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Abstract

Network pruning has emerged as a powerful technique for reducing the size of deep
neural networks. Pruning uncovers high-performance subnetworks by taking a
trained dense network and gradually removing unimportant connections. Recently,
alternative techniques have emerged for training sparse networks directly without
having to train a large dense model beforehand, thereby achieving small memory
footprints during both training and inference. These techniques are based on
dynamic reallocation of non-zero parameters during training. Thus, they are in
effect executing a training-time search for the optimal subnetwork. We investigate a
most recent one of these techniques and conduct additional experiments to elucidate
its behavior in training sparse deep convolutional networks. Dynamic parameter
reallocation converges early during training to a highly trainable subnetwork.
We show that neither the structure, nor the initialization of the discovered high-
performance subnetwork is sufficient to explain its good performance. Rather,
it is the dynamics of parameter reallocation that are responsible for successful
learning. Dynamic parameter reallocation thus improves the trainability of deep
convolutional networks, playing a similar role as overparameterization, without
incurring the memory and computational cost of the latter.

1 Introduction

Training high-performance compact networks is often a two-step process. A large network is first
trained, then compressed using techniques such as pruning, distillation, or low-rank decomposition.
Training a compact network from scratch typically fails to reach the same level of accuracy achieved
by compressing a larger network [Zhu and Gupta, 2017].

Network pruning is a common compression method that yields a high-performance subnetwork of an
original network. A natural question is whether such high-performance subnetworks can be uncovered
by a direct search over the space of subnetworks, without the two-step process of training a large
network first and then pruning it down. The advantage of such a search-based procedure is that the full
dense model need not be trained; instead, we start with an initial subnetwork and continuously modify
it during training until we find a high-performance subnetwork. [Anonymous, 2019] described such
a search procedure. Their scheme starts with a sparse network and continuously reallocates during
training its non-zero parameters throughout the network based on a simple heuristic. The resulting
subnetworks perform on par with, and often better than, subnetworks obtained by iteratively pruning
a large overparameterized model. This calls into question the belief that overparameterization is
essential to successful learning. Here, we argue that dynamic parameter reallocation (DPR) is an
equally effective approach to overparameterization to improving the trainability of deep convolutional
networks (CNNs). We present results for a wide Resnet WRN-28-2 [Zagoruyko and Komodakis,
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2016] trained on CIFAR10 and show that DPR is needed for effective learning, even when the
structure and initialization of the high-performance subnetwork is given a priori.

2 Related work

Several recently proposed methods used DPR for direct training of sparse networks: Bellec et al.
[2017] used a random walk in parameter space to explore different sparse parameterizations; Mocanu
et al. [2018] used alternating steps of magnitude-based pruning and random growth to search
for efficient sparse networks. Anonymous [2019] extended the method in Mocanu et al. [2018]
by allowing parameters to be moved across layers. It outperformed the previous two methods
when training deep CNNs and it is the method we use here to investigate how DPR trains high-
performance sparse networks. Neural architecture search (NAS) techniques [Elsken et al., 2018] bear
some similarities to DPR methods in the sense that they also search for compact high-performance
networks, but not simultaneous to training. A closely-related NAS technique is one-shot architecture
search [Bender et al., 2018] where a large network is trained and then the performance of different
subnetworks are evaluated to find the one with highest performance.

3 Methods

Algorithm 1 is a high-level summary of the DPR mechanism introduced by Anonymous [2019].
Training starts with a compact network with sparse parameter tensors {Wi}. During training,
Algorithm 1 is invoked once every few hundred training iterations. Each invocation reallocates
parameters throughout the network through a two-step procedure: weights of absolute values under
an adaptive threshold are pruned, followed by an immediate redistribution of an equal number of
weights across parameter tensors, resulting in a new subnetwork with exactly the same number of
parameters as the original (see Anonymous [2019] for details of the algorithm).

Algorithm 1: Reallocate non-zero parameters within and across parameter tensors

1 for each sparse parameter tensor Wi do
2 (Wi, ki)← prune_by_threshold(Wi, H) . ki is the number of pruned weights
3 li ← number_of_nonzero_entries(Wi) . Number of surviving weights after pruning
4 end for
5 (K,L)← (

∑
i ki,

∑
i li) . Total number of pruned and surviving weights

6 H ← adjust_pruning_threshold(H,K, δ) . Adjust pruning threshold
7 for each sparse parameter tensor Wi do
8 Wi ← grow_back(Wi,

li
LK) . Grow li

LK zero-initialized weights at random in Wi

9 end for

4 Results

We present results of WRN-28-2 [Zagoruyko and Komodakis, 2016] trained on CIFAR10, with
standard data augmentation, training and DPR hyperparameters adapted from Anonymous [2019].
We trained WRN-28-2 for 200 epochs at two levels of global sparsity: 0.9 and 0.8. First, DPR
was actively invoked during the entire course of training and continuously changed the subnetwork
structure by reallocating parameters according to Algorithm 1, yielding sparse networks with high
generalization performance (yellow bars in Figure 1a).

To investigate whether the structure of the subnetwork discovered by DPR contributed to its trainabil-
ity, we did the following experiment: after training with DPR, the structure (i.e. positions of non-zero
entries in sparse parameter tensors) of the final subnetwork was retained, and this subnetwork was
randomly re-initialized and re-trained without DPR (green bars in Figure 1a). Even though the
subnetwork has the same structure as the final subnetwork found by DPR, its training failed to reach
the same accuracy as the identical subnetwork discovered by active DPR.

One might argue that it is not just the network structure, but also its initialization that allow it to reach
high accuracies. To assess this argument, we used the final subnetwork structure found by DPR as
described above, and initialized it with the same initial values used in the DPR training instance. As
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Figure 1: Test accuracies of sparse WRN-28-2 trained on CIFAR10. All plotted data show mean and standard
deviation of 5 independent trials. (a) Comparison of DPR against a number of related statically trained networks.
(b,c) Results of experiments on active initial DPR turned off at certain stages of training. For all data points, we
ran training for 200 epochs (independently of when DPR was stopped).

shown in Figure 1a (blue bars), the combination of final structure and original initialization still fell
significantly short of the level of accuracy achieved by DPR training, though it performed better than
training the same subnetwork with random initialization (green bars).

Finally, we ran control trials where the subnetwork and its initialization were both random (red bars
in Figure 1a) and not surprisingly, these subnetworks performed the worst.

Further, we asked at what stage of training DPR discovered a highly trainable subnetwork. We ran
training trials where, in each trial, we stopped DPR after a certain number of epochs (Figures 1b
& 1c). The horizontal red band marks the baseline performance of sparse compression of a fully
trained dense model iteratively pruned and retrained (see Zhu and Gupta [2017], Anonymous [2019]),
and the blue symbols represent DPR training up to a certain stage of training. Interestingly, DPR
discovered effectively trainable network structures at relatively early stages of training.

5 Discussion

The need for overparameterization during learning has often been attributed to the reduced likelihood
of stochastic gradient descent (SGD) being trapped in bad local optima as the dimensionality of
the loss surface (number of parameters) increases. An alternative hypothesis, “the lottery ticket
hypothesis" [Frankle and Carbin, 2018], argues that starting with large, overparameterized networks
simply provides more candidate subnetworks, making it more likely that one of these candidates
becomes a “winning lottery ticket", i.e, having the right structure and initialization needed to learn
the task. Our results did not support this hypothesis. We showed that structure and initialization alone
or in combination were not sufficient to train compact sparse CNNs to high performance. Rather,
successful learning seemed to depend on the dynamics and the extra degrees of freedom provided by
DPR. Note that our results are not at odds with those in Frankle and Carbin [2018], which reported
negative results on finding “winning tickets" in deep residual networks.

DPR seems to play an analogous role to overparameterization when it comes to improving network
trainability. Like overparameterization, DPR allows training to explore more degrees of freedom
than those strictly necessary to solve the task. Unlike overparameterization where these degrees of
freedom are extra parameters, DPR introduces extra degrees of freedom by simultaneous exploration
of different subnetwork structures during training. In terms of computational and memory resources,
DPR is a more attractive method than overparameterization in improving network trainability because
it obviates the need to maintain or operate on large models, and requires a smaller memory footprint
that is the same during training and inference.
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