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ABSTRACT

Previous work shows that adversarially robust generalization requires larger sample
complexity, and the same dataset, e.g., CIFAR-10, which enables good standard
accuracy may not suffice to train robust models. Since collecting new training
data could be costly, we focus on better utilizing the given data by inducing the
regions with high sample density in the feature space, which could lead to locally
sufficient samples for robust learning. We first formally show that the softmax
cross-entropy (SCE) loss and its variants convey inappropriate supervisory signals,
which encourage the learned feature points to spread over the space sparsely in
training. This inspires us to propose the Max-Mahalanobis center (MMC) loss to
explicitly induce dense feature regions in order to benefit robustness. Namely, the
MMC loss encourages the model to concentrate on learning ordered and compact
representations, which gather around the preset optimal centers for different classes.
We empirically demonstrate that applying the MMC loss can significantly improve
robustness even under strong adaptive attacks, while keeping high accuracy on
clean inputs comparable to the SCE loss with little extra computation.

1 INTRODUCTION

The deep neural networks (DNNs) trained by the softmax cross-entropy (SCE) loss have achieved
state-of-the-art performance on various tasks (Goodfellow et al., 2016). However, in terms of
robustness, the SCE loss is not sufficient to lead to satisfactory performance of the trained models.
It has been widely recognized that the DNNs trained by the SCE loss are vulnerable to adversarial
attacks (Carlini & Wagner, 2017a; Goodfellow et al., 2015; Kurakin et al., 2017; Moosavi-Dezfooli
et al., 2016; Papernot et al., 2016), where human imperceptible perturbations can be crafted to fool a
high-performance network. To improve adversarial robustness of classifiers, various kinds of defenses
have been proposed, but many of them are quickly shown to be ineffective to the adaptive attacks,
which are adapted to the specific details of the proposed defenses (Athalye et al., 2018).

Besides, the methods on verification and training provably robust networks have been proposed (Dvi-
jotham et al., 2018a;b; Hein & Andriushchenko, 2017; Wong & Kolter, 2018). While these methods
are exciting, the verification process is often slow and not scalable. Among the previously proposed
defenses, the adversarial training (AT) methods can achieve state-of-the-art robustness under dif-
ferent adversarial settings (Madry et al., 2018; Zhang et al., 2019b). These methods either directly
impose the AT mechanism on the SCE loss or add additional regularizers. Although the AT methods
are relatively strong, they could sacrifice accuracy on clean inputs and are computationally expen-
sive (Xie et al., 2019). Due to the computational obstruction, many recent efforts have been devoted
to proposing faster verification methods (Wong et al., 2018; Xiao et al., 2019) and accelerating AT
procedures (Shafahi et al., 2019; Zhang et al., 2019a). However, the problem still remains.

Schmidt et al. (2018) show that the sample complexity of robust learning can be significantly larger
than that of standard learning. Given the difficulty of training robust classifiers in practice, they
further postulate that the difficulty could stem from the insufficiency of training samples in the
commonly used datasets, e.g., CIFAR-10 (Krizhevsky & Hinton, 2009). Recent work intends to
solve this problem by utilizing extra unlabeled data (Carmon et al., 2019; Stanforth et al., 2019),
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while we focus on the complementary strategy to exploit the labeled data in hand more efficiently.
Note that although the samples in the input space are unchangeable, we could instead manipulate the
local sample distribution, i.e., sample density in the feature space via appropriate training objectives.
Intuitively, by inducing high-density feature regions, there would be locally sufficient samples to
train robust classifiers and return reliable predictions (Schmidt et al., 2018).
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Figure 1: Intuitive illusion of how training data moves and how sample den-
sity varies in a two-dimensional feature space during the training procedure.

Similar to our attempt to induce high-density
regions in the feature space, previous work
has been proposed to improve intra-class
compactness. Contrastive loss (Sun et al.,
2014) and triplet loss (Schroff et al., 2015)
are two classical objectives for this purpose,
but the training iterations will dramatically
grow to construct image pairs or triplets,
which results in slow convergence and in-
stability. The center loss (Wen et al., 2016)
avoids the pair-wise or triplet-wise compu-
tation by minimizing the squared distance
between the features and the corresponding class centers. However, since the class centers are updated
w.r.t. the learned features during training, the center loss has to be jointly used with the SCE loss to
seek for a trade-off between inter-class dispersion and intra-class compactness. Therefore, the center
loss cannot concentrate on inducing strong intra-class compactness to construct high-density regions
and consequently could not lead to reliable robustness, as shown in our experiments.

In this paper, we first formally analyze the sample density distribution induced by the SCE loss and
its other variants (Pang et al., 2018; Wan et al., 2018) in Sec. 3.2, which demonstrates that these
previously proposed objectives convey unexpected supervisory signals on the training points, which
make the learned features tend to spread over the space sparsely. This undesirable behavior mainly
roots from applying the softmax function in training, which makes the loss function only depend on
the relative relation among logits and cannot directly supervise on the learned representations.

We further propose a novel training objective which can explicitly induce high-density regions in
the feature space and learn more structured representations. To achieve this, we propose the Max-
Mahalanobis center (MMC) loss (detailed in Eq. (8)) as the substitute of the SCE loss. Specifically,
in the MMC loss, we first preset untrainable class centers with optimal inter-class dispersion in the
feature space according to Pang et al. (2018), then we encourage the features to gather around the
centers by minimizing the squared distance similar with the center loss. The MMC loss can explicitly
control the inter-class dispersion by a single hyperparameter, and further concentrate on improving
intra-class compactness in the training procedure to induce high-density regions, as intuitively shown
in Fig. 1. Behind the simple formula, the MMC loss elegantly combines the favorable merits of the
previous methods, which leads to a considerable improvement on the adversarial robustness.

In experiments, we follow the suggestion by Carlini et al. (2019) that we test under different threat
models and attacks, including the adaptive attacks (Athalye et al., 2018) on MNIST, CIFAR-10,
and CIFAR-100 (Krizhevsky & Hinton, 2009; LeCun et al., 1998). The results demonstrate that our
method can lead to reliable robustness of the trained models with little extra computation, while
maintaining high clean accuracy with faster convergence rates compared to the SCE loss and its
variants. When combined with the existing defense mechanisms, e.g., the AT methods (Madry et al.,
2018), the trained models can be further enhanced under the attacks different from the one used to
craft adversarial examples for training.

2 PRELIMINARIES

This section first provides the notations, then introduces the adversarial attacks and threat models.

2.1 NOTATIONS

In this paper, we use the lowercases to denote variables and the uppercases to denote mappings.
Let L be the number of classes, we define the softmax function softmax(h) : RL ! RL as
softmax(h)i = exp(hi)=

∑L
l=1 exp(hl); i 2 [L], where [L] := f1; � � � ; Lg and h is termed as logit.

2



Published as a conference paper at ICLR 2020

A deep neural network (DNN) learns a non-linear mapping from the inputx 2 Rp to the feature
z = Z (x) 2 Rd. One common training objective for DNNs is the softmax cross-entropy (SCE) loss:

L SCE(Z (x); y) = � 1>
y log [softmax(Wz + b)], (1)

for a single input-label pair(x; y), where1y is the one-hot encoding ofy and the logarithm is de�ned
as element-wise. HereW andbare the weight matrix and bias vector of the SCE loss, respectively.

2.2 ADVERSARIAL ATTACKS AND THREAT MODELS

Previous work has shown that adversarial examples can be easily crafted to fool DNNs (Biggio et al.,
2013; Nguyen et al., 2015; Szegedy et al., 2014). A large amount of attacking methods on generating
adversarial examples have been introduced in recent years (Carlini & Wagner, 2017a; Chen et al.,
2017; Dong et al., 2018; Goodfellow et al., 2015; Ilyas et al., 2018; Kurakin et al., 2017; Madry et al.,
2018; Moosavi-Dezfooli et al., 2016; Papernot et al., 2016; Uesato et al., 2018). Given the space
limit, we try to perform a comprehensive evaluation by considering �ve different threat models and
choosing representative attacks for each threat model following Carlini et al. (2019):

White-box l1 distortion attack: We apply the projected gradient descent (PGD) (Madry et al.,
2018) method, which is ef�cient and widely studied in previous work (Pang et al., 2019).

White-box l2 distortion attack: We apply theC&W (Carlini & Wagner, 2017a) method, which has
a binary search mechanism on its parameters to �nd the minimall2 distortion for a successful attack.

Black-box transfer-based attack: We use the momentum iterative method (MIM ) (Dong et al.,
2018) that is effective on boosting adversarial transferability (Kurakin et al., 2018).

Black-box gradient-free attack: We chooseSPSA(Uesato et al., 2018) since it has broken many
previously proposed defenses. It can still perform well even when the loss is dif�cult to optimize.

General-purpose attack:We also evaluate the general robustness of models when adding Gaussian
noise (Gilmer et al., 2019) or random rotation (Engstrom et al., 2019) on the input images.

Furthermore, to exclude the false robustness caused by, e.g., gradient mask (Athalye et al., 2018), we
modify the above attacking methods to beadaptive attacks(Carlini & Wagner, 2017b; Carlini et al.,
2019; Herley & Van Oorschot, 2017) when evaluating on the robustness of our method. The adaptive
attacks are much more powerful than the non-adaptive ones, as detailed in Sec. 4.2.

3 METHODOLOGY

Various theoretical explanations have been developed for adversarial examples (Fawzi et al., 2016;
2018; Ilyas et al., 2019; Papernot et al., 2018). In particular, Schmidt et al. (2018) show that
training robust classi�ers requires signi�cantly larger sample complexity compared to that of training
standard ones, and they further postulate that the dif�culty of training robust classi�ers stems from,
at least partly, the insuf�ciency of training samples in the common datasets. Recent efforts propose
alternatives to bene�t training with extra unlabeled data (Carmon et al., 2019; Stanforth et al., 2019),
while we explore the complementary way to better use the labeled training samples for robust learning.

Although a given sample is �xed in the input space, we can instead manipulate the local sample
distribution, i.e., sample density in the feature space, via designing appropriate training objectives.
Intuitively, by inducing high-density regions in the feature space, it can be expected to have locally
suf�cient samples to train robust models that are able to return reliable predictions. In this section,
we �rst formally de�ne the notion of sample density in the feature space. Then we provide theoretical
analyses of the sample density induced by the SCE loss and its variants. Finally, we propose our new
Max-Mahalanobis center (MMC) loss and demonstrate its superiority compared to previous losses.

3.1 SAMPLE DENSITY IN THE FEATURE SPACE

Given a training datasetD with N input-label pairs, and the feature mappingZ trained by the
objectiveL (Z (x); y) on this dataset, we de�ne the sample density nearby the feature pointz = Z (x)
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following the similar de�nition in physics (Jackson, 1999) as

SD(z) =
� N

Vol(� B )
. (2)

HereVol(�) denotes the volume of the input set,� B is a small neighbourhood containing the feature
point z, and� N = jZ (D) \ � B j is the number of training points in� B , whereZ (D) is the set of
all mapped features for the inputs inD. Note that the mapped featurez is still of the labely.

In the training procedure, the feature distribution is directly induced by the training lossL , where
minimizing the loss value is the only supervisory signal for the feature points to move (Goodfellow
et al., 2016). This means that the sample density varies mainly along the orthogonal direction w.r.t.
the loss contours, while the density along a certain contour could be approximately considered as
the same. For example, in the right panel of Fig. 1, the sample density induced by our MMC loss
(detailed in Sec. 3.3) changes mainly along the radial direction, i.e., the directions of red arrows,
where the loss contours are dashed concentric circles. Therefore, supposingL (z; y) = C, we choose
� B = f z 2 Rd jL (z; y) 2 [C; C + � C]g, where� C > 0 is a small value. ThenVol(� B ) is the
volume between the loss contours ofC andC + � C for labely in the feature space.

3.2 THE SAMPLE DENSITY INDUCED BY THE GENERALIZEDSCELOSS

Generalized SCE loss.To better understand how the SCE loss and its variants (Pang et al., 2018;
Wan et al., 2018) affect the sample density of features, we �rst generalize the de�nition in Eq. (1) as:

L g-SCE(Z (x); y) = � 1>
y log [softmax(h)], (3)

where the logith = H (z) 2 RL is a general transformation of the featurez, for example,h = Wz+ b
in the SCE loss. We call this family of losses as the generalized SCE (g-SCE) loss. Wan et al. (2018)
propose the large-margin Gaussian Mixture (L-GM) loss, wherehi = � (z � � i )> � i (z � � i ) � m� i;y
under the assumption that the learned featuresz distribute as a mixture of Gaussian. Here� i and
� i are extra trainable means and covariance matrices respectively,m is the margin, and� i;y is the
indicator function. Pang et al. (2018) propose the Max-Mahalanobis linear discriminant analysis
(MMLDA) loss, wherehi = �k z � � �

i k2
2 under the similar mixture of Gaussian assumption, but the

main difference is that� �
i are not trainable, but calculated before training with optimal inter-class

dispersion. These two losses both fall into the family of the g-SCE loss with quadratic logits:

hi = � (z � � i )> � i (z � � i ) + B i , (4)

whereB i are the bias variables. Besides, note that for the SCE loss, there is

softmax(Wz + b) i =
exp(W >

i z + bi )P
l 2 [L ] exp(W >

l z + bl )
=

exp(�k z � 1
2 Wi k2

2 + bi + 1
4 kWi k2

2)
P

l 2 [L ] exp(�k z � 1
2 Wl k2

2 + bl + 1
4 kWl k2

2)
.

According to Eq. (4), the SCE loss can also be regraded as a special case of the g-SCE loss with
quadratic logits, where� i = 1

2 Wi , B i = bi + 1
4 kWi k2

2 and� i = I are identity matrices. Therefore,
later when we refer to the g-SCE loss, we assume that the logits are quadratic as in Eq. (4) by default.

The contours of the g-SCE loss.To provide a formal representation of the sample density induced
by the g-SCE loss, we �rst derive the formula of the contours, i.e., the closed-form solution of
L g-SCE(Z (x); y) = C in the space ofz, whereC 2 (0; + 1 ) is a given constant. LetCe = exp( C) 2
(1; + 1 ), from Eq. (3), we can represent the contours as the solution of

log
�

1+

P
l 6= y exp(hl )

exp(hy )

�
= C =) hy =log

2

4
X

l 6= y

exp(hl )

3

5 � log(Ce � 1). (5)

The function in Eq. (5) does not provide an intuitive closed-form solution for the contours, since

the existence of the termlog
hP

l 6= y exp(hl )
i
. However, note that this term belongs to the family of

Log-Sum-Exp (LSE) function, which is a smooth approximation to the maximum function (Nesterov,
2005; Nielsen & Sun, 2016). Therefore, we can locally approximate the function in Eq. (5) with

hy � h~y = � log(Ce � 1), (6)
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Figure 2: Intuitive illustration on the inherent limitations of the g-SCE loss. Reasonably learned features for a classi�cation task should
distribute in clusters, so it is counter-intuitive that the feature points tend to move to in�nity to pursue lower loss values when applying the
g-SCE loss. In contrast, MMC induces models to learn more structured and orderly features.

where~y = arg max l 6= y hl . In the following text, we apply colored characters with tilde like~y to better
visually distinguish them. According to Eq. (6), we can de�neL y; ~y (z) = log[exp( h~y � hy ) + 1] as
the local approximation of the g-SCE loss nearby the feature pointz, and substitute the neighborhood
� B by � By; ~y = f z 2 Rd jL y; ~y (z) 2 [C; C + � C]g. For simplicity, we assume scaled identity
covariance matrix in Eq. (4), i.e.,� i = � i I , where� i > 0 are scalars. Through simple derivations
(detailed in Appendix A.1), we show that if� y 6= � ~y , the solution ofL y; ~y (z) = C is a (d� 1)-
dimensional hypersphere with the centerM y; ~y = ( � y � � ~y ) � 1(� y � y � � ~y � ~y ); otherwise if� y = � ~y ,
the hypersphere-shape contour will degenerate to a hyperplane.

The induced sample density.Since the approximation in Eq. (6) depends on the speci�cy and~y,
we de�ne the training subsetDk; ~k = f (x; y) 2 Dj y = k; ~y = ~kg andNk; ~k = jD k; ~k j. Intuitively,
Dk; ~k includes the data with the true label of classk, while the highest prediction returned by the

classi�er is class~k among other classes. Then we can derive the approximated sample density in the
feature space induced by the g-SCE loss, as stated in the following theorem:

Theorem 1. (Proof in Appendix A.1) Given(x; y) 2 D k; ~k , z = Z (x) andL g-SCE(z; y) = C, if there
are � k = � k I , � ~k = � ~k I , and� k 6= � ~k , then the sample density nearby the feature pointz based on
the approximation in Eq. (6) is

SD(z) /
Nk; ~k � pk; ~k (C)

h
B k; ~k + log( Ce � 1)

� k � � ~k

i d � 1
2

, and B k; ~k =
� k � ~k k� k � � ~k k2

2

(� k � � ~k )2 +
Bk � B~k

� k � � ~k
, (7)

where for the input-label pair inDk; ~k , there isL g-SCE � pk; ~k (c).

Limitations of the g-SCE loss.Based on Theorem 1 and the approximation in Eq. (6), letC � =
log(1 + exp(B k; ~k (� ~k � � k ))) andC �

e = exp( C � ), such thatB k; ~k + log( C �
e � 1)

� k � � ~k
= 0 . According

to Appendix A.1, if� k > � ~k , thenC � will act as a tight lower bound forC, i.e., the solution set
of C < C � is empty. This will make the training procedure tend to avoid this case since the loss
C cannot be further minimized to zero, which will introduce unnecessary biases on the returned
predictions. On the other hand, if� k < � ~k , C could be minimized to zero. However, whenC ! 0,
the sample density will also tend to zero since there isB k; ~k + log( Ce � 1)

� k � � ~k
! 1 , which means the

feature point will be encouraged to go further and further from the hypersphere centerM k; ~k only to
make the loss valueC be lower, as intuitively illustrated in Fig. 2(a).

This counter-intuitive behavior mainly roots from applying the softmax function in training. Namely,
the softmax normalization makes the loss value only depend on the relative relation among logits. This
causes indirect and unexpected supervisory signals on the learned features, such that the points with
low loss values tend to spread over the space sparsely. Fortunately, in practice, the feature point will
not really move to in�nity, since the existence of batch normalization layers (Ioffe & Szegedy, 2015),
and the squared radius from the centerM k; ~k increases asO(j logCj) when minimizing the lossC.
These theoretical conclusions are consistent with the empirical observations on the two-dimensional
features in previous work (cf. Fig. 1 in Wan et al. (2018)).
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Another limitation of the g-SCE loss is that the sample density is proportional toNk; ~k , which is on
averageN=L 2. For example, there are around1:3 million training data in ImageNet (Deng et al.,
2009), but with a large number of classesL = 1 ; 000, there are averagely less than two samples in
eachDk; ~k . These limitations inspire us to design the new training loss as in Sec 3.3.

Remark 1. If � k = � ~k (e.g., as in the SCE loss), the features with loss values in[C; C + � C] will be
encouraged to locate between two hyperplane contours without further supervision, and consequently
there will not be explicit supervision on the sample density as shown in the left panel of Fig. 1.

Remark 2. Except for the g-SCE loss, Wen et al. (2016) propose the center loss in order to improve
the intra-class compactness of learned features, formulated asL Center(Z (x); y) = 1

2 kz � � y k2
2. Here

the center� y is updated based on a mini-batch of learned features with labely in each training
iteration. The center loss has to be jointly used with the SCE loss asL SCE+ � L Center, since simply
supervise the DNNs with the center loss term will cause the learned features and centers to degrade to
zeros (Wen et al., 2016). This makes it dif�cult to derive a closed-form formula for the induced sample
density. Besides, the center loss method cannot concentrate on improving intra-class compactness,
since it has to seek for a trade-off between inter-class dispersion and intra-class compactness.

3.3 MAX -MAHALANOBIS CENTER LOSS

Inspired by the above analyses, we propose theMax-Mahalanobis center (MMC) lossto explicitly
learn more structured representations and induce high-density regions in the feature space. The MMC
loss is de�ned in a regression form without the softmax function as

L MMC(Z (x); y) =
1
2

kz � � �
y k2

2. (8)

Here� � = f � �
l gl 2 [L ] are the centers of the Max-Mahalanobis distribution (MMD) (Pang et al., 2018).

The MMD is a mixture of Gaussian distribution with identity covariance matrix and preset centers� � ,
wherek� �

l k2 = CMM for anyl 2 [L ], andCMM is a hyperparameter. These MMD centers are invari-
able during training, which are crafted according to the criterion:� � = arg min � maxi 6= j h� i ; � j i .
Intuitively, this criterion is to maximize the minimal angle between any two centers, which can
provide optimal inter-class dispersion as shown in Pang et al. (2018). In Appendix B.1, we provide
the generation algorithm for� � in MMC. We derive the sample density induced by the MMC loss in
the feature space, as stated in Theorem 2. Similar to the previously introduced notations, here we
de�ne the subsetDk = f (x; y) 2 Dj y = kg andNk = jD k j.

Theorem 2. (Proof in Appendix A.2) Given(x; y) 2 D k , z = Z (x) and L MMC(z; y) = C, the
sample density nearby the feature pointz is

SD(z) /
Nk � pk (C)

C
d � 1

2

, (9)

where for the input-label pair inDk , there isL MMC � pk (c).

According to Theorem 2, there are several attractive merits of the MMC loss, as described below.

Inducing higher sample density.Compared to Theorem 1, the sample density induced by MMC is
proportional toNk rather thanNk; ~k , whereNk is on averageN=L. It facilitates producing higher
sample density. Furthermore, when the loss valueC is minimized to zero, the sample density will
exponentially increase according to Eq. (9), as illustrated in Fig. 2(b). The right panel of Fig. 1 also
provides an intuitive insight on this property of the MMC loss: since the loss valueC is proportional
to the squared distance from the preset center� �

y , the feature points with lower loss values are certain
to locate in a smaller volume around the center. Consequently, the feature points of the same class
are encouraged to gather around the corresponding center, such that for each sample, there will be
locally enough data in its neighborhood for robust learning (Schmidt et al., 2018). The MMC loss
value also becomes a reliable metric of the uncertainty on returned predictions.

Better exploiting model capacity.Behind the simple formula, the MMC loss can explicitly monitor
inter-class dispersion by the hyperparameterCMM , while enabling the network to concentrate on
minimizing intra-class compactness in training. Instead of repeatedly searching for an internal trade-
off in training as the center loss, the monotonicity of the supervisory signals induced by MMC can
better exploit model capacity and also lead to faster convergence, as empirically shown in Fig. 3(a).
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