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ABSTRACT

Cell-cell interactions have an integral role in tumorigenesis as they are critical in
governing immune responses. As such, investigating specific cell-cell interactions
has the potential to not only expand upon the understanding of tumorigenesis, but
also guide clinical management of patient responses to cancer immunotherapies.
A recent imaging technique for exploring cell-cell interactions, multiplexed ion
beam imaging by time-of-flight (MIBI-TOF), allows for cells to be quantified in
36 different protein markers at sub-cellular resolutions in situ as high resolution
multiplexed images. To explore the MIBI images, we propose a GAN for mul-
tiplexed data with protein specific attention. By conditioning image generation
on cell types, sizes, and neighborhoods through semantic segmentation maps, we
are able to observe how these factors affect cell-cell interactions simultaneously
in different protein channels. Furthermore, we design a set of metrics and offer
the first insights towards cell spatial orientations, cell protein expressions, and cell
neighborhoods. Our model, cell-cell interaction GAN (CCIGAN), outperforms
or matches existing image synthesis methods on all conventional measures and
significantly outperforms on biologically motivated metrics. To our knowledge,
we are the first to systematically model multiple cellular protein behaviors and
interactions under simulated conditions through image synthesis.

1 INTRODUCTION

1.1 BIOLOGICAL ROLE OF CELLULAR PROTEINS

Cell-cell interactions within the tumor microenvironment have been implicated in many facets of
cancer pathogenesis and treatment. Most prominently, tumor cell evasion of immune surveillance
(Jiang et al., 2019), tumor metastasis (Nishida-Aoki & Gujral, 2019), and efficacy of cancer im-
munotherapies (Lau et al., 2017) have all been closely linked to the relationships between immune
and cancer cells. These types of cell-cell relationships are generally governed by the interactions
of cell surface proteins which drive cell behavior, gene expression, and survival. One of the most
prominent examples of cellular proteins influencing disease progression is the case of PD-1/PD-L1.
PD-L1 is a protein often overexpressed on tumor cells and has the capacity to bind PD-1 on local T
cells to downregulate their anti-tumor immune responses (Iwai et al., 2002).

Antibodies which interrupt the interaction of PD-L1 and PD-1 and allow the immune system to
attack tumor cells, have become clinically influential treatments for a variety of cancers (Pardoll,
2012). This example highlights the value of accurately predicting cellular protein patterns which
play key roles in disease processes. Exploring protein localizations in a multi-cellular system repre-
sents a challenge for which deep learning models are uniquely suited. However, to our knowledge
no image-based deep generative models have utilized semantic image synthesis to produce accurate
predictions of these biological phenomena.

1.2 FRAMEWORK AND NOVELTY OF A PREDICTIVE MODEL

A meaningful exploration of cell-cell interactions, particularly in the tumor microenvironment, re-
quires a thorough understanding of the proteins expressed on and within a cell and its neighborhood.
Multiplexed ion beam imaging by time-of-flight (MIBI-TOF) represents a novel technology that can
accurately quantify and spatially resolve cellular protein expressions at the single cell level within
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tissue samples. Given a tissue sample that is first stained with protein-specific antibodies tethered
to elemental metals, MIBI-TOF bombards the sample with atomic ions (i.e. O+

2 ) from a primary
ion beam. This causes the release of elemental isotopes and tissue-specific material which can be
quantified in a mass spectrometer (Angelo et al., 2014). The cellular proteins characterized by this
technique indicate specific cell types (i.e. immune cells, tumor cells), cell status (i.e. markers of pro-
liferation), and immunomodulation. Figure 1 (A) shows an example spatial orientation of cell types
and some selected cellular protein expressions. Here, we propose a novel protein based attention

Figure 1: (A) Example segmentation patches (left column) and protein expressions (other columns).
(B) Examples of how segmentation maps can be synthetically altered to pose different counterfactual
biological scenarios for in silico hypothesis testing.

mechanism for a convolutional Generative Adversarial Network (GAN) with the capacity to provide
accurate conditioned predictions of cellular protein localizations. The model, Cell-Cell Interaction
GAN (CCIGAN), learns a many to many mapping between different cell types and different protein
markers. CCIGAN is trained on semantic segmentation maps of cell tissue samples to identify and
associate cell type, shape, and the identity of its cellular neighbors with cellular protein expressions
for each cell. The network was then applied to simulated segmentation maps to understand how
cells vary their protein localizations.

CCIGAN demonstrates its ability to probe elements of oncologic processes by:

1. Independently recapitulating established patterns of biological phenomena, thereby demon-
strating the accuracy of its predictive power.

2. Yielding quantitative and spatial information on specific cellular protein modulations as a
result of immune cell - cancer cell interactions.

3. Allowing for biological data to be generalized beyond traditional in vitro scenarios where
specific, rare, or hypothetical cell-cell events can be posed in counterfactual scenarios and
the results of their interactions predicted.

The ability for CCIGAN to generate subcellular protein predictions represents a step forward in the
ability to understand cellular relationships within a microenvironment. Rather than assessing in vitro
incidence of cell interaction phenomena as is done by MIBI-TOF, CCIGAN allows for hypothetical
biological situations to be generated. Figure 1 (B) illustrates examples how a segmentation map can
be directly manipulated to pose various biological scenarios. In other words, individual cellular re-
sponses to challenge or proximity of cells of any identity can be assessed without having to seek this
specific occurrence within the available biological tissue sample. These capabilities allow the model
to provide insight on hypothetical interaction events which shed insight on disease pathogenesis and
which cannot be feasibly achieved by biological investigation alone.

MIBI-TOF is a labor intensive process which can make the data collection process cumbersome.
Deep learning models such as CCIGAN have the potential to be useful tools which can extend
on MIBI-TOF capabilities and result in more rapidly synthesized data. CCIGAN, once trained on
MIBI-TOF data sets and properly replicating known cell-cell interaction patterns, can be used as
a robust means to provide high throughput readouts on myriad single cell scenarios which may
normally take many iterations of MIBI-TOF experiments to investigate. Recent work by (Wu et al.,
2019) demonstrated the utility of conditional GANs for adding a depth dimension to images; we
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demonstrate learning contextual cell-cell interactions, facilitating rapid hypothesis testing to assess
biological environments. This provides valuable insight into a complex system that normally would
have taken resource-intensive wet lab experiments to interrogate.

2 RELATED WORK

We are interested in the task of generating biologically consistent expression patterns of cellular
proteins given a segmentation map of cell neighborhoods. Specifically, we want to learn a gen-
erative model that simultaneously produces high quality maps of protein expression for individual
cells that are probabilistically consistent when conditioned on the same factors, e.g. similar cell
neighborhoods should produce similar expression patterns. Such generative models typically take
the framework of a generative adversarial network (GAN) (Goodfellow et al., 2014; Brock et al.,
2018) or a variational autoencoder (VAE) (Kingma & Welling, 2013).

Within these generative modeling techniques, image translation focuses on learning a many to
many mapping to transform data from one domain to another. One approach is to model the
translation task, known as image synthesis, with conditioning such as Pix2Pix (Isola et al., 2016),
Pix2PixHD (Wang et al., 2018a) and CycleGAN (Zhu et al., 2017). By using image synthesis, a
model is able to distill more information from a segmentation map to various protein channels. As
MIBI-TOF measures information such as protein localizations at a subcellular resolution, framing
the problem through an image synthesis framework allows a model to see how predictive neighbor-
hoods and cell types are of a cell’s phenotype.

Recently, Park et al. (2019) proposed spatial adaptive normalization (SPADE) to synthesize images
using segmentation maps by learning fully convolutional normalization parameters based on their
segmentation conditioning. For each layer, semantic information is retained by allowing the network
to learn from the segmentation map directly and modulate the current layer. They demonstrate
impressive quality and diversity in generated images, especially modeling objects in context. Using
SPADE normalization, CCIGAN is able to condition on surrounding cell neighbors and capture cell-
cell interactions in a local receptive field. Despite image generation, there has been no work done
towards understanding such generations in context, particularly in biological images.

Attention layers (Vaswani et al., 2017; Wang et al., 2018b; Zhang et al., 2018) have also been added
to generative models with great success. Self-attention was initially proposed in machine translation
tasks to help model long distance dependencies that occur frequently in language (Sutskever et al.,
2014), which led to the idea of external memories as a persistent state to model long range depen-
dencies (Sukhbaatar et al., 2015). While convolutional neural networks are apt at exploiting local
structures of patches, they may struggle to model global structures. For this reason visual attention
allows the network to enhance activations in interesting parts of an image. Goodfellow et al. (2014)
and Brock et al. (2018) both achieve state-of-the-art unconditional generative modeling using self
attention GAN (Zhang et al., 2018). We propose a specialized attention module conditioned on
different proteins to mimic real world protein markers.

3 DATASET

3.1 MULTIPLEXED ION BEAM IMAGES (MIBI)

All experiments are performed on data obtained through MIBI-TOF characterized tissue samples
collected from triple-negative breast cancer (TNBC) patients. By simultaneously imaging over 36
protein markers, MIBI-TOF is able to identify cell type as well as provide detailed information of
sub-cellular structure, cell neighbors, and interactions in the tumor microenvironment across these
different marker settings. Each of these markers m ∈ {1, ...,M}, given as a channel taking on
real values continuous in [0, 1] at each (x, y) coordinate, demarcates a different cellular subtype and
furthermore, is indicative of the functional properties of a cell. While MIBI-TOF is capable of 36
different markers, we chose markers exhibiting cellular protein localization and disregarded markers
that were blank or used simply for cell-typing 1 resulting in M = 24. A full list of these markers is
given in A.8.

1Some channels were completely blank and others were indicator channels, i.e. CD45, a binary indicator
for an immune cell.

3



Under review as a conference paper at ICLR 2020

Figure 2: Examples generated from a segmentation for certain channels for different models. The
segmentation patch is the one hot encoded patch collapsed and colored into 1 channel. The horizon-
tal labels represent protein markers and the vertical labels are each of the generative models.

The MIBI-TOF data collected from the TNBC tissue allows for the differentiation between a wide
variety of cell types within the samples. For instance, cells positive for the marker CD3 could
be identified as T cells, and then subdivided into cytotoxic or helper lineages by the presence of
markers CD8 or CD4, respectively. Tumor cells could be identified by markers such as pan-keratin
and overexpressed beta-catenin. Along these lines, a wide variety of cellular proteins identified by
MIBI-TOF could characterize cell interactions as well as immunomodulatory processes occurring
within the microenvironment.

MIBI-TOF data is fundamentally different than typical RGB images. This poses unique challenges
in image modeling and characterization. Such challenges stem from each marker being conditionally
expressed on the cell type in its respective channelm. Using a simplified 3 channel multiplex setting,
a T cell expresses signals in the CD3, CD8 channels (indicators for immune cells) but not in a pan-
keratin channel (indicator for tumor cells). Another problem is the sparsity of the data, meaning
either some expressions for rare cell types are rarely observed or have weak signals. For example,
Figure 2 includes a segmentation of a CD8 T cell (orange, top right corner), where other models
fail in generating correct CD3 expression, if at all2. Lastly, the noisy nature of the data leads to
inaccurate cell type classifications, creating inconsistent pairs of labels and outputs during training.

These issues make it especially difficult for an RGB multihead decoder to output multiple channels
in a biologically accurate manner. Without addressing multiplexed data, a decoder would equally
attend to every location of the current latent representation, even if it is irrelevant to the current
protein. Furthermore each protein channel in the output has its own sensitivities to signal intensi-
ties and noise, suggesting each channel requires a unique prior and that equal attention would be
problematic. It follows that special care must be given towards modeling specific channels and the
multiplexed nature of MIBI-TOF images.

3.2 DATA PROCESSING

MIBI-TOF images are represented as a high dimensional tensor T ∈ R(M,2048,2048). These images
are then further processed at a cell by cell basis into Y ∈ R(M,64,64) patches, where a cell is at
the center of the patch along with its neighbors. Next, we construct semantic segmentation maps
S ∈ R(C+1,64,64), where a vector S:,i,j is one-hot encoded based on a cell type C = 17, and the
C + 1-th channel denotes empty segmentation space. The data is train-test split at a 9:1 ratio at the
MIBI-TOF image level to avoid cell neighborhood bias. We also use a synthetic test set where cells

2The dark green cell is extremely rare, classified as ”other immune” and is a noise class label.
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and their neighbors are sequentially modified to observe how varying cell type, position, and size
affects the progressive changes in protein localizations3.

4 METHODS

4.1 MODEL ARCHITECTURE

Figure 3: CCIGAN

We use SPADE residual blocks (Park et al., 2019) as our generative backbone and DCGAN’s dis-
criminator’s architecture (Figure 3, A.1) (Radford et al., 2015). Park et al. (2019) have shown
SPADE to be an effective way to inject conditioning into a generative model. The SPADE nor-
malization layer serves as a replacement for previous layer normalization techniques. Instead of
learning a universally shared per channel affine transformation, like in Batch Normalization (Ioffe
& Szegedy, 2015) or Instance Normalization (Ulyanov et al., 2016), SPADE learns to predict affine
transformations based on segmentation maps; each feature is uniquely transformed based on its
cell type, size, and neighboring cells. The ability for SPADE to modulate activations based on the
context of adjacent cell segmentations allows the network to effectively model the behaviors and
interactions of cells. The input of CCIGAN is a noise vector z ∈ R128 and a segmentation map S.
f denotes a linear layer R128 7→ R2048. Ri are feature map representations from SPADE resblocks
and X denotes the final output of M cell expressions. Below, each layer’s output dimensions are
given next to their respective equations.

Z ∈ R(128,4,4) = f(z) (1)

R1 ∈ R(128,8,8) = SPADE RESBLK(Z,S) (2)

R2 ∈ R(128,16,16) = SPADE RESBLK(R1,S) (3)

R3 ∈ R(128,32,32) = SPADE RESBLK(R2,S) (4)

R4 ∈ R(128,64,64) = SPADE RESBLK(R3,S) (5)

X ∈ R(M,64,64) = ATTENTION(R4,S) (6)

4.2 ATTENTION MODULE

Our architectural contribution is a protein marker dependent attention module in the final output
layer. The goal of the attention module is to condition the final output of a channel on a protein
marker m and S’s cell types. For example the protein marker, pan-keratin mpk, is expressed exclu-
sively in tumor cells but not in other cells. Appropriately, an attention mechanism should attend to
tumor cells and ignore irrelevant cells in S for mpk. To replicate a marker searching for specific cell
types that express it, we define a learned persistent vector for each marker denoted by sm∈M ∈ R8

that undergo a series of operations (Figure 4) with the final feature map representation attending to
m’s specific cell types. It is also worthwhile to note that these persistent vectors sm offer a degree of
model interpretability that mimic real world markers. The current input dimensions to the attention
module are R(128,64,64) following the last resblock R4 and m indexes from 1, ..,M .

3The test dataset will be released along with trained models for reproducibility after the reviewing period.
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Figure 4: Attention module. This illustrates an instance, focusing on the light blue block C1.

O ∈ R(M,64,64) = CONV2D(R4) (7)

C ∈ R(KM,64,64) = CONV2D(O) (8)

Ci ∈ R(K,64,64) = SPADE(CK(i−1):Ki,:,:,S) (9)

Ai ∈ R(|s|×K,64,64) = Ci ⊗ sm (10)

Bi ∈ R(1,64,64) = σ(CONV2D(Ai)) (11)

X ∈ R(M,64,64) = O + B1,..,M (12)

Shown in Figure 4, after R4, a bottleneck convolution is applied to match the original data’s di-
mension as O (step 1), which is used in a residual manner with the final output. Intuitively at this
stage, O’s feature maps resemble the target Y, but we wish to further refine the output channels.
We convolve O into MK channeled features for each protein marker where K = 8. Considering
each Ci where i ∈ {1, ...,M} as a group of K channels, the model spatially adaptive normal-
izes each Ci and computes an outer product with the corresponding persistent vector si and Ci.
The resulting matrix is flattened and convolved (with a kernel size of 1 on the pixel level) from
Ai ∈ R(|s|×K,64,64) 7→ R(1,64,64) followed by a sigmoid σ(·) activation. Lastly, the attentions
B1,...,M are added to O to obtain the output X.

Initially, the model has no priors over the interaction of protein markers and cell types. The pro-
posed outer product attention layer (outer product and 1 × 1 convolution) excels at modeling these
relationships and interactions between specific markers and cell types. By using an outer product,
the model forces attention at a pairwise pixel level comparison for all combinations of elements be-
tween sm and Ai. As training progresses, both the learned features over segmentation patches and
the learned persistent vectors sm improve, in turn allowing the learned 1× 1 convolution to reason
about positive or negative relationships from the pairwise pixel combinations.

4.3 IMPLEMENTATION DETAILS AND TRAINING REGIMEN

Our implementation (A.1) of the generator applies Spectral Norm to all layers (Miyato et al., 2018).
The discriminator’s input is the output of the generator concatenated with the segmentation patch
[X,S] and [Y,S] for the ground truth. Finally CCIGAN uses ADAM (lrG = 0.0004, lrD = 0.0001)
with GAN loss and feature matching loss. Full training details and loss functions are given in A.2.

5 EVALUATION

To conduct fair experiments, all models were optimized, tuned, and set with similar parameters.
They were also taken from their official online implementations and trained for 120 epochs or until
convergence (max 150). CCIGAN is identical to our designed SPADE comparison baseline with the
exception of the attention module. Three experiments were conducted to validate the trained model’s
utility in generating biologically meaningful cellular proteins in the tumor microenvironment and
ability to recapitulate and quantify previously established biological phenomena. Each subsection
describes the experiment and the relevant metrics used in evaluation. Full mathematical definitions
are given in section A.3.
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5.1 IMAGE EVALUATION AND RECONSTRUCTION

First, we use the following evaluation metrics in order to compare with baseline results: adjusted L1

and MSE score, L1 and MSE score, structural similarity (SSIM) index (Wang et al., 2004) and cell
based mutual information (MI) shown in Table 1. Equations and explanations are given in A.3.1.
Bolded scores indicate the best scores.

Metrics CCIGAN SPADE Pix2PixHD CycleGAN
Adjusted L1 Score 0.613 0.618 0.875 4.745
L1 Score 0.594 0.602 0.745 3.959
Adjusted MSE Score 0.026 0.031 0.061 1.841
MSE Score 0.026 0.031 0.055 1.523
SSIM 0.810 0.802 0.709 0.394
Cell Mutual Information 10.46 10.25 9.26 7.96

Table 1: Comparison of conventional reconstruction metrics between different models.

Experiment Metrics CCIGAN SPADE Pix2PixHD CycleGAN

PD1-PDL1 (Tumor) COM Score 10.46 10.69 12.81 13.38
Random COM Score 12.27 12.16 12.96 12.45

PD1-PDL1 (Tumor)

EM Distance 151.56 -12.83 -12.24 -0.01
Positive EMD 278.38 149.81 162.97 0.004
Projected EMD 115.77 1.83 11.89 -0.008
Random EMD -123.43 -83.11 -12.50 -0.006

PD1-PDL1 (Endothelial)
EM Distance -22.68 -18.88 -92.08 0.001
Positive EMD 35.92 22.46 109.82 0.01
Projected EMD -9.29 -9.9 -70.96 0.003

Tumor-CD8 (Exp.) t-test -13.81 2.68 25.20 14.27
p-value < 10−8 0.007 < 10−8 < 10−8

Tumor-Tumor (Control) t-test 1.32 2.21 37.99 6.60
p-value 0.187 0.027 < 10−8 < 10−8

Table 2: Biologically motivated experiments. Random, Endothelial, and Tumor-Tumor experiments
are controls.

5.2 PD-1/PD-L1 RELATIONSHIPS BETWEEN T CELLS AND TUMOR CELLS

Figure 5: Example illustration of how a CD8
T cell’s (orange) PD-1 histogram changes as
a function of iteratively added tumor cells.

In the first step of biologically verifying the accuracy
of CCIGAN, PD-1/PD-L1 expression relationships
between CD8 T cells and tumor cells were assessed.
Many T cells located within the tumor microenvi-
ronment have upregulated expression of PD-1 sug-
gesting that the tumor milieu exerts influence on the
protein localization and expression of infiltrating T
cells (Ahmadzadeh et al., 2009). We assessed if in-
creased expression of PD-L1 on neighboring tumor
cells would result in increased directional PD-1 ex-
pression in a CD8 T cell (Figure 5). We also deter-
mined if there was a shift in the cell surface localiza-
tion of the PD-1. To do so, we computed the Earth
Mover’s Distance between a CD8 T cell’s PD-1 ex-
pression (represented as a histogram on a cell’s polar
coordinates) and itself before and after in different
tumor scenarios. In addition to the mass, we com-
puted the expected center of mass (COM) of PD-1
in a CD8 T cell with respect to the neighboring tu-
mor PD-L1 expressions. Equations and explanations
are given in A.3.2 and A.3.3. Additional figures il-
lustrating this process are given in A.4.
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We expected that the properties of the PD-L1 expressing tumor cell would result in an increased
directional PD-1 expression in a neighboring T cell. As a control, a PD-1 expressing T Cell was
surrounded with endothelial cells (a normal tissue lining cell). As shown in Table 2, our initial
hypothesis was confirmed in CCIGAN’s predictions, wherein the presence of a PD-L1 expressing
tumor cell, PD-1 expression in the CD8 T cell increased and moved towards the PD-L1 COM. On
the other hand, the endothelial cell presence yielded no effect on the T cell’s PD-1 expression, a
result which is biologically expected. While both tumor and endothelial cells express PD-L1, the
tumor microenvironment exercises more complex suppressive effects on CD8 T cells, which are
more likely to modulate the T cell expression than endothelial cells. These findings verify CCIGAN
captures the biological relationship of tumor cells inducing immunomodulatory changes on a neigh-
boring T cell. None of the other models succeeded in capturing this protein relationship. This serves
to highlight the capacity of CCIGAN to recapitulate established cell interaction phenomena within
the tumor microenvironment.

5.3 PAN-KERATIN AND CD8 EXPRESSION

Secondly, we assessed the effect of immune cell presence on tumor cell status markers. Keratins
are a class of intracellular proteins that play an important role in ensuring cell structure. Further-
more, when CD8 T cells mediate tumor killing, they release enzymes which cleave the tumor cell’s
pan-keratin, disrupting the tumor cell structure (Oshima, 2002). We explored how the presence
of neighboring CD8 T cells to a tumor cell would affect pan-keratin levels within the tumor cell,
hypothesizing that T cell mediated tumor killing would result in a drop in pan-keratin tumor expres-
sion.

In this experiment, we used a Student’s t-test as the statistical hypothesis test to evaluate the cor-
relations between the pan-keratin expression in tumor cells and the area/number of CD8 T cells in
contact with the tumor cell surface. Given a generated pan-keratin channel Xi ∈ R(H,W ) and the
segmentation map channel for CD8 T cells Si ∈ R(H,W ), we compute the total area of the cells
ai =

∑H
h=1

∑W
w=1 Si, and the total expression level of pan-keratin ei =

∑H
h=1

∑W
w=1 Xi. We then

regress {ei}Ni=1 on {ai}Ni=1 and assess significance of the slope using a t-test against the null of no
change in pan-keratin expression as a function of CD8 T cell-tumor contact.

CD8 T cells were placed adjacent to a tumor cell in increasing number, similar to Figure 1 (B)’s first
row and Figure 5’s experiment. It was observed that the presence of neighboring CD8 T cells to a
tumor cell tended to decrease the pan-keratin expression in the tumor cell. This effect became more
dramatic as the number of surrounding CD8 T cells was increased (A.5). As a control, when the
tumor cell of interest was surrounded with adjacent tumor cell(s) instead of CD8 T cells, no change
was noted in that tumor cell’s pan keratin for CCIGAN. Table 2’s fourth row shows the result of the
t-test where the slope of the linear regression of pan-keratin expression with respect to the number
of surrounding cells is compared to a y = 0 flat baseline. A statistically significant difference
between the slope of the linear regression for the T cell scenario vs. the baseline was found in the
main experiment, but was not present in the control scenario. These results indicate that the T cell
presence mitigates a decrease in pan-keratin expression in the tumor cell, which is suggestive of T
cell mediated tumor killing. Other models reported contrasting results where a significant change
in the tumor cell pan-keratin expression was incorrectly reported under the control conditions. The
resulting graphs are given in A.5. Further protein interaction patterns identified by CCIGAN are also
reported in A.7. The findings from this experiment serve to highlight the robustness and accuracy of
CCIGAN compared to existing image synthesis techniques in probing cell-cell interactions.

5.4 TUMOR INFILTRATED AND COMPARTMENTALIZED MICROENVIRONMENTS

As a final biological evaluation, we consider the variability of PD-L1 expression in immune and
tumor cells across TNBC patient groups. Keren et al. (2018) determined that in situations of mixed
tumor-immune architecture, where immune cells freely infiltrated the tumor, the tumor cells pre-
dominantly expressed PD-L1. Conversely, in situations of compartmentalized tumors, where there
is a greater degree of delineation between immune and tumor cells, macrophages were the predom-
inant source of expressed PD-L1, particularly at the tumor boundary. Figure 1 (B)’s row 2, 3 show
examples of how directly manipulated segmentation maps can simulate the two microenvironments.
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We used CCIGAN to predict on 200 directly manipulated mixed and non-mixed tumor environment
segmentation patches. Similar to Section 5.3’s experimental settings, we then compute the average
expression of a specific marker for the cells of interest for all patches. For each experiment, we use
endothelial cells as control cells to show our result has biological significance.

These findings were recapitulated by CCIGAN in Table 3. For a patient with a mixed tumor environ-
ment, when trained with mixed patient samples, CCIGAN reported increased PD-L1 expression on
tumor cells. Furthermore, CCIGAN was able to quantify this difference in expression at the single
cell level, reporting a tumor to macrophage PD-L1 expression ratio (bolded) of approximately 3.2
and 1.75 for patients A and B respectively.

Experiment Microenvironments Patient A Patient B

PD-1 (T cell) T cell / Tumor / Macrophages 0.01886 0.00131
T cell / Endothelial / Macrophages 0.00558 0.00107

PD-L1 (Tumor) T cell / Tumor / Macrophages 0.00649 0.00100
Endothelial / Tumor / Macrophages 0.00279 0.00046

PD-L1 (Macrophages) T cell / Tumor / Macrophages 0.00204 0.00057
T cell / Endothelial / Macrophages 0.00068 0.00047

Table 3: Average PD-1/PD-L1 expression on the mixed tumor environment. The bolded cells indi-
cate which cells are being measured.

Conversely, when trained with compartmentalized patient samples, CCIGAN reported increased
PD-L1 expression on macrophages adjacent to tumor cells as compared to macrophages adjacent to
normal endothelial (inert) cells for patients C and D. This difference was quantified as a ratio of PD-
L1 expression of tumor-adjacent macrophages to endothelial-adjacent macrophages, approximately
1.85 and 2.7 for patient C and patient D respectively. Moreover, using the trained compartmentalized
model to predict on mixed segmentation patches, CCIGAN still reports a 26% (patient C) and 19%
(patient D) increase of macrophage PD-L1 expression when compared to mixed microenvironments
(Table 4).

Experiment (Macrophages) Microenvironments Patient C Patient D

PD-L1 (Compartmentalized) T cell / Tumor / Macrophages 0.00408 0.00608
T cell / Endothelial / Macrophages 0.00220 0.00225

PD-L1 (Mixed) T cell / Tumor / Macrophages 0.00324 0.00510

Table 4: Average PDL1 expression of macrophages/monocytes on the compartmentalized tumor
environment.

The PD-L1 ratios for the above two scenarios indicate that CCIGAN has appropriately captured
previously reported biological outcomes and is capable of quantifying these phenomena at single
cell levels. Furthermore, the model is adaptable to various different types of tumor architecture
depending on its training set to produce different hypothesis testing environments. The agreement
between CCIGAN data and those reported in Keren et al. (2018) serve as an important control and
demonstrate the fidelity of the CCIGAN output towards true biological results. More importantly,
this provides strong evidence to support the accuracy of the predictions made by CCIGAN in the
assessment of hypothetical cellular scenarios which cannot be tested via in vitro tissue study alone.

5.5 MODEL INTERPRETABILITY

Examining the model’s persistent vectors sm, we can try to understand if there is a match between
real world protein markers and the representations of sm. For example, the vector spk for pan-
keratin attends to tumor cells and sCD8 attends to CD8 T cells at pixel pairwise levels. It follows
that in a simple experiment where corresponding sCD8 ↔ spk vectors are exchanged internally in
the attention module (Eq. 10, Figure 4 Step 3, outer product) we may observe a lower expression
for tumor cells in channel mpk and a lower expression for CD8 T cells in channel mCD8 since tumor
cells do not express CD8 and CD8 T cells do not express pan-keratin. As a control, we also switch
surface membrane markers HLA Class 1 and dsDNA markers as they are present in all cells and
have very similar average expression values (sHLAc1 ↔ sdsDNA). Accordingly, for our control, we
expect to see negligble changes. We define the expression ratio as after

before − 1.
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Protein Markers CD8 pan keratin HLA Class 1 dsDNA
Expression Ratios -0.373 -0.145 -0.054 -0.0012

Table 5: sm persistent vector interpretability experiments.

In Table 5, we can see a larger magnitude decrease of the expression ratios in the sCD8 ↔ spk
experiment and a minute difference in the sHLAc1 ↔ sdsDNA. Further visualizations (Figure 13) and
discussion (model generativeness, Figure 14) are given in A.6.

6 CONCLUSION AND DISCUSSION

We introduced the idea of applying image synthesis to understanding and exploring cell-cell inter-
actions in various and different contexts. To do so we use a protein attention based GAN, CCIGAN,
which can provide accurate characterizations of cellular protein localization phenomena from con-
ditioned counterfactual cell-cell scenarios. Additionally, the architecture of the attention module we
propose can be generalized to other multiplexed datasets that require real world priors.

Furthermore, CCIGAN outperforms a variety of current methods in biological modeling. We
demonstrate this through biological consistency where CCIGAN recapitulates, discovers, and quan-
tifies meaningful cellular interactions through 3 different experiments in a tumor environment un-
recognized by other models. This highlights the potential for CCIGAN to identify cellular protein
interactions which account for variation in patient responses to cancer therapy, providing a frame-
work for biological hypotheses which explain clinical outcomes on a cellular level.
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A APPENDIX

A.1 ARCHITECTURE DETAILS

The detailed architecture of our generator is shown on Table 6.

Layers Output Size Generator
Linear (128, 4, 4) Linear 128× 2048

Upsampling (128, 8, 8) Upsampling 2× 2

SPADE ResBlk-1 (128, 8, 8)

SPADE 128, Leaky ReLU
Convolution 3× 3

SPADE 128, Leaky ReLU
Convolution 3× 3

Upsampling (128, 16, 16) Upsampling 2× 2

SPADE ResBlk-2 (128, 16, 16)

SPADE 128, Leaky ReLU
Convolution 3× 3

SPADE 128, Leaky ReLU
Convolution 3× 3

Upsampling (128, 32, 32) Upsampling 2× 2

SPADE ResBlk-3 (64, 32, 32)

SPADE 128, Leaky ReLU
Convolution 3× 3

SPADE 64, Leaky ReLU
Convolution 3× 3

SPADE 64, Leaky ReLU
Shortcut Convolution 3× 3

Upsampling (64, 64, 64) Upsampling 2× 2

SPADE ResBlk-4 (64, 64, 64)

SPADE 64, Leaky ReLU
Convolution 3× 3

SPADE 64, Leaky ReLU
Convolution 3× 3

Convolution (24, 64, 64) Leaky ReLU, Convolution 5× 5
Convolution (24 ∗ 8, 64, 64) Leaky ReLU, Convolution 5× 5

Group SPADE (24 ∗ 8, 64, 64) [SPADE 8] * 24

Modulation (24 ∗ 64, 64, 64) [Outer Product 8⊗ 8] * 24
(24, 64, 64) Convolution 1× 1, Sigmoid

Output (24, 64, 64) Sum residual, Sigmoid

Table 6: Architecture details of CCIGAN’s generator

where ResBlk is the residual block with skip connection used in ResNet (He et al., 2016), and
SPADE is the spatially-adaptive normalization layer. The detailed architecture of our discriminator
is shown on Table 7.

Layers Output Size Discriminator

Conv-1 (32, 32, 32)
Convolution 4× 4, stride 2

Instance Norm, Leaky ReLU

Conv-2 (64, 16, 16)
Convolution 4× 4, stride 2

Instance Norm, Leaky ReLU

Conv-3 (128, 8, 8)
Convolution 4× 4, stride 2

Instance Norm, Leaky ReLU

Conv-4 (256, 4, 4)
Convolution 4× 4, stride 2

Instance Norm, Leaky ReLU

Conv-5 (512, 2, 2)
Convolution 4× 4, stride 2

Instance Norm, Leaky ReLU

Conv-6 (1, 1, 1)
Convolution 3× 3, stride 2

Sigmoid

Table 7: Architecture details of CCIGAN’s discriminator
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For all baseline models, we use the architecture based on the their original implementation. Due to
the size of the cell patch is (64, 64), we reduce the size of hidden layers to fit our dataset. For fair
comparison, we use the same reduction of hidden layers and the same discriminator architecture for
SPADE, pix2pixHD, and CCIGAN.

A.2 MODEL TRAINING

G is the generator andD is the discriminator for CCIGAN. Given segmentation map S, ground truth
Y and noise δ, the generated image is X = G(S, δ). The input of the discriminator is the cell image
conditioned on the segmentation map S. We use LSGAN loss (Mao et al., 2017) in CCIGAN, which
is defined as follows:

LGAN (G,D) = EY,S [‖D(Y,S)‖2] + ES [‖1−D(G(S, δ),S)‖2] (13)

In addition to GAN loss, we also use feature matching loss (Wang et al., 2018a) during training
expressed as:

LFM (G,D) = EY,S

J∑
j=1

1

Nj
[‖Dj(Y,S)−Dj(G(S, δ),S)‖1] (14)

where Dj is j-th layer feature map of the discriminator for j ∈ {1, ..., J}, and Nj is the number of
elements in j-th layer. Consequently, the objective function for training is given as follows:

min
G

((
max
D

LGAN (G,D)
)

+ λLFM (G,D)
)

(15)

where λ = 10. Due to the size of cell patch is (64, 64), we do not use multi-scale discriminators and
perceptual loss in CCIGAN and other baseline models e.g. SPADE and pix2pixHD.

In training, we use ADAM as the optimizer. The generator learning rate is lrG = 0.0004 and the
discriminator learning rate is lrD = 0.0001. We train CCIGAN 120 epochs with a training set of
5648 cell patches. We train other baseline models for 120 epochs or until they converge (max 150).
The full details of training of CCIGAN and baselines are shown as Table 8. The hyperparameters
of each model are fine-tuned to get better performance. The training time was roughly equal for all
models. In particular, CCIGAN was around 1.2 times slower than the SPADE baseline on a single
Tesla V100 GPU.

Metrics Ours SPADE Pix2PixHD CycleGAN
lrG 0.0004 0.0008 0.0002 0.0002
lrD 0.0001 0.0001 0.0002 0.0002

Table 8: Hyperparameters of models

A.3 EVALUATION METRICS

A.3.1 RECONSTRUCTION METRICS

Given the generated image set X = {Xi}Ni=1 and the ground truth set Y = {Yi}Ni=1 with Xi,Yi ∈
R(M,H,W ), the L1/MSE score is defined as follows,

L(X ,Y) =

N∑
i=1

M∑
m=1

‖sort(Ui � Xi,m)− sort(Ui � Yi,m)‖∗ (16)

where ‖·‖∗ can be either L1 or L2 norm,� is the element-wise product, Xi,m and Yi,m are them-th
channel of the i-th cell patch, Ui ∈ {0, 1}(H,W ) is the mask matrix which masks all the cells in i-th
patch. For any matrix A, sort(A) is the sort function that sorts all entries of A. The sorting function
ensures our metrics are position independent and only measures the intensity of the generated image
and ground truth. The score function L(X ,Y) only computes the loss of sorted expression inside of
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the cells. Then we add penalization for expression outside of cells. The adjusted L1/MSE score is
introduced as follows,

Ladj(X ,Y) =

M∑
m=1

(
‖sort(Ui � Xi,m)− sort(Ui � Yi,m)‖

− ‖sort((1d −Ui)� Xi,m)− sort((1d −Ui)� Yi,m)‖
) (17)

where 1d is the matrix with all entries equal to 1. The (adjusted) L1/MSE scores of CCIGAN and
baseline models are shown on Table 1. A smaller score means a better result.

For any two images X,Y ∈ [0, 1](H,W ), the SSIM and MI are defined as:

SSIM(X,Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
(18) I(X;Y ) = H(X) +H(Y )−H(X,Y )

(19)

where H(·) is entropy, µX and σX are the mean and standard deviation of X, c1, c2 are constants.
Then the SSIM between X ,Y is

SSIM(X ,Y) =
1

N

1

M

N∑
i=1

M∑
m=1

SSIM(Xi,m,Yi,m) (20)

In cell based MI, test patches are processed at a cell-cell basis where their mutual information is
computed with the corresponding cell in the ground truth. For the generated image Xi of the i-th
patch, we assume there are Ti cells in the i-th patch. Then for each cell t, the pixels of m-th channel
of the t-th cell in the i-th patch can be expressed as a vector xt

i,m. Hence, the cell based MI is
formulated as:

I(X ;Y) =
1∑N

i=1 Ti

1

M

N∑
i=1

M∑
m=1

(
Ti∑
t=1

I(xt
i,m;yt

i,m)

)
(21)

We report I(X ;Y) on Table 1. The SSIM measures the similarity between the generated image and
the ground truth. For SSIM, we use HLA Class 1 and dsDNA due to the their expressions in all
cells. If all channels were considered, the SSIM would be uninformative due to the majority of the
channels being blank or sparse. The MI measures the information shared between generated image
and ground truth at a cell by cell basis where we consider all channels. Consider the example where
a model generates no expression in marker m but the real data has expression in m, the MI would
be 0 and vice versa. Higher SSIM and MI values mean better results. Table 1 demonstrates that
CCIGAN outperforms or matches all other baselines on all reconstruction metrics.

A.3.2 WEIGHTED CENTROID

For a generated cell image, its centroid is the mean position of all the points in the cell. We use pixel
values as weights in computing the weighted centroid, now referred to as center of mass (COM).
Given a cell image X ∈ R(H,W ), with indices of the segmented cell V ⊆ {1, . . . ,H}×{1, . . . ,W},
the COM p̄ = (x̄, ȳ) is defined as x̄ =

∑
(x,y)∈V xXx,y∑
(x,y)∈V Xx,y

and ȳ =
∑

(x,y)∈V yXx,y∑
(x,y)∈V Xx,y

.

In the PD-1/PD-L1 experiment, we compute the COM of the CD8 T cell (cell of interest) weighted
by PD-1 expression, given as p̄CD8, and the COM of all tumor cells weighted by PD-L1 expression,
given as p̄Tumor. Since T cells located within the tumor microenvironment often have upregulated
expression of PD-L1, we assume that p̄CD8 should have the same COM as all of its surrounding
tumor cells p̄Tumor. The center of mass score is defined below as the relative distance between p̄CD8

and p̄Tumor, where N is defined as the number of patches:

COMprojection =
1

N

N∑
i=1

‖p̄CD8
i − ProjCD8(p̄Tumor

i )‖2 (22)

The projection function Proj(·) is used to project p̄Tumor onto the CD8 T cell to ensure the expected
COM of the tumor cells is inside of the CD8 T cell. As a reference we choose a random position
p̄Random in the CD8 T cell (PD-1) which replaces p̄CD8 in Eq. 22 and compute the random COM
score to show the effectiveness of the result. An example illustration is given in Figure 6 A.4.
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A.3.3 EARTH MOVER’S DISTANCE

For each segmentation map i, we iteratively add its Ti tumor cells around one CD8 T cell. The COM
is defined for the t-th tumor cell as p̄Tumor

t,i for t ∈ {1, ..., Ti}. We omit the subscript i when it is
clear from context. The subsequent instances of the PD-1 COMs in the CD8 T cell by adding the
t-th tumor are given by p̄CD8

t . Initially when there are no tumor cells, we define p̄CD8
0 as the centroid

of the CD8 T cell. Based on the above setting, we define a vector vt which points from the centroid
of the CD8 T cell p̄CD8

0 , to the COM of the t-th tumor cell p̄Tumor
t . We define vector ut which points

from the previous COM p̄CD8
t−1 to the current COM p̄CD8

t of the CD8 T cell. We define θt as the angle
between vt,ut. If cos θt > 0, that is to say if the cosine similarity is positive, the COM of a CD8 T
cell p̄CD8

t , moves correctly towards the COM of the added tumor cell p̄Tumor
t . An illustration of the

points and vectors is given in Figure 8. Formally:

vt = p̄Tumor
t − p̄CD8

0 , ut = p̄CD8
t − p̄CD8

t−1, cos θt =
ut · vt

‖ut‖ · ‖vt‖
(23)

After obtaining the directional information, we use Earth Mover’s Distance (EMD) (Rubner et al.,
2000) to evaluate the changes in PD-1 expression of the CD8 T cell. The EMD, which measures the
dissimilarity of two distributions, is used in this context to measure the protein localization shifts
in PD-1 before and after adding a tumor cell. We consider each cell X in polar coordinates (r, θ)
with respect to its centroid, integrate its expression along the radius coordinates, and evaluate the
resulting histogram hist(X) along the angle coordinate. This allows for the definition of distance
for moving one histogram to another, i.e. em(Xt

i ,X
t−1
i ) = dEM(hist(Xt

i ), hist(Xt−1
i )), for the

generated PD-1 expression of the CD8 T cell Xt
i when adding the t-th tumor cell. The final EMD

score is defined as:

EMD =
1∑N

i=1 Ti

N∑
i=1

Ti∑
t=1

1(‖Xt
i‖ > ‖Xt−1

i ‖) · em(Xt
i ,X

t−1
i ) · cos θt,i (24)

where the indicator function 1(·) = 1 if and only if ‖Xt
i‖ > ‖Xt−1

i ‖, otherwise 1(·) = 0. This
ensures that the biological constraint of PD-1 expression increasing as a response to added tumor
cells is met. Recall, if cos θt > 0, p̄CD8

t has moved in the direction of p̄Tumor
t , implying the shift in

PD-1 expression is correct, and in turn increases the EMD. By contrast, the EMD score decreases
when p̄CD8

t moves in the opposite direction. Example figures and illustrations showing this process
are given in Figure 7 A.4. Using the EMD we define a randomized search algorithm for discovering
other cell-cell interactions; their results and discussion are given in A.7.
Based on the definition of EMD score, the positive EMD score is defined as:

EMDpositive =
1∑N

i=1 Ti

N∑
i=1

Ti∑
t=1

1(‖Xt
i‖ > ‖Xt−1

i ‖) · em(Xt
i ,X

t−1
i ) ·max{cos θt,i, 0} (25)

The positive EMD score only evaluates the change in PD-1 expression when the COM of a CD8 T
cell moves towards the COM of the added tumor cell. The projected EMD score is defined as:

EMDprojected =
1∑N

i=1 Ti

N∑
i=1

Ti∑
t=1

1(‖Xt
i‖ > ‖Xt−1

i ‖) · em(Xt
i ,X

t−1
i ) · ‖ut,i‖ cos θt,i (26)

The projected EMD score is the EMD score weighted by ‖ut,i‖, i.e. the shift from the previous
COM to the current COM of the CD8 T cell.

A.4 EVALUATION VISUALIZATIONS

Here we provide some example visualizations and illustrations center of mass nomenclature, mass
movement of PD-1 as a function of neighboring PD-L1, and process of computing EM distance.

We can observe in Figure 7 that the mass inside of the T cell in the PD-1 channel shifts as a response
to surrounding tumor cell expressions of PD-L1. The surrounding tumor PD-L1 expressions p̄Tumor

t
are shown in the third row on a cell by cell basis for t ∈ {1, ..., Ti = 4}. Note that the 3rd
column in PD-L1 has sparse expression. Finally the last row shows the PD-1 and PD-L1 channels
superimposed into one channel.
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Figure 6: An example illustration of the center of mass (COM) nomenclature from section 5.1. Note
the projection onto the CD8 T cell. This provides a more consistent measurement across different
patches by projecting pTumor onto the CD8 T cell.

Figure 7: Process of iteratively adding tumor cells. The added red cells are tumor cells (PD-L1) and
the center orange cell indicates a CD8 T cell (cell of interest, PD-1). For this process, we focus on
each instance of an added tumor.

We give an example in Figure 8 to illustrate the vectors vt and ut after adding t-th tumor cell for
t = 1, 2 in computing EMD score, where vt and ut defined in Eq. 23.

A.5 RESULTS GRAPHS

The pan-keratin/CD8 experiment is similar to Figure 7’s orientation except the center cell (cell of
interest) is a tumor cell (red) and the adjacent neighboring cells are CD8 T cells (orange).
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Figure 8: An example illustration of the points and vector nomenclature from section 5.2. The blue
dots are the expression of PD-1 and PD-L1 proteins. The cyan arrows show the vectors vt and ut.
Note the shift in expression of the PD-1 as a response to the added tumor’s PD-L1 expression.

Figure 9: CCIGAN experiment for adding CD8 T cells and tumor cells (control) around a tumor
cell.

CCIGAN predicted a decrease in tumor cell pan-keratin expression with respect to increasing CD8
T cell area/number (Figure 9). This is juxtaposed to the tumor cell control where there is no change
in the pan-keratin level as the number of neighboring tumor cells is increased.

SPADE does not predict a decrease in tumor cell pan-keratin expression with respect to increasing
CD8 T cell area/number and shows no difference in pan-keratin expression trends between the T
cell and control groups (Figure 10).
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Figure 10: SPADE experiment for adding CD8 T cells and tumor cells (control) around a tumor cell.

Figure 11: pix2pixHD experiment for adding CD8 T cells and tumor cells (control) around a tumor
cell.

pix2pixHD erroneously predicts an increase in tumor cell pan-keratin expression with respect
to increasing CD8 T cell area/number and shows no difference in pan-keratin expression trends
between the T cell and control groups (Figure 11).

CycleGAN fails to predict a decrease in tumor cell pan-keratin expression with respect to increasing
CD8 T cell area/number and shows no difference in pan-keratin expression trends between the T
cell and control groups (Figure 12).
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Figure 12: CycleGAN experiment for adding CD8 T cells and tumor cells (control) around a tumor
cell.

A.6 MODEL INTERPRETABILITY AND GENERATIVENESS

Figure 13 shows the persistent vectors si for all proteins. Note the similarity between CD3 and
CD8 T cell protein markers and the similarity between dsDNA and HLA Class 1 surface membrane
proteins (expressed in all cells). It is also important to make the distinction that sparse markers
(while different) are similar in state. This is due to the lack of training data for rare cell types,
making it difficult for the model to reason on such a small sample size.

Figure 13: Persistent vectors s for various channels.

Figure 14 shows the generativeness of CCIGAN through an uncertainty map over 100 instances
(random noise). An uncertainty map shows the differences per pixel (x, y) location. The higher
intensities indicate a higher probability of changing at the specified (x, y) location.
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Figure 14: Uncertainty maps illustrating model generativeness.

A.7 SEARCH ALGORITHM

Here we provide a randomized search algorithm to try to discover further cell-cell interactions in
other channels.

Index Fixed Cell Type Added Cell Type Channels Expression
1 CD8 T Cell Keratin-positive tumor PD-1, CD3, Vimentin Increase ↑
2 CD8 T Cell CD8 T Cell PD-1 Decrease ↓
3 CD3 T Cell Keratin-positive tumor CD3, CD4 Increase ↑
4 Keratin-positive tumor CD8 T Cell Pan-Keratin Decrease ↓
5 Keratin-positive tumor CD3 T Cell Pan-Keratin Decrease ↓
6 Keratin-positive tumor Macrophages Pan-Keratin Decrease ↓
7 Macrophages Keratin-positive tumor Vimentin Increase ↑

Table 9: Additional cell interaction trends captured by CCIGAN.

The experimental findings in Indices 4, 5 and 6 support those reported in 6.2.2, demonstrating that
immune cell presence adjacent to tumor cells causes a decrease in the tumor’s pan-keratin, regardless
of immune cell identity. In addition to confirming the results of 6.2.1, findings in indices 1 and 3
also indicate that tumor cells increase the expression of the T cell co-receptor, although this is
of unclear functional significance. Index 2 suggests T cell clustering reduces the expression of
the immune suppressive PD-1 marker. Lastly, Index 7 demonstrates an increase in macrophage
expressed vimentin when macrophages are placed adjacent to tumor cells. Since vimentin is secreted
as a pro-inflammatory marker in macrophages, this suggests an early macrophage inflammatory
response to its tumor neighbor.

A.8 MARKERS

The markers we used (total 24) in our experiments are: Pan-Keratin, EGFR, Beta catenin, dsDNA,
Ki67, CD3, CD8, CD4, FoxP3, MPO, HLA-DR, HLA-Class-1, CD209, CD11b, CD11c, CD68,
CD63, Lag3, PD1, PD-L1, IDO, Vimentin, SMA, CD31.

The markers we didn’t use (total 12) in our experiments are: CD16, B7H3, CD45, CD45RO, Ker-
atin17, CD20, CD163, CD56, Keratin6, CSF-1R, p53, CD138
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Algorithm 1: Search Algorithm
Input: Cell segmentation list {Si}ni=1, the channel index m, rotation angle ∆θ, fixed noise δ,

threshold β and the generator G.
Randomly chose initial cell index i0 ∈ {1, ..., n};
Input segmentation SINPUT = Si0 ;
Mask for the initial cell U =

∑n
j=1 Si0 [j, :, :] ;

Generated image X0 = G(δ, SINPUT);
Specified channel M0 = U ∗X0[m];
Show SINPUT and M0;
for k = 1 to n− 1 do

Random index ik ∈ {1, ..., n}/ ∪k−1j=0 {ij} ;
SINPUT = SINPUT + Sik ;
Xk = G(δ, SINPUT);
Mk = U ∗Xk[m];
Show SINPUT and Mk;
Ek = dEM (Mk−1,Mk);
if Ek > β

∑
i,j Ui,j then

Log Significance;
if
∑

i,j Mk−1,i,j <
∑

i,j Mk,i,j then
Log Increase;

else
Log Decrease;
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