.e.,
PACDA (full) in Eq. (11) and PAAL (λpadv = λt = 0) on two different UDA tasks, including
cross-domain object recognition on ImageCLEF-DA1, Office31 (Saenko et al., 2010) and Office-
Home (Venkateswara et al., 2017), and synthetic-to-real semantic segmentation for GTA5 (Richter
et al., 2016)→Cityscapes (Cordts et al., 2016) and Synthia (Ros et al., 2016)→ Cityscapes.

Datasets. Office-Home is a new challenging dataset that consists of 65 different object categories
found typically in 4 different Office and Home settings, i.e., Artistic (Ar) images, Clip Art (Ca),
Product images (Pr), and Real-World (Re) images. ImageCLEF-DA is a standard dataset built for
the ‘ImageCLEF2014:domain-adaptation’ competition. We follow (Long et al., 2015) to select 3
subsets, i.e., C, I, and P, which share 12 common classes. Office31 is a popular dataset that includes
31 object categories taken from 3 domains, i.e., Amazon (A), DSLR (D), and Webcam (W).

Cityscapes is a realistic dataset of pixel-level annotated urban street scenes. We use its original
training split and validation split as the training target data and testing target data respectively. GTA5
consists of 24,966 densely labeled synthetic road scenes annotated with the same 19 classes as
Cityscapes. For Synthia, we take the SYNTHIA-RAND-CITYSCAPES set as the source domain,
which is composed of 9,400 synthetic images compatible with annotated classes of Cityscapes.

Implementation Details. For object recognition, we follow the standard protocol (Ganin & Lem-
pitsky, 2015), i.e. using all the labeled source instances and all the unlabeled target instances for
UDA, and report the average accuracy based on three random trials for fair comparisons. Following
(Long et al., 2018; Xu et al., 2019), we experiment with ResNet-50 model pretrained on ImageNet.
Specifically, we follow (Long et al., 2018) to choose the network parameters, and all convolutional
layers and the classifier layer are trained through backpropagation, where λt=5e-3, λema=5e-1, λfadv
and λpadv increase from 0 to 1 with the same strategy as (Ganin & Lempitsky, 2015). Regarding the
domain discriminator, we design a simple two-layer classifier (256→1024→1) for both Df and Dp.
Empirically, we fix the batch size to 36 with the initial learning rate being 1e-4.

For semantic segmentation, we adopt DeepLab-V2 (Chen et al., 2017a) based on ResNet-101 (He
et al., 2016) as done in (Tsai et al., 2018; Vu et al., 2019b; Luo et al., 2019; Tsai et al., 2019).
Following DCGAN (Radford et al., 2015), the discriminator network consists of three 4× 4 convo-
lutional layers with stride 2 and channel numbers {256, 512, 1}. In training, we use SGD (Bottou,
2010) to optimize the network with momentum (0.9), weight decay (5e-4), and initial learning rate
(2.5e-4). We use the same learning rate policy as in (Chen et al., 2017a). Discriminators are opti-
mized by Adam (Kingma & Ba, 2015) with momentum (β1 = 0.9, β2 = 0.99), initial learning rate
(1e-4) along with the same decreasing strategy as above. For both tasks, λfadv is set to 1e-3 follow-
ing (Tsai et al., 2018) and λema is set to 0.7. For GTA5→Cityscapes, λpadv=1e-3 and λt=1e-5. For
Synthia→Cityscapes, λpadv=1e-4 and λt=1e-4.

All experiments are implemented via PyTorch on a single Titan X GPU. The total iteration number
is set as 10k for object recognition and 100k for semantic segmentation. For objection recogni-
tion tasks, we choose the hyper-parameters which have the minimal mean entropy of target data
(Morerio et al., 2018) on Ar→Cl for convenience. For semantic segmentation tasks, training split of
Cityscapes is used for the hyper-parameters selection. Data augmentation skills like random scale
or random flip and ten-crop ensemble evaluation are not adopted.

4.2 COMPARISON RESULTS

Cross-Domain Object Recognition. The comparison results between our methods (i.e., PAAL and
PACDA) and state-of-the-art (SOTA) approaches (Xu et al., 2019; Long et al., 2018; Zhang et al.,
2018) on Office-Home, Office31, and ImageCLEF-DA are shown in Tables 1 and 2, respectively.
As indicated in these tables, PACDA improves previous approaches in the average accuracy for all
three benchmarks (e.g., 67.3%→68.7% for Office-Home, 88.1%→88.8% for ImageCLEF-DA, and
87.7%→89.3% for Office31). Generally, PACDA performs the best for most transfer tasks. Taking

1https://www.imageclef.org/2014/adaptation
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Table 1: Accuracy (%) on Office-Home for UDA under ResNet-50. Red: Best, Blue: Second best.
Methods Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.

ResNet-50 (He et al., 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN (Ganin & Lempitsky, 2015) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN (Long et al., 2018) 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDAN+E (Long et al., 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
DWT-MEC (Roy et al., 2019) 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6
SAFN (Xu et al., 2019) 52.0 73.3 77.9 65.2 71.5 73.2 63.6 52.6 78.2 72.3 57.1 81.5 67.3

PAAL 50.7 69.2 73.2 58.2 66.4 68.3 55.5 48.3 74.5 68.5 55.6 79.2 64.0
±0.2 ±0.5 ±0.2 ±0.5 ±0.6 ±0.5 ±0.3 ±0.4 ±0.1 ±0.2 ±0.3 ±0.2

PACDA 53.5 73.5 78.4 64.1 73.2 74.4 64.1 50.8 79.9 73.6 56.6 82.6 68.7
±0.2 ±0.1 ±0.2 ±0.4 ±0.3 ±0.2 ±0.5 ±0.9 ±0.1 ±0.1 ±0.1 ±0.2

Table 2: Accuracy (%) on ImageCLEF-DA and Office31 for UDA under ResNet-50.

Datasets ImageCLEF-DA Avg. Office31 Avg.
Methods C→I C→P I→C I→P P→C P→I A→D A→W D→A D→W W→A W→D

ResNet-50 (He et al., 2016) 78.0 65.5 91.5 74.8 91.2 83.9 80.7 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN (Ganin & Lempitsky, 2015) 87.0 74.3 96.2 75.0 91.5 86.0 85.0 79.7 82.0 68.2 96.9 67.4 99.1 82.2
CDAN (Long et al., 2018) 90.5 74.5 97.0 76.7 93.5 90.6 87.1 89.8 93.1 70.1 98.2 68.0 100. 86.6
CDAN+E (Long et al., 2018) 91.3 74.2 97.7 77.7 94.3 90.7 87.7 92.9 94.1 71.0 98.6 69.3 100. 87.7
iCAN (Zhang et al., 2018) 89.9 78.5 94.7 79.5 92.0 89.7 87.4 90.1 92.5 72.1 98.8 69.9 100. 87.2
CAT (Deng et al., 2019) 91.3 75.3 95.5 77.2 93.6 91.0 87.3 90.8 94.4 72.2 98.0 70.2 100. 87.6
SAFN (Xu et al., 2019) 91.1 77.0 96.2 78.0 94.7 91.7 88.1 87.7 88.8 69.8 98.4 69.7 99.8 85.7

PAAL 91.4 74.6 97.4 77.6 95.2 90.7 87.8 93.4 94.6 70.2 97.7 69.9 100. 87.6
±0.1 ±0.6 ±0.1 ±0.4 ±0.1 ±0.4 ±0.0 ±0.7 ±0.8 ±0.1 ±0.6 ±0.0

PACDA 92.2 76.2 97.7 78.1 96.3 92.4 88.8 94.8 95.7 72.8 98.0 74.4 99.8 89.3
±0.2 ±0.2 ±0.1 ±0.2 ±0.2 ±0.2 ±0.0 ±0.3 ±1.5 ±0.2 ±0.5 ±0.0

Table 3: Comparison results of synthetic-to-real semantic segmentation using the same architecture
with NonAdapt and AdaptSeg (Tsai et al., 2018), AdvEnt (Vu et al., 2019b), CLAN (Luo et al., 2019)
and AdaptPatch (Tsai et al., 2019). Top: GTA5→ Cityscapes. Bottom: Synthia→ Cityscapes.
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NonAdapt 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
AdaptSeg 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
AdvEnt 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8
CLAN 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
AdaptPatch 89.2 38.4 80.4 24.4 21.0 27.7 32.9 16.1 83.1 34.1 77.8 57.4 27.6 78.6 31.2 40.2 4.7 27.6 27.6 43.2

PAAL 89.7 30.3 81.7 30.7 24.8 29.4 36.3 22.6 83.4 36.1 76.3 60.4 28.4 83.8 32.7 41.7 4.4 27.3 31.0 44.8
PACDA 92.4 50.3 83.3 33.2 24.6 32.9 36.1 22.7 84.4 38.0 79.9 60.3 24.7 85.2 37.8 46.6 7.2 26.4 18.6 46.6

so
ur

ce
:S

yn
th

ia NonAdapt 55.6 23.8 74.6 - - - 6.1 12.1 74.8 - 79.0 55.3 19.1 39.6 - 23.3 - 13.7 25.0 38.6
AdaptSeg 79.2 37.2 78.8 - - - 9.9 10.5 78.2 - 80.5 53.5 19.6 67.0 - 29.5 - 21.6 31.3 45.9
AdvEnt 87.0 44.1 79.7 - - - 4.8 7.2 80.1 - 83.6 56.4 23.7 72.7 - 32.6 - 12.8 33.7 47.6
CLAN 81.3 37.0 80.1 - - - 16.1 13.7 78.2 - 81.5 53.4 21.2 73.0 - 32.9 - 22.6 30.7 47.8
AdaptPatch 82.2 39.4 79.4 - - - 6.5 10.8 77.8 - 82.0 54.9 21.1 67.7 - 30.7 - 17.8 32.2 46.3

PAAL 87.2 43.2 80.0 - - - 8.2 9.6 79.2 - 82.3 56.1 20.3 81.1 - 33.5 - 16.5 32.3 48.4
PACDA 87.0 42.4 80.8 - - - 9.7 10.9 80.0 - 83.6 50.1 20.7 82.1 - 34.4 - 19.4 38.6 49.2

a careful look at PAAL, we find that it always beats CDAN and achieves competitive performance
with SOTA methods like CAT (Deng et al., 2019).

Synthetic-to-real Semantic Segmentation. We compare PAAL and PACDA with SOTA meth-
ods (Tsai et al., 2018; Vu et al., 2019b; Luo et al., 2019; Tsai et al., 2019) on synthetic-to-real
semantic segmentation. Following (Chen et al., 2017b), we evaluate models on all 19 classes for
GTA5→Cityscapes while on only 13 classes for Synthia→Cityscapes. As shown in Table 3, without
bells and whistles, our PAAL method outperforms all of those methods and our PACDA framework
further achieves new SOTA results on both tasks, i.e., 43.8%→46.6% for GTA5→Cityscapes and
47.8%→49.2% for Synthia→Cityscapes in terms of the mean IoU (mIoU) value.

4.3 FURTHER ANALYSIS

Quantitative Analysis. To verify the effectiveness of each component in Eq. (11), we introduce a
variant named PAALf,p that merely ignores the intra-class objective (λt = 0). The empirical con-
vergence curves about Ar→Cl in Fig. (3)(a) imply that all of our variants tend to converge after 10k
iterations, and the second term can help accelerate the convergence. Fig. 3(b) shows that all terms
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(a) Convergence (b) Ablation study (c) Proxy A-distance (d) Network architecture

Figure 3: Quantitative analysis of our methods.

(a) Source only (b) DANN (c) CDAN (d) PAAL (e) PACDA

Figure 4: t-SNE (Maaten & Hinton, 2008) embedding visualization of UDA methods for C→I on
ImageCLEF-DA (class information is denoted by different colors with source in4 with target in ?).

in the PACDA framework, i.e., PAAL alignment at different levels and the intra-class objective, can
bring evident improvement on both tasks. As shown in Fig. (3)(c), we provide the proxyA-distances
(Ganin et al., 2016) of different methods for Ar→Cl and C→I. The A-distance DistA=2(1 − 2ε)
is a popular measure for domain discrepancy, where ε is the test error of a binary classifier trained
on the learned features. All the UDA methods have smaller distances than ‘source only’ by aligning
different domains. Besides, our PACDA has the minimum distance for both tasks, implying that it
can learn better features to bridge the domain gap between domains. To testify the sensitivity of
our PACDA, in Fig. (3)(d) we report the accuracies of DANN, CDAN and PACDA for C→I on the
ImageCLEF-DA with 3 different backbone architectures, i.e., VGG-16, ResNet-18, and ResNet-50.
Obviously, PACDA is the best-performing method that shows desirable robustness when the network
changing from VGG-16 to ResNet-18.

Qualitative Analysis. For object recognition, we study the t-SNE visualizations of aligned features
generated by different UDA methods in Fig. 4. As expected, conditional methods including CDAN
and PAAL can semantically align multi-class distributions much better than DANN. Besides, PAAL
learns slightly better features than CDAN due to less misalignment. Once considering the intra-class
objective, PACDA further enhances PAAL by pushing away semantically confusing classes, which
achieves the best adaptation performance. For semantic segmentation, we present some qualitative
results in Fig. 5. Similarly, PAAL effectively improves the adaptation performance and PAALf,p as
well as PACDA can further improve the segmentation results.

(a) Target image (b) Ground truth (c) Source only (d) PAAL (e) PAALf,p (f) PACDA

Figure 5: Qualitative results of synthetic-to-real semantic segmentation for GTA5→Cityscapes.

5 CONCLUSION

In this work, we developed the prototype-assisted adversarial learning scheme to remedy the mis-
alignment for UDA tasks. Unlike previous conditional ones whose performance is vulnerable to
inaccurate instance predictions, our proposed scheme leverages the reliable and accurate class pro-
totypes for aligning multi-class distributions across domains and is demonstrated to be more effec-
tive to prevent the misalignment. Then we further augment this scheme by imposing the intra-class
compactness with the prototypes as proxy. Extensive evaluations on both object recognition and
semantic segmentation tasks clearly justify the effectiveness and superiority of our UDA methods
over well-established baselines.
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A APPENDIX

A.1 THEORETICAL INSIGHTS

We try to explain why our PAAL works well for UDA according to the domain adaptation theory
proposed in (Ben-David et al., 2010). Denote by εP (F ) = E(f,y)∈P [F (f) 6= y] the risk of a
classifier model F ∈ H w.r.t. the distribution P , and by εP (F1, F2) = E(f,y)∈P [F1(f) 6= F2(f)]
the disagreement between hypotheses F1, F2 ∈ H. Particularly, (Ben-David et al., 2010) gives a
well-known upper bound on the target risk εQ(F ) of classifier F in the following,

εQ(F ) ≤ εP (F ) + [εP (F
∗) + εQ(F

∗)] + |εP (F, F ∗)− εQ(F, F ∗)|, (12)

where F ∗ is the ideal classifier induced from F ∗ = argminF∈H[εP (F )+ εQ(F )], and the last term
is related to the classicalH-divergence dH∆H(P,Q) = 2 supF,F∗∈H |εP (F, F ∗)− εQ(F, F ∗)|. Be-
sides, according to (Ben-David et al., 2010), the empiricalH-divergence calculated by m respective
samples from distributions P and Q converges uniformly to the true H-divergence for classifier
classesH of finite VC dimension d, which is expressed as

dH∆H(P,Q) ≤ d̂H∆H(P,Q) + 4

√
d log(2m) + log(2/δ)

m
. (13)

The work (Ganin & Lempitsky, 2015) introduces a binary domain discriminator to minimize the
empirical H-divergence d̂H∆H(P,Q), which aligns the marginal distributions well. However, if
two multi-class distributions P and Q are not semantically aligned, there may not be any classifier
with low risk in both domains, which means the second term of the upper bound in Eq. (12) is very
large. The proposed PAAL scheme leverages reliable conditional information in the adversarial
learning module so that semantically similar samples from different domains are implicitly aligned,
thus it has a high possibility of decreasing the second term. Compared with (Long et al., 2018), the
input to domain the adversarial learning module is much more compact (2 × d � c × d), which
helps decrease the second term in Eq. (13).
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