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ABSTRACT

Data augmentation is a technique to reduce overfitting and to improve general-
ization by increasing the number of labeled data samples by performing label
preserving transformations; however, it is currently conducted in a trial and error
manner. A composition of predefined transformations, such as rotation, scaling
and cropping, is performed on training samples, and its effect on performance over
test samples can only be empirically evaluated and cannot be predicted. This paper
considers an influence function which predicts how generalization is affected by
a particular augmented training sample in terms of validation loss. The influence
function provides an approximation of the change in validation loss without com-
paring the performance which includes and excludes the sample in the training
process. A differentiable augmentation model that generalizes the conventional
composition of predefined transformations is also proposed. The differentiable
augmentation model and reformulation of the influence function allow the param-
eters of the augmented model to be directly updated by backpropagation to mini-
mize the validation loss. The experimental results show that the proposed method
provides better generalization over conventional data augmentation methods.

1 INTRODUCTION

In supervised learning, deep neural networks generally require large amounts of labeled data for
training. Insufficient labeled data will lead to poor generalization due to overfitting. One simple
method to reduce overfitting and to improve generalization is to perform data augmentation, which
involves creating additional labeled data by transforming each training sample with label preserv-
ing transformations. Different augmentation can bring about huge differences in test performance
depending on the task (Dosovitskiy et al. (2016); Graham (2014); Cui et al. (2015); Zhang et al.
(2015)). Unfortunately, it is an area which has not been extensively explored. Even on a well-studied
image classification task (Simonyan & Zisserman (2015); He et al. (2016); Xie et al. (2017)), training
data is often augmented in a manner similar to that performed in training the AlexNet (Krizhevsky
et al. (2012)). A composition of predefined transformations, such as rotation, translation, cropping,
scaling and color perturbation, is a popular choice; however, determining the strength of each trans-
formation that will lead to the best performance is an art and is often set in an empirical manner with
trial and error by observing validation loss (Simard et al. (2003); Ciregan et al. (2012)).

An alternative to tuning a composition of predefined transformations is to learn a strategy for com-
posing the transformations (Sixt et al. (2018); Ratner et al. (2017); Lemley et al. (2017); Peng et al.
(2018); Cubuk et al. (2018)). To learn a strategy, various criteria have been considered. Sixt et al.
(2018) and Ratner et al. (2017) considered a strategy for augmenting realistic samples without con-
sidering the classification model. Given a classification model, Lemley et al. (2017) and Peng et al.
(2018) considered antithetical strategies for augmenting samples that respectively minimize (Lemley
et al. (2017)) or maximize (Peng et al. (2018)) training loss. It is not fully understood why these anti-
thetical studies that relate data augmentation to training loss are effective in improving performance
on test samples. Cubuk et al. (2018) considered small child models to compute a validation loss
for augmenting samples to improve generalization. Here, learning requires a reinforcement learning
framework with the validation loss as a reward signal. It is not clear how well the validation loss of
the small child model approximates the validation loss of the final classification model which may
have little relevance to the child model.

This paper proposes a data augmentation method that is able to directly trace the impact of the aug-
mentation model on generalization. For this, we considered an influence function (Cook & Weisberg
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(1980); Koh & Liang (2017)) to compute how the validation loss is affected by a particular aug-
mented training sample. The influence function approximates the change in validation loss due to
inclusion or exclusion of the augmented training sample without a leave-one-out retraining process.
We also propose a differentiable augmentation model that generalizes the conventional augmen-
tation method by the composition of predefined transformations. Reformulation of the influence
function and the differentiable augmentation model enable a gradient of the validation loss to flow
through the augmented samples and augmentation model; thus, the augmentation model can learn
to augment samples to directly improve generalization by backpropagation.

The remainder of this paper is organized as follows. Section 2 briefly reviews some of the most
relevant studies in the literature related to the proposed method, and Sections 3 and 4 describe the
details of the proposed method. The experimental and comparative results are reported in Section 5.
The conclusions are presented in Section 6.

2 RELATED WORK

2.1 DATA AUGMENTATION METHODS

In this subsection, we provide a brief overview of data augmentation methods in the following three
categories: (i) unsupervised methods that do not consider the classification model during learning1,
(ii) adversarial methods that maximize classification loss and (iii) supervised methods that minimize
classification loss.

Unsupervised methods Unsupervised methods include the conventional data augmentation
method, which is a composition of predefined transformations, such as rotating, translating, crop-
ping, scaling and color perturbation (Simonyan & Zisserman (2015); He et al. (2016); Xie et al.
(2017); Krizhevsky et al. (2012)). The transformations are manually chosen in an empirical way
with trial and error by observing the validation loss (Simard et al. (2003); Ciregan et al. (2012)).
Ratner et al. (2017) considered a generator that generates a sequence of predefined transformations.
Given the sequence, the training sample is augmented by applying predefined transformations in a
consecutive way. The generator is learned in the generative adversarial network (GAN) framework
(Goodfellow et al. (2014)) that the generated sequence produces a realistic augmented sample; how-
ever, the classifier is not considered during the learning process and the effect of data augmentation
can only be observed by trial and error.

Adversarial methods Adversarial methods include hard sample mining that collects or augments
samples that are misclassified by the current classification model. It has been used in training SVM
models (Dalal & Triggs (2005)), boosted decision trees (Dosovitskiy et al. (2016)), shallow neural
networks (Rowley et al. (1998)) and deep neural networks (Shrivastava et al. (2016)). Peng et al.
(2018) and Wang et al. (2017a) considered generating hard samples by adversarially updating ranges
of predefined transformations, such as occluding (Peng et al. (2018); Wang et al. (2017a)), scaling
and rotating (Peng et al. (2018)). In these methods, flexible and complex transformation models
cannot be used because adversarial update on these models may generate adversarial examples (Peng
et al. (2018)). Adversarial examples are perturbed or transformed samples by a small amount, but
they result in the classification model predicting an incorrect answer with high confidence (Szegedy
et al. (2014)). Training classification model with adversarial examples provides the robustness on
adversarial examples but often degenerate performance on clean test samples (Tramèr et al. (2018)).
Recent studies have shown that adversarial updates in convolution based transformations (Baluja &
Fischer (2018)) and spatial transformations (Xiao et al. (2018)) may generate adversarial examples.

Supervised methods Lemley et al. (2017) designed an augmentation model that learns how to
augment samples while learning a classification model in a way that reduces the training classifi-
cation loss, but its effect on performance over test samples can only be empirically evaluated and
cannot be predicted. Cubuk et al. (2018) considered small child models to compute validation loss to
evaluate several augmentation policies over predefined transformations; however, learning requires

1Unsupervised methods may observe validation loss; however, they are referred to as unsupervised because
the augmentation model is learned without label supervision.
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Figure 1: A generic data augmentation framework for the classification task. An input training sam-
ple x is transformed to x̃ by a transformation model which is parameterized by τ . The conventional
method usually defines G as a composition of predefined transformations with randomly sampled
corresponding ranges τ (solid line path). In this paper, G is a differentiable parametric model, and a
learnable network E for estimating τ from x is also considered to obtain the transformed sample x̃
that maximizes generalization of the classification model (dashed line path).

a reinforcement learning framework because a gradient cannot flow from the validation loss to train-
ing samples, and non-differentiable predefined transformations stop the gradient. Furthermore, the
validation loss of the small child model may be different from the validation loss of the final classi-
fication model.

2.2 GENERATIVE ADVERSARIAL NETWORKS

Goodfellow et al. (2014) proposed a generative adversarial network (GAN) that is a framework for
training a deep generative network in an adversarial process. The framework considers the simul-
taneous training of two networks: a generator that generates a sample from random noise and a
discriminator that estimates the probability that a sample came from the training data rather than the
generator. The adversarial process is formed by a minimax two-player game between a discrimina-
tor that learns to distinguish a source of the sample and a generator that is trained to generate an
indistinguishable sample by the discriminator.

Based on the GAN framework, several studies have shown their potential to use on data augmen-
tation by generating class-conditional images (Odena et al. (2017); Nguyen et al. (2017); Mirza
& Osindero (2014)) or improving the realism of synthetic samples (Shrivastava et al. (2017); Sixt
et al. (2018); Wang et al. (2017b)); however, difficulties in learning generative models (relative to a
classification model) require additional unlabeled (Odena et al. (2017); Nguyen et al. (2017); Mirza
& Osindero (2014)) or synthetic (Shrivastava et al. (2017); Sixt et al. (2018); Wang et al. (2017b))
samples to improve performance.

2.3 INFLUENCE FUNCTIONS

The influence function is a classic technique from robust statistics (Cook & Weisberg (1980)) that
estimates how the model parameters change due to up-weighting a particular training sample by
a small amount. Cook & Weisberg (1980) focused on removing training points from linear mod-
els and Cook (1986); Thomas & Cook (1990); Wei et al. (1998) studied them with a wider va-
riety of perturbations. Koh & Liang (2017) scaled up the influence function to non-convex and
highly-complex models, including deep neural networks, by using efficient approximations based
on Hessian-vector products (HVPs; Pearlmutter (1994)), conjugate gradients (Martens (2010)) and
stochastic estimation (Agarwal et al. (2016)). They also considered the influence on the validation
loss as up-weighting a particular training sample that can be computed without a retraining process
and can be used for multiple purposes: debugging models, detecting dataset errors and even creating
training-set attacks.

3 AUGMENTED DATA EVALUATION

Tuning or learning an augmentation model involves evaluating an augmented sample (Figure 1).
Given the classification model, this is often performed by computing the training loss of the sample;
however, the effect on test samples cannot be predicted and can only be computed in a trial and error
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manner. Evaluating an augmented sample using validation loss requires learning two classifiers (in-
cluding and excluding the sample during the learning process), which is computationally expensive
because the models need to be fully trained and because of the cost to compute the loss over valida-
tion samples. Rather than repeat this prohibitive process, we propose a method to approximate the
validation loss change due to a particular augmented sample without the retraining process.

3.1 PROBLEM SET UP

In a classification task, given an input space X , an output space Y and parameter space Θ, a learner
aims to learn a classification model F that maps X 7→ Y and is parameterized by θ. Given a sample
z = (x, y) ∈ X × Y and parameters θ ∈ Θ, let l(z, θ) be the loss evaluated on the sample z at
parameters θ. With training data ztr = {zi}Ni=1, an empirical risk and an empirical risk minimizer
are given as follows:

L(ztr, θ̂(ztr)) =
1

N

∑
i:zi∈ztr

l(zi, θ̂(z
tr)), (1)

where θ̂(ztr) = arg min
θ∈Θ

L(ztr, θ). (2)

To measure the generalization of the classification model F , validation data zval = {zj}Mj=1 is often
considered, and generalization is approximated by an average of loss values over validation data zval

at parameter θ̂(ztr):

L(zval, θ̂(ztr)) =
1

M

∑
j:zj∈zval

l(zj , θ̂(z
tr)). (3)

As shown in Figure 1, consider a label preserving transformation G that maps X 7→ X , and let τ be
the control parameters, x̃ = G(x, τ) be an augmented input, z̃ = (x̃, y) be an augmented sample,
and z̃tr = {z̃i}Ni=1 be an augmented training dataset. In addition, consider a learnable network E
parameterized by φ. It estimates control parameters τ given the input x. Thus, x̃ = G(x,E(x, φ)).

Given the transformation modelG, the goal is then to find the optimal τ for each input x—otherwise,
to find optimal parameters φ of E—that minimizes a classification loss over the validation data zval

when the classification model is learned using z̃tr:

φ = arg min
φ∈Φ

L(zval, θ̂(z̃tr)), (4)

θ̂(z̃tr) = arg min
θ∈Θ

L(z̃tr, θ). (5)

Here, z̃tr = {x̃, y}Ni=1 = {G(x,E(x, φ)), y}Ni=1. Solving Equations 4–5 requires a bi-level opti-
mization process such that Equation 4 can only be solved after Equation 5 is optimized.

3.2 INFLUENCE BY UPWEIGHTING A TRAINING SAMPLE

Consider a change in model parameters θ due to removing a particular training sample zi. Formally,
this change is θ̂(ztr\zi)−θ̂(ztr). Influence functions (Cook & Weisberg (1980); Koh & Liang (2017))
provide an efficient approximation without a retraining process to obtain θ̂(ztr\zi). Let us consider
the change in model parameters due to upweighting zi by an amount of εl(zi, θ) in the loss function:

θ̂(ztr ∪ εzi) = arg min
θ∈Θ

L(ztr, θ) + εl(zi, θ). (6)

Then, from Cook & Weisberg (1980), the following approximation can be derived:

− 1

N
Iup, params(zi) ' θ̂(ztr\zi)− θ̂(ztr), (7)

where

Iup, params(zi) ,
dθ̂(ztr ∪ εzi)

dε

∣∣∣
ε=0

(8)

= −H(θ̂(ztr))−1∇θl(zi, θ̂(ztr)). (9)
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Here, H(θ) , 1
N

∑N
i=1∇2

θl(zi, θ) is the Hessian evaluated at θ.

Using Equation 9 and applying the chain rule, the influence of upweighting zi ∈ ztr on the validation
loss at zj ∈ zval can be approximated (Koh & Liang (2017)) as shown below:

− 1

N
Iup, loss(zi, zj) ' l(zj , θ̂(ztr\zi))− l(zj , θ̂(ztr)), (10)

where

Iup, loss(zi, zj) ,
dl(zj , θ̂(z

tr ∪ εzi))
dε

∣∣∣
ε=0

(11)

= ∇θl(zj , θ̂(ztr))>
dθ̂(zn ∪ εzi)

dε

∣∣∣
ε=0

(12)

= −∇θl(zj , θ̂(ztr))>H(θ̂(ztr))−1∇θl(zi, θ̂(ztr)). (13)
For the validation dataset zval, Equation 12 is simply expanded by:

Iup, loss(zi, z
val) = −∇θL(zval, θ̂(ztr))>H(θ̂(ztr))−1∇θl(zi, θ̂(ztr)). (14)

Equation 11 describes a gradient of l(zj , θ̂(ztr)) w. r. t. ε at nearby ε = 0, and the influence of
removing zi can be approximate by Equation 10.

3.3 INFLUENCE BY AUGMENTATION

With a training sample zi and the corresponding augmented training sample z̃i, let θ̂(ztr ∪ εz̃i\εzi)
be the estimate of θ with downweighting zi and with upweighting z̃i by the ε amount, and let
θ̂(ztr∪ z̃i\zi) be the estimate of θ by replacing zi with z̃i. An analogous approximation of Equations
10–13 yields:

− 1

n
Iaug, loss(zi, z

val) ' L(zval, θ̂(ztr))− L(zval, θ̂(ztr ∪ z̃i\zi)), (15)

where the influence function Iaug, loss(zi, z̃i, z
val) is:

Iaug, loss(zi, z̃i, z
val) ,

dL(zval, θ̂(ztr ∪ εz̃i\εzi))
dε

∣∣∣
ε=0

(16)

= ∇θL(zval, θ̂(ztr))>
d̂̂θ(ztr ∪ εz̃i\εzi)

dε

∣∣∣
ε=0

(17)

= −∇θL(zval, θ̂(ztr))>H(θ̂(ztr))−1
(
∇θl(z̃i, θ̂(ztr))−∇θl(zi, θ̂(ztr))

)
(18)

= Iup, loss(z̃i, z
val)− Iup, loss(zi, z

val). (19)
The influence function Iaug, loss(zi, z̃i, z

val) predicts the difference in influences of the augmented
sample and the original sample. In addition, the influence function can be used to evaluate the effec-
tiveness of the augmented data z̃i in comparison to its original. Because the augmentation model is
deterministic, this influence by replacement reflects the augmentation process during learning final
classification model; however, it does not mean that original samples are excluded during learning
the classifier. If the original sample has the most influence than other transformed samples, then E
learns identity transformation for that sample.

3.4 REFORMULATION OF INFLUENCE FUNCTIONS

To compute influence functions efficiently, we adopt techniques such as conjugate gradients and
stochastic estimation used in Koh & Liang (2017). Given G and F , Hessian-vector products (HVPs)
sval = H(θ̂(ztr))−1∇θL(zval, θ̂(ztr)) is precomputed and cumulated for validation samples using
conjugate gradients and stochastic estimation techniques. The HVPs are fixed during learningE and
are used to compute influence functions of augmented samples. We further approximate the influence
function by only considering the top fully connected layer of F 2, thus the remaining∇θl(zi, θ̂(ztr))

can be represented by a simple closed form. This makes it possible to represent sval∇θl(zi, θ̂(ztr))
as a closed form by regarding sval as a fixed vector. The gradient from this flows through fixed F
and G, and is then used to update E by the chain rule.

2This approximation is only considered during learning E. All parameters of F are updated during learning
F
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(a) Spatial transformation model (b) Appearance transformation model

Figure 2: The proposed transformation models for spatial and appearance transformation. (a) Spatial
transformation model Gs takes an input τg and then generates sw and sb. Flow field s denotes the
coordinates to be transformed and is obtained by operations like the point-wise affine transform by
sw and sb. The warp operation transforms x to x̃ by interpolating x based on the coordinates in s. (b)
Appearance transformation model Ga takes an input τa and then generates cw and cb. x̃ is obtained
by filtering x by a filter with weights cw and bias cb.

4 TRANSFORMATION MODELS

Transformations for augmenting images can be categorized as either spatial transformations or ap-
pearance transformations. In this section, the proposed transformation models that generalize both
transformations are described. The models are differentiable, so a gradient from the influence func-
tion can be propagated to E during learning.

4.1 SPATIAL TRANSFORMATION MODEL

Spatial transformations include random flip, crop, scaling, rotation, shearing, translation, and affine
transformation. These transformations can be defined by the coordinate change in pixel locations.
The proposed transformation model for spatial transformation is illustrated in Figure 2-(a). We define
spatial transformation—in a way similar to Jaderberg et al. (2015); Xiao et al. (2018)—by[

s(i, j, 1)
s(i, j, 2)

]
=

[
sw(i, j, 1) sw(i, j, 2)
sw(i, j, 3) sw(i, j, 4)

] [
i
j

]
+

[
sb(i, j, 1)
sb(i, j, 2)

]
+

[
i
j

]
. (20)

Here, i, j denotes the source coordinate, sw(i, j), and sb(i, j) denote the multiplication factor and
bias, respectively. Note that when we perform global average pooling on sw and sb, the transforma-
tion is reduced to an affine transform. In this formulation, the spatial transformation is fully defined
by sw and sb and these parameters are what we want to generate from τg .

Spatial transformation modelGg takes an input τg and then generates sw and sb. Flow field s denotes
the coordinates to be transformed and is obtained by operations like the point-wise affine transform
by sw and sb. The warp operation in Figure 2-(a) transforms x to x̃ based on the bilinear interpolation
indexed by s. The model is designed by a stacked transposed convolutional network with its final
layer having 4 + 2 channels. After we obtain s, average pooling is applied to smoothing s, and then
the image is warped by bilinear interpolation, which is differentiable (Jaderberg et al. (2015)). All
computations in this formulation can be implemented by a feed-forward neural network.

4.2 APPEARANCE TRANSFORMATION MODEL

Transformations in appearance include enhance contrast, brightness, color and hue shift. These
transformations can be formed by 1× 1 spatial dimension filters. Thus, to formulate the appearance
transformation model, we focused on generating 1 × 1 spatial filters. The proposed transformation
model for the appearance transformation is illustrated in Figure 2-(b). The appearance transforma-
tion model Ga takes an input τa and then generates cw and cb. cw and cb are average pooled as the
spatial transformation model. Transformed image x̃ is obtained by x+ δx, where δx is obtained by
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Figure 3: Toy example on a synthetic binary classification dataset. Red and blue dots represent
data points of class red and blue. A contour plot of predictive probability is overlaid. Each column
represents: (i) training samples and the predictive probability contour plot from model parameters
learned using training samples, (ii) validation samples and the predictive probability contour plot
from model parameters learned using training sample, (iii) augmented samples to maximize influ-
ence and the predictive probability contour plot from model parameters learned using augmented
samples, (iv) validation samples with the predictive probability contour plot from model parameters
learned using augmented samples.

filtering x with filter weights cw and bias cb. The model is designed by a transposed convolutional
network with its final layer having 1 × 1 + 1 channels for grey images and 3 × 3 + 3 channels for
RGB images.

4.3 LEARNING TRANSFORMATION MODELS

During learning,G is trained based on the GAN framework and is fixed thereafter. ThenE is trained
to predict τ , which maximizes the influence function for each x and x̃ = G(x,E(x)) pair. In prac-
tice, we combine the spatial and appearance transformation model by concatenating (τs, τa) and
(sw, sb, cw, cb). The WGAN-GP (Gulrajani et al.) is used for training G with modifications. First,
two discriminators over the image space and flow field s space are considered. The discriminator
over the image space is updated to distinguish x̃ and x, and the discriminator over flow field s space
is updated to distinguish s = Gs(τ) and manually generated flow fields that will result in random
affine transforms. Moreover, to prevent the identity transformation, the inverse of the mean-square
error on the flow field space and image space are additionally considered when updating G. For the
details of hyperparameters and architectures, refer to Appendix A and B.

5 EXPERIMENTS

5.1 TOY 2D DATASET

To visualize the proposed method, we conduct experiments on a toy 2D dataset. Transitions along
the x-axis and y-axis are considered to the augmentation model, and the influence is computed by
validation samples. A simple 3-layer neural network is considered for classification. In Figure 3, red
and blue dots represent data points of class red and blue, and a contour plot of predictive probability
is overlaid.

In the first row of Figure 3, the influence value of augmented samples near the mis-classified valida-
tion sample is high, so the augmentation model learns transitions toward the mis-classified validation
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samples. In the second row of Figure 3, we generate training and validation data and then move the
validation data to the downside to make a mismatch with the training data. In this setting, the influ-
ence value of the downside transition is high, so the augmentation model learns downside transition.

Table 1: MNIST accuracies of various data
augmentation methods.

The number of labeled data
Method 1% 10%

None 90.2% 97.3%
Heur. 95.9% 99.0%

Ratner (MF) 96.5% 99.2%
Ratner (LSTM) 96.7% 99.1%

Proposed 96.7% 99.3%

Table 2: CIFAR-10 accuracies of various
data augmentation methods.

The number of labeled data
Method 10% 100%

None 66.0% 87.8%
Heur. 77.5% 92.3%

Ratner (MF) 79.8% 94.4%
Ratner (LSTM) 81.5% 94.0%

Proposed 82.1% 94.8%

5.2 MNIST DATASET

We ran experiments on the MNIST using only a subset of the class labels to train the classification
models and treating the rest as unlabeled data. We used a four-layer all-convolutional CNN for
classification. Experiments were conducted under the same setting as Ratner et al. (2017). In Table
1, we list classification accuracies for various data augmentation methods from Ratner et al. (2017).
None indicates that no augmentation is applied, and Heur is the standard heuristic approach of
applying random compositions of the given set of transformation operations. Ratner denotes the
results from Ratner et al. (2017). We used a 128 dimensional τ and four-layered convolutional neural
network with additional fully connected layer forE and a symmetry transposed convolutional neural
network for G. For the proposed method, we additionally use the random cropping technique as in
Ratner et al. (2017). For the details, refer to Appendix A and B.

5.3 CIFAR-10 DATASETS

We ran experiments on the CIFAR-10 using a subset of the class labels to train the classification
models and treating the rest as unlabeled data. We used a ResNet-56 (He et al. (2016)). In Table 2,
we list classification accuracies for various data augmentation methods from Ratner et al. (2017).
We used a 128 dimensional τ and four-layered convolutional neural network with additional fully
connected layer for E and a symmetry transposed convolutional neural network for G. For the
proposed method, we additionally use the random cropping and horizontal flip technique as in Ratner
et al. (2017). For the details, refer to Appendix A and B.

6 CONCLUSION

Data augmentation is a technique for avoiding overfitting and improving generalization by increas-
ing the size of labeled datasets; however, it is currently conducted in a trial and error manner. Com-
position of predefined transformations, such as rotation, scaling and cropping, are performed on
training samples, and its effect on performance over test samples can only be empirically evaluated
and cannot be predicted. This paper considered the influence function, which predicts how general-
ization in terms of a validation loss is affected by a particular augmented training sample without
comparing the performances that include and exclude it in the training process. We also proposed
a differentiable augmentation model that generalizes the conventional composition of predefined
transformations. The differentiable augmentation model and reformulation of the influence func-
tion allowed the augmented model parameters to be updated by backpropagation to minimize the
validation loss. Our results confirmed that the proposed method provides better generalization than
conventional data augmentation methods.
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APPENDIX

A ARCHITECTURES

A.1 TRANSFORMATION MODEL DESCRIPTION FOR MNIST

Module Layer Layer description

E

Input x ∈ R28×28×1

Conv2d 4× 4, stride 1, 1→ 16, ReLU
Conv2d 4× 4, stride 2, 16→ 32, ReLU
Conv2d 4× 4, stride 2, 32→ 64, ReLU
Reshape 7× 7× 64→ 3136
Linear 3136→128, Tanh
Output τ ∈ R128

G

Input τ ∈ R128

Linear 128→ 3136
Reshape 3136→ 7× 7× 64

ConvTranspose2d 4× 4, stride 2, 64→ 32, ReLU
ConvTranspose2d 4× 4, stride 2, 32→ 16, ReLU
ConvTranspose2d 4× 4, stride 1, 16→ 8, Identity

Output s ∈ R28×28×8

D

Input x ∈ R28×28×1

Conv2d 4× 4, stride 1, 1→ 16, LeackyReLU 0.2
Conv2d 4× 4, stride 2, 16→ 32, LeackyReLU 0.2
Conv2d 4× 4, stride 2, 32→ 64, LeackyReLU 0.2
Reshape 7× 7× 64→ 3136
Linear 3136→ 1,
Output D(x) ∈ R1

A.2 TRANSFORMATION MODEL DESCRIPTION FOR CIFAR-10

Module Layer Layer description

E

Input x ∈ R32×32×3

Conv2d 4× 4, stride 1, 1→ 16, ReLU
Conv2d 4× 4, stride 2, 16→ 32, ReLU
Conv2d 4× 4, stride 2, 32→ 64, ReLU
Conv2d 4× 4, stride 2, 64→ 128, ReLU
Reshape 4× 4× 128→ 2048
Linear 2048→128, Tanh
Output τ ∈ R128

G

Input τ ∈ R128

Linear 128→ 2048
Reshape 2048→ 4× 4× 128

ConvTranspose2d 4× 4, stride 2, 128→ 64, ReLU
ConvTranspose2d 4× 4, stride 2, 64→ 32, ReLU
ConvTranspose2d 4× 4, stride 2, 32→ 16, ReLU
ConvTranspose2d 4× 4, stride 1, 16→ 18, Identity

Output s ∈ R32×32×18

D

Input x ∈ R28×28×1

Conv2d 4× 4, stride 1, 1→ 16, LeackyReLU 0.2
Conv2d 4× 4, stride 2, 16→ 32, LeackyReLU 0.2
Conv2d 4× 4, stride 2, 32→ 64, LeackyReLU 0.2
Conv2d 4× 4, stride 2, 64→ 128, LeackyReLU 0.2
Reshape 4× 4× 128→ 2048
Linear 2048→ 1,
Output D(x) ∈ R1
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B OPTIMIZERS

B.1 MNIST

Module Optimizer
G, D ADAM, lr=0.0001, β1=0.5, β2=0.9, batch size=128

E ADAM, lr=0.01, β1=0.9, β2=0.99, batch size=128
F ADAM, lr=0.01, β1=0.9, β2=0.99, batch size=128

B.2 CIFAR-10

Module Optimizer
G, D ADAM, lr=0.0001, β1=0.5, β2=0.9, batch size=128

E ADAM, lr=0.01, β1=0.9, β2=0.99, batch size=128
F Same setting as He et al. (2016)

C INTERPOLATING IN τ SPACE

Figure 4: Images are transformed by applying linearly interpolated ten τ ’s to the same training
sample in CIFAR-10 dataset. Each row represents: (i) the training image, (ii) spatial transformation
model outputs, (iii) spatially transformed images, (iv) appearance transformation model outputs and
(v) final transformed images.
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