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ABSTRACT

Despite remarkable empirical success, the training dynamics of generative adver-
sarial networks (GAN), which involves solving a minimax game using stochastic
gradients, is still poorly understood. In this work, we analyze last-iterate con-
vergence of simultaneous gradient descent (simGD) and its variants under the
assumption of convex-concavity, guided by a continuous-time analysis with dif-
ferential equations. First, we show that simGD, as is, converges with stochastic
sub-gradients under strict convexity in the primal variable. Second, we generalize
optimistic simGD to accommodate an optimism rate separate from the learning
rate and show its convergence with full gradients. Finally, we present anchored
simGD, a new method, and show convergence with stochastic subgradients.

1 INTRODUCTION

Training of generative adversarial networks (GAN) (Goodfellow et al., 2014), solving a minimax
game using stochastic gradients, is known to be difficult. Despite the remarkable empirical success
of GANs, further understanding the global training dynamics empirically and theoretically is consid-
ered a major open problem (Goodfellow, 2016; Radford et al., 2016; Metz et al., 2017; Mescheder
et al., 2018; Odena, 2019).

The local training dynamics of GANs is understood reasonably well. Several works have analyzed
convergence assuming the loss functions have linear gradients and assuming the training uses full
(deterministic) gradients. Although the linear gradient assumption is reasonable for local analysis
(even though the loss functions may not be continuously differentiable due to ReLU activation func-
tions) such results say very little about global convergence. Although the full gradient assumption
is reasonable when the learning rate is small, such results say very little about how the randomness
affects the training.

This work investigates global convergence of simultaneous gradient descent (simGD) and its vari-
ants for zero-sum games with a convex-concave cost using using stochastic subgradients. We
specifically study convergence of the last iterates as opposed to the averaged iterates.

Organization. Section 2 presents convergence of simGD with stochastic subgradients under strict
convexity in the primal variable. The goal is to establish a minimal sufficient condition of global
convergence for simGD without modifications. Section 3 presents a generalization of optimistic
simGD (Daskalakis et al., 2018), which allows an optimism rate separate from the learning rate. We
prove the generalized optimistic simGD using full gradients converges, and experimentally demon-
strate that the optimism rate must be tuned separately from the learning rate when using stochastic
gradients. However, it is unclear whether optimistic simGD is theoretically compatible with stochas-
tic gradients. Section 4 presents anchored simGD, a new method, and presents its convergence with
stochastic subgradients. Anchoring represents what we consider to be the strongest contribution of
this work. The presentation and analyses of Sections 2, 3, and 4 are guided by continuous-time first-
order ordinary differential equations (ODE). In particular, we interpret optimism and anchoring as
discretizations of certain regularized dynamics. Section 5 experimentally demonstrates the benefit
of optimism and anchoring for training GANs in some setups.
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Prior work. There are several independent directions for improving the training of GANs such
as designing better architectures, choosing good loss functions, or adding appropriate regularizers
(Radford et al., 2016; Arjovsky et al., 2017; Sønderby et al., 2017; Arjovsky & Bottou, 2017; Gul-
rajani et al., 2017; Wei et al., 2018; Roth et al., 2017; Mescheder et al., 2018; 2017; Miyato et al.,
2018). In this work, we accept these factors as a given and focus on how to train (optimize) the
model effectively.

Optimism is a simple modification to remedy the cycling behavior of simGD, which can occur
even under the bilinear convex-concave setup (Daskalakis et al., 2018; Daskalakis & Panageas,
2018; 2019; Mertikopoulos et al., 2019; Gidel et al., 2019a; Liang & Stokes, 2019; Mokhtari et al.,
2019; Peng et al., 2019). These prior work assume the gradients are linear and use full gradients.
Although the recent name ‘optimism’ originates from its use in online optimization (Chiang et al.,
2012; Rakhlin & Sridharan, 2013a;b; Syrgkanis et al., 2015), the idea dates back to Popov’s work
in the 1980s (Popov, 1980) and has been studied independently in the mathematical programming
community (Malitsky & Semenov, 2014; Malitsky, 2015; Malitsky & Tam, 2018; Malitsky, 2019;
Csetnek et al., 2019).

We note that there are other mechanisms similar to optimism and anchoring such as “prediction”
(Yadav et al., 2018), “negative momentum” (Gidel et al., 2019b), and “extragradient” (Korpelevich,
1976; Tseng, 2000; Chavdarova et al., 2019). In this work, we focus on optimism and anchoring.

Classical literature analyze convergence of the Polyak-averaged iterates (which assigns less weight
to newer iterates) when solving convex-concave saddle point problems using stochastic subgradients
(Bruck, 1977; Nemirovski & Yudin, 1978; Nemirovski et al., 2009; Juditsky et al., 2011; Gidel et al.,
2019a). For GANs, however, last iterates or exponentially averaged iterates (Yazıcı et al., 2019)
(which assigns more weight to newer iterates) are used in practice. Therefore, the classical work
with Polyak averaging do not fully explain the empirical success of GANs.

We point out that we are not the first to utilize classical techniques for analyzing the training of
GANs. In particular, the stochastic approximation technique (Heusel et al., 2017; Duchi & Ruan,
2018), control theoretic techniques (Heusel et al., 2017; Nagarajan & Kolter, 2017), ideas from
variational inequalities and monotone operator theory (Gemp & Mahadevan, 2018; Gidel et al.,
2019a), and continuous-time ODE analysis (Heusel et al., 2017; Csetnek et al., 2019) have been
utilized for analyzing GANs.

2 STOCHASTIC SIMULTANEOUS SUBGRADIENT DESCENT

Consider the cost function L : Rm × Rn → R and the minimax game minxmaxu L(x, u). We say
(x?, u?) ∈ Rm × Rn is a solution to the minimax game or a saddle point of L if

L(x?, u) ≤ L(x?, u?) ≤ L(x, u?), ∀x ∈ Rm, u ∈ Rn.
We assume

L is convex-concave and has a saddle point. (A0)
By convex-concave, we mean L(x, u) is a convex function in x for fixed u and a concave function
in u for fixed x. Define

G(x, u) =

[
∂xL(x, u)

∂u(−L(x, u))

]
,

where ∂x and ∂u respectively denote the subdifferential with respect to x and u. For simplicity,
write z = (x, u) ∈ Rm+n and G(z) = G(x, u). Note that 0 ∈ G(z) if and only if z is a saddle
point. Since L is convex-concave, the operator G is monotone (Rockafellar, 1970):

(g1 − g2)T (z1 − z2) ≥ 0 ∀g1 ∈ G(z1), g2 ∈ G(z2), z1, z2 ∈ Rm+n. (1)

Let g(z;ω) be a stochastic subgradient oracle, i.e., Eωg(z;ω) ∈ G(z) for all z ∈ Rm+n, where ω is
a random variable. Consider Simultaneous Stochastic Sub-Gradient Descent

zk+1 = zk − αkg(zk;ωk) (SSSGD)

for k = 0, 1, . . . , where z0 ∈ Rm+n is a starting point, α0, α1, . . . are positive learning rates, and
ω0, ω1, . . . are IID random variables. (We read SSSGD as “triple-SGD”.) In this section, we provide
convergence of SSSGD when L(x, u) is strictly convex in x.
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Figure 1: z(t) with ż(t) = −G(z(t)). (Left) L(x, u) = xu. All points satisfy G(z)T (z − z?) = 0
so ‖z(t)− z?‖ does not decrease and z(t) forms a cycle. (Right) L(x, u) = 0.2x2+xu. The dashed
line denotes where G(z)T (z − z?) = 0, but it is visually clear that z? = 0 is the only cluster point.

2.1 CONTINUOUS-TIME ILLUSTRATION

To understand the asymptotic dynamics of the stochastic discrete-time system, we consider a cor-
responding deterministic continuous-time system. For simplicity, assume G is single-valued and
smooth. Consider

ż(t) = −g(t), g(t) = G(z(t))

with an initial value z(0) = z0. (We introduce g(t) for notational simplicity.) Let z? be a saddle
point, i.e., G(z?) = 0. Then z(t) does not move away from z?:

d

dt

1

2
‖z(t)− z?‖2 = −g(t)T (z(t)− z?) ≤ 0,

where we used (1). However, there is no mechanism forcing z(t) to converge to a solution.

Consider the two examples L0(x, u) = xu and Lρ(x, u) = (ρ/2)x2 + xu with

G0(x, u) =

[
0 1
−1 0

] [
x
u

]
, Gρ(x, u) =

[
ρ 1
−1 0

] [
x
u

]
(2)

where x ∈ R and u ∈ R and ρ > 0. Note that L0 is the canonical counter example that also arises
as the Dirac-GAN (Mescheder et al., 2018). See Figure 1.

The classical LaSalle–Krasnovskii invariance principle (Krasovskii, 1959; LaSalle, 1960) states
(paraphrased) if z∞ is a cluster point of z(t), then the dynamics starting at z∞ will have a constant
distance to z?. On the left of Figure 1, we can see ‖z(t)− z?‖2 is constant as d

dt
1
2‖z(t)− z?‖

2 = 0

for all t. On the right of Figure 1, we can see that although d
dt

1
2‖z(t)−z?‖

2 = 0 when z(t) = (0, u)
for u 6= 0 (the dotted line) this 0 derivative is temporary as z(t) will soon move past the dotted line.
Therefore, z(t) can maintain a constant constant distance to z? only if it starts at 0, and 0 is the only
cluster point of z(t).

2.2 DISCRETE-TIME CONVERGENCE ANALYSIS

Consider the further assumptions
∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞ (A1)

Eω1,ω2
‖g(z1;ω1)− g(z2;ω2)‖2 ≤ R2

1‖z1 − z2‖2 +R2
2 ∀ z1, z2 ∈ Rm+n, (A2)

where ω1 and ω2 are independent random variables and R1 ≥ 0 and R2 ≥ 0. These assumptions
are standard in the sense that analogous assumptions are used in convex minimization to establish
almost sure convergence of stochastic gradient descent.
Theorem 1. Assume (A0), (A1), and (A2). Furthermore, assume L(x, u) is strictly convex in x for
all u. Then SSSGD converges in the sense of zk

a.s.→ z? where z? is a saddle point of L.

We can alternatively assume L(x, u) is strictly concave in u for all x and obtain the same result.
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The proof uses the stochastic approximation technique of (Duchi & Ruan, 2018). We show that
the discrete-time process converges (in an appropriate topology) to a continuous-time trajectory
satisfying a differential inclusion and use the LaSalle–Krasnovskii invariance principle to argue that
cluster points are solutions.

Related prior work. Theorem 3.1 of (Mertikopoulos et al., 2019) considers the more general
mirror descent setup and proves convergence under the assumption of “strict coherence”, which is
analogous to the stronger assumption of strict convex-concavity in both x and u.

3 SIMULTANEOUS GD WITH OPTIMISM

Consider the setup where L is continuously differentiable and we access full (deterministic) gradi-
ents

G(x, u) =

[
∇xL(x, u)
−∇uL(x, u)

]
.

Consider Optimistic Simultaneous Gradient Descent

zk+1 = zk − αG(zk)− β(G(zk)−G(zk−1)) (SimGD-O)

for k ≥ 0, where z0 ∈ Rm+n is a starting point, z−1 = z0, α > 0 is learning rate, and β > 0 is
the optimism rate. Optimism is a modification to simGD that remedies the cycling behavior; for the
bilinear example L0 of (2), simGD (case β = 0) diverges while SimGD-O with appropriate β > 0
converges. In this section, we provide a continuous-time interpretation of SimGD-O as a regularized
dynamics and provide convergence for the deterministic setup.

3.1 CONTINUOUS-TIME ILLUSTRATION

Consider the continuous-time dynamics

ż(t) = −αg(t)− βġ(t), g(t) = G(z(t)).

The discretization ż(t) ≈ zk+1 − zk and ġ(t) ≈ G(zk) − G(zk−1) yields SimGD-O. We discuss
how this system arises as a certain regularized dynamics and derive the convergence rate

‖g(t)‖2 ≤ O(1/t).

Regularized gradient mapping. The Moreau–Yosida (Moreau, 1965; Yosida, 1948) regulariza-
tion of G with parameter β > 0 is

Gβ = β−1(I − (I + βG)−1).

To clarify, I : Rm+n → Rm+n is the identity mapping and (I+βG)−1 is the inverse (as a function)
of I + βG, which is well-defined by Minty’s theorem (Minty, 1962). It is straightforward to verify
that Gβ(z) = 0 if and only if G(z) = 0, i.e., Gβ and G share the same equilibrium points. For
small β, we can think of Gβ as an approximation G that is better-behaved. Specifically, G is merely
monotone (satisfies (1)), but Gβ is furthermore β-cocoercive, i.e.,

(Gβ(z1)−Gβ(z2))T (z1 − z2) ≥ β‖Gβ(z1)−Gβ(z2)‖2 ∀z1, z2 ∈ Rm+n. (3)

Regularized dynamics. Consider the regularized dynamics

ζ̇(t) = −αGβ(ζ(t)).

Reparameterize the dynamics ζ̇(t) = −αGβ(ζ(t)) with z(t) = (I + βG)−1(ζ(t)) and g(t) =
G(z(t)) to get ζ(t) = z(t) + βg(t) and

ż(t) + βġ(t) = ˙ζ(t) = −α
β
(ζ(t)− z(t)) = −αg(t).

This gives us ż(t) = −αg(t)− βġ(t).
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Rate of convergence. We now derive a rate of convergence. Let z? satisfy G(z?) = 0 (and
therefore Gβ(z?) = 0). Then

d

dt

1

2
‖ζ(t)− z?‖2 = (ζ(t)− z?)T ζ̇(t) = −α(ζ(t)− z?)TGβ(ζ(t))

≤ −αβ‖Gβ(ζ(t))‖2,

where we use cocoercivity, (3). This translates to

d

dt

1

2
‖z(t) + βg(t)− z?‖2 ≤ −αβ‖g(t)‖2. (4)

The quantity ‖g(t)‖2 is nonincreasing since

d

dt

1

2
‖g(t)‖2 = − 1

α
ζ̇(t)T ġ(t) = − 1

α
lim
h→0

1

h2
(ζ(t+ h)− ζ(t))T (Gβ(ζ(t+ h))−Gβ(ζ(t)))

≤ −β
α

lim
h→0

1

h2
‖Gβ(ζ(t+ h))−Gβ(ζ(t))‖ = −

β

α
‖ġ(t)‖2 ≤ 0,

where we use cocoercivity, (3). Finally, integrating (4) on both sides gives us

1

2
‖z(t) + βg(t)− z?‖2 −

1

2
‖z(0) + βg(0)− z?‖2 ≤ −αβ

∫ t

0

‖g(s)‖2 ds ≤ −αβt‖g(t)‖2

‖g(t)‖2 ≤ 1

2αβt
‖z(0) + βg(0)− z?‖2.

Related prior work. The use of the Moreau–Yoshida regularization for the continuous-time anal-
ysis was inspired by Attouch et al. (Attouch et al., 2002; Attouch & Peypouquet, 2019) who first
used the Moreau–Yosida regularization in continuous-time dynamics and Csetnek et al. (2019) who
interpreted a forward-backward-forward-type method as a discretization of continuous-time dynam-
ics with the Douglas–Rachford operator. Daskalakis et al. (2018) interprets optimism as augmenting
“follow the regularized leader” with the (optimistic) prediction that the next gradient will be the same
as the current gradient in online learning setup. Peng et al. (2019) interprets optimism as “centripetal
acceleration” but does not provide a formal analysis with differential equations.

3.2 DISCRETE-TIME CONVERGENECE ANALYSIS

The discrete-time method SimGD-O converges under the assumption

L is differentiable and∇L is R-Lipschitz continuous. (A3)

Theorem 2. Assume (A0) and (A3). If 0 < α < 2β(1 − 2βR), then SimGD-O converges in the
sense of

min
i=0,...,k

‖G(zk)‖2 ≤
2 + 2β2R2

α(2β − α− 4β2R)k
‖z0 + βG(z0)− z?‖2.

Furthermore, zk → z?, where z? is a saddle point of L.

The proof can be considered a discretization of the continuous-time analysis. We further discuss the
similarities and differences between the continuous and discrete analyses in Section A.

Corollary 1. In the setup of Theorem 2, the choice α = 1/(8R) and β = 2α yields

min
i=0,...,k

‖G(zk)‖2 ≤
136R2

k
‖z0 + βG(z0)− z?‖2 ≤

289R2

k
‖z0 − z?‖2 .

Related prior work. Peng et al. (2019) show convergence of simGD-O for α 6= β and bilinear
L. Malitsky & Tam (2018) and Csetnek et al. (2019) show convergence of simGD-O for α = β
and convex-concave L. Theorem 2 establishes convergence for α 6= β and convex-concave L and
presents an explicit rate.
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Figure 2: Plot of ‖zk − z?‖2 vs. iteration count for simGD-OS (left) and SSSGD-A (right) with
αk = 1/kp and βk = 1/kq . We use L0 of (2) and Gaussian random noise. The shaded region
denotes± standard error. For simGD-OS, we see that neither q = 0 nor q = p leads to convergence.
Rather, q must satisfy 0 < q < p so that the learning rate diminishes faster than the optimism rate.

3.3 DIFFICULTY WITH STOCHASTIC GRADIENTS

Training in machine learning usually relies on stochastic gradients, rather than full gradients. We
can consider a stochastic variation of SimGD-O:

zk+1 = zk − αkg(zk;ωk)− βk(g(zk;ωk)− g(zk−1;ωk−1)) (SimGD-OS)

with learning rate αk and optimism rate βk.

Figure 2 presents experiments of SimGD-OS on a simple bilinear problem. The choice βk = αk
where αk → 0 does not lead to convergence. Discretizing ż(t) = −αg(t)−βġ(t) with a diminishing
step hk leads to the choice αk = αhk and βk = β, but this choice does not lead to convergence
either. Rather, it is necessary to tune αk and βk separately as in Theorem 2 to obtain convergence
and dynamics appear to be sensitive to the choice of αk and βk. In particular, both αk and βk
must diminish and αk must diminish faster than βk. One explanation of this difficulty is that the
finite difference approximation α−1k (g(zk;ωk) − g(zk−1;ωk−1)) ≈ ġ(t) is unreliable when using
stochastic gradients.

Whether the observed convergence holds generally in the nonlinear convex-concave setup and
whether optimism is compatible with subgradients is unclear. This motivates anchoring of the fol-
lowing section which is provably compatible with stochastic subgradients.

Related prior work. Gidel et al. (2019a) show averaged iterates of SimGD-OS converge if iterates
are projected onto a compact set. Mertikopoulos et al. (2019) show almost sure convergence of
SimGD-OS under strict convex-concavity (and more generally under “strict coherence”). However,
such analyses do not provide a compelling reason to use optimism since SimGD without optimism
already converges under these setups.

4 SIMULTANEOUS GD WITH ANCHORING

Consider setup of Section 3. We propose Anchored Simultaneous Gradient Descent

zk+1 = zk −
1− p

(k + 1)p
G(zk) +

(1− p)γ
k + 1

(z0 − zk) (SimGD-A)

for k ≥ 0, where z0 ∈ Rm+n is a starting point, p ∈ (1/2, 1), and γ > 0 is the anchor rate. In this
section, we provide a continuous-time illustration of SimGD-A and provide convergence for both
the deterministic and stochastic setups.

4.1 CONTINUOUS-TIME ILLUSTRATION

Consider the continuous-time dynamics

ż(t) = −g(t) + γ

t
(z0 − z(t)), g(t) = G(z(t)).
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for t ≥ 0, where γ ≥ 1 and z(0) = z0. We will derive the convergence rate

‖g(t)‖2 ≤ O(1/t2).
Discretizing the continuous-time ODE with diminishing steps (1− p)/(k+ 1)p leads to SimGD-A.

Rate of convergence. First note

0 ≤ 1

h2
〈z(t+ h)− z(t), g(t+ h)− g(t)〉 → 〈ż(t), ġ(t)〉 as h→ 0.

Using this, we have
d

dt

1

2
‖ż(t)‖2 = −

〈
ż(t), ġ(t) +

γ

t
ż(t) +

γ

t2
(z0 − z(t))

〉
= −〈ż(t), ġ(t)〉 − γ

t
‖ż(t)‖2 + γ

t2
〈z(t)− z0, ż〉

≤ −γ
t
‖ż(t)‖2 + γ

t2
〈z(t)− z0, ż〉.

Using γ ≥ 1, we have
d

dt

1

2
‖ż(t)‖2 + 1

t
‖ż(t)‖2 ≤ γ

t2
〈z(t)− z0, ż〉.

Multiplying by t2 and integrating both sides gives us

t2

2
‖ż(t)‖2 ≤ γ

2
‖z(t)− z0‖2.

Reorganizing, we get

t2

2
‖g(t)‖2 − γt〈g(t), z0 − z(t)〉+

γ2

2
‖z(t)− z0‖2 ≤

γ

2
‖z(t)− z0‖2

Using γ ≥ 1, the monotonicity inequality, and Young’s inequality, we get

‖g(t)‖2 ≤ 2γ

t
〈g(t), z0 − z(t)〉 ≤

2γ

t
〈g(t), z0 − z?〉 ≤

1

2
‖g(t)‖2 + 2γ2

t2
‖z0 − z?‖2

and conclude

‖g(t)‖2 ≤ 4γ2

t2
‖z0 − z?‖2.

Interestingly, anchoring leads to a faster rate O(1/t2) compared to the rate O(1/t) of optimism in
continuous time. The discretized method, however, is not faster than O(1/k). We further discuss
this difference in Section A.

Related prior work. Anchoring was inspired by Halpern’s method (Halpern, 1967; Wittmann,
1992; Lieder, 2017) and James–Stein estimator (Stein, 1956; James & Stein, 1961); these methods
pull/shrink the iterates/estimator towards a specified point z0.

4.2 DISCRETE-TIME CONVERGENECE ANALYSIS

We now present convergence results with anchoring. In Theorem 3, we use deterministic gradients,
and in Theorem 4, we use stochastic subgradients.
Theorem 3. Assume (A0) and (A3). If p ∈ (1/2, 1) and γ ≥ 2, then SimGD-A converges in the
sense of

‖G(zk)‖2 ≤ O
(

1

k2−2p

)
.

The proof can be considered a discretization of the continuous-time analysis.

Consider the setup of Section 2. We propose Anchored Simultaneous Stochastic SubGradient De-
scent

zk+1 = zk −
1− p

(k + 1)p
g(zk;ωk) +

(1− p)γ
(k + 1)1−ε

(z0 − zk) (SSSGD-A)

(The small ε > 0 is introduced for the proof of Theorem 4. See Section A for further discussion.)
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Figure 3: Samples of generated MNIST and CIFAR-10 images at the end of the training periods of
anchored Adam.

Figure 4: FID score vs. iteration on MNIST (left) and CIFAR-10 (right). Optimism rate of β = 1 and
anchor rate of γ = 1 was used. The MNIST setup benefits from optimism but not from anchoring,
while the CIFAR-10 setup benefits from optimism but not from anchoring.

Theorem 4. Assume (A0) and (A2). If p ∈ (1/2, 1), ε ∈ (0, 1/2), and γ > 0, then SSSGD-A

converges in the sense of zk
L2

→ z?, where z? is a saddle point.

(To clarify, we do not assume L is differentiable.)

Main contribution. To the best of our knowledge, Theorem 4 is the first result establishing last-
iterate convergence for convex-concave cost functions using stochastic subgradients without assum-
ing strict convexity or analogous assumptions.

5 EXPERIMENTS

In this section, we experimentally demonstrate the effectiveness of optimism and anchoring for
training GANs. We train Wasserstein-GANs (Arjovsky et al., 2017) with gradient penalty (Gulrajani
et al., 2017) on the MNIST and CIFAR-10 dataset and plot the Fréchet Inception Distance (FID)
(Heusel et al., 2017; Lucic et al., 2018). The experiments were implemented in PyTorch (Paszke
et al., 2017). We combine Adam with optimism and anchoring (described precisely in Appendix G)
and compare it against the baseline Adam optimizer (Kingma & Ba, 2015). The generator and
discriminator architectures and the hyperparameters are described in Appendix G. For optimistic and
anchored Adam, we roughly tune the optimism and anchor rates and show the curve corresponding
to the best parameter choice.

Figure 4 shows that the MNIST setup benefits from anchoring but not from optimism, while the
CIFAR-10 setup benefits from optimism but not from anchoring. We leave comparing the effects of
optimism and anchoring in practical GAN training (where the cost function is not convex-concave)
as a topic of future work.
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6 CONCLUSION

In this work, we analyzed the convergence of SSSGD, Optimistic simGD, and Anchored SSSGD.
Under the assumption that the cost L is convex-concave, Anchored SSSGD provably converges
under the most general setup. Through experiments, we showed that the practical GAN training
benefits from optimism and anchoring in some (but not all) setups.

Generalizing these results to accommodate projections and proximal operators, analogous to pro-
jected and proximal gradient methods, is an interesting direction of future work. Weight clipping
(Arjovsky et al., 2017) and spectral normalization (Miyato et al., 2018) are instances where projec-
tions are used in training GANs.
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A FURTHER DISCUSSION ON THE CONVERGENCE RESULTS

Theorems 1, 2, 3, and 4 use related but different notions of convergence. Theorems 1 and 4 are
asymptotic (has no rate) while Theorems 2 and 3 are non-asymptotic (has a rate). Theorems 1
and 3 respectively show almost sure and L2 convergence of the iterates. Theorems 2 and 3 show
convergence of the squared gradient norm for the best and last iterates, respectively. We did not
make these choices. The choices were dictated by what we can prove based on the analysis.

The discrete-time analysis of SimGD-O of Theorem 2 bounds the squared gradient norm of the best
iterate, while the continuous-time analysis bounds the squared gradient norm of the “last iterate”
(at terminal time). The discrepancy comes from the fact that while we have monotonic decrease of
‖g(t)‖ in continuous-time, we have no analogous monotonicity condition on ‖gk‖ in discrete-time.
To the best of our knowledge, there is no result establishing a O(1/k) rate on the squared gradient
norm of the last iterate for SimGD-O or the related “extragradient method” Korpelevich (1976).
Theorem 3 is the first result showing a rate close to O(1/k) on the last literate.

For SimGD-O and Corollary 1, the parameter choices are almost optimal. The optimal choices that
minimize the bound of Theorem 2 are α = 0.124897/R and β = 1.94431α; they provide a factor
of 135.771, a very small improvement over the factor 136 of Corollary 1.

For SimGD-A and Theorem 3, there is a discrepancy in the rate between the continuous time anal-
ysis O(1/t2) and the discrete time rate O(1/k2−2p) for p ∈ (1/2, 1), which is slightly slower than
O(1/k). In discretizing the continuous-time calculations to obtain a discrete proof, errors accumu-
late and prevent the rate from being better than O(1/k). This is not an artifact of the proof. Simple
tests on bilinear examples show divergence when p < 1/2.

SSSGD-A and Theorem 4 involves the parameter ε. While the proof requires ε > 0, we believe this
is an artifact of the proof. In particular, we conjecture that Lemma 17 holds with o(s/τ) rather than
O(s/τ), and, if so, it is possible to establish convergence with ε = 0.

In Figure 2, it seems that that the choice ε = 0 and p = 2/3 is optimal for SSSGD-A. While we
do not have a theoretical explanation for this, we point out that this is not surprising as p = 2/3 is
known to be optimal in stochastic convex minimization (Moulines & Bach, 2011; Taylor & Bach,
2019).

Theorems 2, 3, and 4 extend to monotone operators (Ryu & Boyd, 2016; Bauschke & Combettes,
2017) without any modification to their proofs. In infinite dimensional setups (which is of interest
in the field of monotone operators) Theorem 4 establishes strong convergence, while many conver-
gence results (including Theorems 2 and 3) establish weak convergence. However, Theorem 1 does
not extend to monotone operators, as the use of the LaSalle–Krasnovskii principle is particular to
convex-concave saddle functions.

B NOTATION AND PRELIMINARIES

Write R+ to denote the set of nonnegative real numbers and 〈·, ·〉 to denote inner product, i.e.,
〈u, v〉 = uT v for u, v ∈ Rm+n.

We say A is a point-to-set mapping on Rd if A maps points of Rd to subsets of Rd. For notational
simplicity, we write

〈A(x)−A(y), x− y〉 = {〈u− v, x− y〉 |u ∈ A(x), v ∈ A(y)}.
Using this notation, we define monotonicity of A with

〈A(x)−A(y), x− y〉 ≥ 0 ∀x, y ∈ Rd,
where the inequality requires every member of the set to be nonnegative. We say a monotone
operator A is maximal if there is no other monotone operator B such that the containment

{(x, u) |u ∈ A(x)} ⊂ {(x, u) |u ∈ B(x)}
is proper. If L : Rm × Rn → R is convex-concave, then the subdifferential operator

G(x, u) =

[
∂xL(x, u)

∂u(−L)(x, u)

]
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is maximal monotone (Rockafellar, 1970). By Bauschke & Combettes (2017) Proposition 20.36,
G(z) is closed-convex for any z ∈ Rm+n. By Bauschke & Combettes (2017) Proposition 20.38(iii),
maximal monotone operators are upper semicontinuous in the sense that if G is maximal monotone,
then gk ∈ G(zk) for k = 0, 1, . . . and (zk, gk) → (z∞, g∞) imply g∞ ∈ G(z∞). (In other words,
the graph of G is closed.) Define Zer(G) = {z ∈ Rd | 0 ∈ G(z)}, which is the set of saddle-points
or equilibrium points. When G is maximal monotone, Zer(G) is a closed convex set. Write

PZer(G)(z0) = argmin
z∈Zer(G)

‖z − z0‖

for the projection onto Zer(G).

Write C(R+,Rd) for the space of Rd-valued continuous functions on R+. For fk : R+ → Rm+n,
we say fk → f in C(R+,Rd) if fk → f uniformly on bounded intervals, i.e., for all T < ∞, we
have

lim
k→∞

sup
t∈[0,T ]

‖fk(t)− f(t)‖ = 0.

In other words, we consider the topology of uniform convergence on compact sets.

We rely on the following inequalities, which hold for any a, b ∈ Rm+n any ε > 0.

〈a, b〉 ≤ 1

2ε
‖a‖2 + ε

2
‖b‖2 (5)

‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. (6)

Both inequalities are called Young’s inequality. (Note, (6) follows from (5) with ε = 1.)

Lemma 1 (Theorem 5.3.33 of Dembo (2019)). Let {Fk}k∈N+ be an increasing sequence of σ-
algebras. Let (mk,Fk) be a martingale such that

E[‖mk‖2] <∞

for all k ≥ 0 and
∞∑
k=0

E
[
‖mk+1 −mk‖2 | Fk

]
<∞

then mk converges almost surely to a limit.

Lemma 2 (Robbins & Siegmund (1971)). Let {Fk}k∈N+ be an increasing sequence of σ-algebras.
Let {Vk}k∈N+

, {Sk}k∈N+
, {Uk}k∈N+

, and {βk}k∈N+
be nonnegative Fk-measurable random se-

quences satisfying
E [Vk+1 | Fk] ≤ (1 + βk)Vk − Sk + Uk.

If
∞∑
k=1

βk <∞,
∞∑
k=1

Uk <∞

holds almost surely, then
Vk → V∞, Sk → 0

almost surely, where V∞ is a random limit.

Define
G̃(z) = Eωg(z;ω) ∈ G(z).

Note that 0 6= G̃(z?) is possible even if 0 ∈ G(z?) when L is not continuously differentiable.

Lemma 3. Under Assumptions (A0) and (A2), we have

Eω‖g(z;ω)‖2 ≤ R2
3‖z − z?‖2 +R2

4

for some R3 > 0 and R4 > 0.
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Proof. Let z? be a saddle point, which exists by Assumption (A0). Let ω and ω′ be independent and
identically distributed. Then

Eω‖g(z;ω)‖2 ≤ Eω‖g(z;ω)‖2 + Eω′‖g(z?;ω′)− G̃(z?)‖2

= Eω,ω′‖g(z;ω)− g(z?;ω′) + G̃(z?)‖2

≤ Eω,ω′2‖g(z;ω)− g(z?;ω′)‖2 + 2‖G̃(z?)‖2

≤ 2R2
1‖z − z?‖2 + 2R2

2 + 2‖G̃(z?)‖2

where we use the fact that g(z?;ω′)− G̃(z?) is a zero-mean random variable, Assumption (A2), and
(6). The stated result holds with R2

3 = 2R2
1 and R2

4 = 2R2
2 + 2‖G̃(z?)‖2.

C ANALYSIS OF THEOREM 1

For convenience, we restate the update, assumptions, and the theorem:

zk+1 = zk − αkg(zk;ωk) (SSSGD)

L is convex-concave and has a saddle point (A0)
∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞ (A1)

Eω1,ω2
‖g(z1;ω1)− g(z2;ω2)‖2 ≤ R2

1‖z1 − z2‖2 +R2
2 ∀ z1, z2 ∈ Rm+n, (A2)

Theorem 1. Assume (A0), (A1), and (A2). Furthermore, assume L(x, u) is strictly convex in x
for all u. Then SSSGD converges in the sense of zk

a.s.→ z? where z? is a saddle point of L.

Differential inclusion technique. We use the differential inclusion technique of Duchi & Ruan
(2018), also recently used in Davis et al. (2019). The high-level summary of the technique is very
simple and elegant: (i) show the discrete-time process converges to a continuous-time trajectory
satisfying a differential inclusion, (ii) show any solution of the differential inclusion has a desirable
property, and (iii) translate the conclusion in continuous-time to discrete-time. However, the actual
execution of this technique does require careful and technical considerations.

Proof outline. For step (i), we adapt the LaSalle–Krasnovskii principle to show that a solution of
the continuous-time differential inclusion converges to a saddle point. (Lemma 5.) Then we carry
out step (ii) showing the time-shifted interpolated discrete time process converges to a solution of
the differential inclusion. (Lemma 6.) Finally, step (iii), the “Continuous convergence to discrete
convergence”, combines these two pieces to conclude that the discrete time process converges to a
saddle point. The contribution and novelty of our proof is in our steps (i) and (iii).

Preliminary definitions and results. Consider the differential inclusion

ż(t) ∈ −G(z(t)) (7)

with the initial condition z(0) = z0. We say z : [0,∞)→ Rm+n satisfies (7) if there is a Lebesgue
integrable ζ : [0,∞)→ Rm+n such that

z(t) = z0 +

∫ t

0

ζ(s) ds, ζ(t) ∈ −G(z(t)), ∀ t ≥ 0. (8)

Write z(t) = φt(z0) and call φt : Rm+n → Rm+n the time evolution operator. In other words, φt
maps the initial condition of the differential inclusion to the point at time t, which is well defined by
the following result.

Lemma 4 (Theorem 5.2.1 of Aubin & Cellina (1984)). If G is maximal monotone, the solution to
(7) exists and is unique. Furthermore, φt : Rm+n → Rm+n is 1-Lipschitz continuous for all t ≥ 0.
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C.1 PROOF OF THEOREM 1

Lemma 5 and its proof can be considered an adaptation of the LaSalle–Krasnovskii invariance prin-
ciple (Krasovskii, 1959; LaSalle, 1960) to the setup of differential inclusions. The standard result
applies to differential equations.

Lemma 5 (LaSalle–Krasnovskii). Assume (A0). Assume L(x, u) is strictly convex in x for all u. If
z(·) satisfies (7), then z(t)→ z∞ as t→∞ and z∞ ∈ Zer(G).

Proof. Consider any z? ∈ Zer(G), which exists by Assumption (A0). Since z(t) is absolutely
continuous, so is ‖z(t)− z?‖2, and we have

d

dt

1

2
‖z(t)− z?‖2 = 〈ζ(t), z(t)− z?〉 ≤ 0

for almost all t > 0, where ζ(·) is as defined in (8) and the inequality follows from (1), monotonicity
of G. Therefore, ‖z(t)− z?‖2 is a nonincreasing function of t, and

lim
t→∞

‖z(t)− z?‖ = χ

for some limit χ ≥ 0. Since z(t) is a bounded sequence, it has at least one cluster point.

Let tk →∞ such that z(tk)→ z∞, i.e., z∞ is a cluster point of z(·). Then, ‖z∞− z?‖2 = χ. Since
φt(·) (with fixed t) is continuous by Lemma 4, we have

lim
k→∞

φs+tk(z0) = lim
k→∞

φs(φtk(z(0))) = φs(z∞)

for all s ≥ 0. This means φs(z∞) is also a cluster point of z(·) and

‖φs(z∞)− z?‖ = χ

for all s ≥ 0. Therefore

0 =
d

ds
‖φs(z∞)− z?‖2 ∈ −〈G(φs(z∞)), φs(z∞)− z?〉 (9)

for almost all s ≥ 0.

Write z∞ = (x∞, u∞) and let z? = (x?, u?) ∈ Zer(G). Write (φxs (z?), φ
u
s (z?)) = (φs(z?)). If

φxs (z?) 6= x?
〈G(φs(z∞)), φs(z∞)− z?〉 > 0

by strict convexity, and, in light of (9), we conclude φxs (z?) = x? for almost all s ≥ 0. Then for
almost all s ≥ 0, we have

0 ∈ 〈G(φs(z∞)), φs(z∞)− z?〉
= 〈∂u(−L)(x?, φus (z∞)), φus (z∞)− u?〉
≥ −L(x?, φus (z∞)) + L(x?, u?)

≥ 0,

where the first inequality follows from concavity of L(x, u) in u and the second inequality follows
from the fact that u? is a maximizer when x? is fixed. Therefore, we have equality throughout, and
L(x?, φ

u
s (z∞)) = L(x?, u?), i.e., φus (z∞) also maximizes L(x?, ·).

Remember that φs(z∞) is a continuous function of s for all s ≥ 0. Therefore, that φxs (z∞) = x?
and that φus (z∞) maximizes L(x?, ·) for almost all s ≥ 0 imply that the conditions hold for s = 0.
In other words, x∞ = x? and u∞ maximizes L(x?, ·), and therefore z∞ ∈ ZerG.

Finally, since z∞ is a solution, ‖z(t)−z∞‖ converges to a limit as t→∞. Since ‖z(tk)−z∞‖ → 0,
we conclude that ‖z(t)− z∞‖ → 0 as t→∞.

The following lemma is the crux of the differential inclusion technique. It makes precise in what
sense the discrete-time process converges to a solution of the continuous-time differential inclusion.
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Lemma 6 (Theorem 3.7 of Duchi & Ruan (2018)). Consider the update

zk+1 = zk − αk(ζk + ξk), ζk ∈ G(zk).

Define tk =
∑k
i=1 αi and

zinterp(t) = zk +
t− tk

tk+1 − tk
(zk+1 − zk), t ∈ [tk, tk+1).

Define the time-shifted process
zτinterp(·) = zinterp(τ + ·).

Let the following conditions hold:

(i) The iterates are bounded, i.e., supk ‖zk‖ <∞ and supk ‖ζk‖ <∞.

(ii) The stepsizes αk satisfy Assumption (A1).

(iii) The weighted noise sequence converges:
∑∞
k=0 αkξk = v for some v ∈ Rd.

(iv) For any increasing sequence nk such that znk → z∞, we have

lim
n→∞

dist

(
1

m

m∑
k=1

ζnk , G(z∞)

)
= 0.

Then for any sequence {τk}∞k=1 ⊂ R+, the sequence of functions {zτkinterp(·)} is relatively compact
in C(R+,Rd). If τk →∞, all cluster points of {zτkinterp(·)} satisfy the differential inclusion (8).

We verify the conditions of Lemma 6 and make the argument that the noisy discrete time process is
close to the noiseless continuous time process and the two processes converge to the same limit.

Verifying conditions of Lemma 6.
Condition (i). Let z? ∈ Zer(G). Write Fk for the σ-field generated by ω0, . . . , ωk−1. Write
G̃(z) = Eg(z;ω) ∈ G(z). Then

‖zk+1 − z?‖2 = ‖zk − z?‖2 − 2αk〈zk − z?, g(zk;ωk)〉+ α2
k‖g(zk;ωk)‖2

E
[
‖zk+1 − z?‖2 | Fk

]
≤ ‖zk − z?‖2 − 2αk〈zk − z?, G̃(zk)〉+ α2

k

(
R2

3‖zk − z?‖2 +R2
4

)
= (1 + α2

kR
2
3)‖zk − z?‖2 − 2αk〈zk − z?, G̃(zk)〉+ α2

kR
2
4,

where we used Assumption (A2) and Lemma 3. Since
∑∞
k=0 α

2
k < ∞ by Assumption (A1), this

inequality and Lemma 2 tells us
‖zk − z?‖2 → limit

for some limit, which implies zk is a bounded sequence. Since zk is bounded, so is G̃(zk) since

‖G̃(zk)‖2 ≤ Eω‖g(zk;ω)‖2 ≤ R2
3 sup

k
‖zk − z?‖2 +R2

4

by Lemma 3.

Condition (ii). This condition is assumed.

Condition (iii). Define
ξk = g(zk;ωk)− G̃(zk)

and

mk =

k∑
i=0

αiξi.

17
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Then (mk,Fk) is a martingale and
∞∑
k=0

E
[
‖mk+1 −mk‖2 | Fk

]
=

∞∑
k=0

α2
kE
[
‖ξk‖2 | Fk

]
≤
∞∑
k=0

α2
kE
[
‖g(zk;ωk)‖2 | Fk

]
≤
∞∑
k=0

α2
k

(
R2

3‖zk − z?‖2 +R2
4

)
≤
∞∑
k=0

α2
k

(
sup
k

2R2
3‖zk‖+ 2R2

3‖z?‖2 +R2
4

)
<∞

almost surely, where the first inequality is the second moment upper bounding the variance, the
second inequality is Lemma 3, and the third inequality is (6) and condition (i). Finally, we have (iii)
by Lemma 1.

Condition (iv). As discussed in Section B, G is maximal monotone, which implies G is upper
semicontinuous, i.e., (znk , gnk) → (z∞, g∞) implies g∞ ∈ G(z∞), and G(z∞) is a closed convex
set. Therefore, dist(ζnk , G(z∞)) → 0 as otherwise we can find a further subsequence such that
converging to ζ∞ such that dist(ζ∞, G(z∞)) > 0. (Here we use the fact that ζk is bounded due to
condition (i)). Since G(z∞) is a convex set,

dist(ζnk , G(z∞))→ 0⇒ 1

m

m∑
k=1

dist(ζnk , G(z∞))→ 0⇒ dist

(
1

m

m∑
k=1

ζnk , G(z∞)

)
→ 0.

In the main proof, we show that cluster points of zinterp(·) are solutions. We need the following
lemma to conclude that these cluster points are also cluster points of the original discrete time
process zk.

Lemma 7. Under the conditions of Lemma 6, zinterp(·) and zk share the same cluster points.

Proof. If z∞ is a cluster point of zk, then it is a cluster point of zinterp(·) by definition. Assume z∞
is a cluster point of zinterp(·), i.e., assume there is a sequence τj →∞ such that zinterp(τj)→ z∞.
Define kj →∞ with

tkj ≤ τj < tkj+1.

Then

‖zinterp(τj)− zkj‖ ≤ αk‖zkj+1 − zkj‖
≤ αk(‖ζk‖+ ‖ξk‖)
→ 0

where we use the assumption (i) which states that ‖ζk‖ is bounded and assumption (iii) which states
that αkξk → 0. We conclude zkj → z∞.

Continuous convergence to discrete convergence. Let kj → ∞ be a subsequence such that
zkj → z∞. Let k′j →∞ be a further subsequence such that

lim
k′j→∞

z
tk′
j

interp(T ) = φT (z∞)

for all T ≥ 0, which exists by Lemma 6. (The time-shifted interpolated process converges to a
solution of the differential inclusion.) By Lemma 5,

lim
T→∞

φT z∞ → φ∞z∞

where φtz∞ → φ∞z∞ as t → ∞ and φ∞z∞ is a saddle point. (The solution to the differential
inclusion converges to a solution.)

18
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These facts together imply that for any ε > 0, there exists k′j and τj large enough that

‖z
tk′
j

interp(τj)− φτj (z∞)‖ < ε/2

and
‖φτjz∞ − φ∞z∞‖ < ε/2.

Together, these imply
‖zinterp(tk′j + τj)− φ∞z∞‖ < ε.

since zτinterp(·) = zinterp(τ + ·). Therefore, φ∞z∞ is a cluster point of zinterp(·), and, by Lemma 7,
φ∞z∞ is a cluster point of zk.

Since ‖zk−φ∞z∞‖ converges to a limit and converges to 0 on this further subsequence, we conclude
‖zk − φ∞z∞‖ → 0 almost surely.

D ANALYSIS OF THEOREM 2

For convenience, we restate the update, assumptions, and the theorem:

zk+1 = zk − αG(zk)− β(G(zk)−G(zk−1)) (SimGD-O)

L is convex-concave and has a saddle point (A0)
L is differentiable and∇L is R-Lipschitz continuous (A3)

Theorem 2. Assume (A0) and (A3). If 0 < α < 2β(1 − 2βR), then SimGD-O converges in the
sense of

min
i=0,...,k

‖G(zk)‖2 ≤
2 + 2β2R2

α(2β − α− 4β2R)k
‖z0 + βG(z0)− z?‖2.

Furthermore, zk → z?, where z? is a saddle point of L.

D.1 PROOF OF THEOREM 2

Throughout this section, write gk = G(zk) for k ≥ −1. Since we can define G̃ = αG and β̃ = β/α
and write the iteration as

zk+1 = zk − G̃(zk)− β̃(G̃(zk)− G̃(zk−1)),
we assume α = 1 without loss of generality. Then

‖zk+1 + βgk − z?‖2 = ‖zk + βgk−1 − z?‖2 − 2〈gk, zk − z?〉 − 〈gk, 2βgk−1 − gk〉
≤ ‖zk + βgk−1 − z?‖2 − 〈gk, 2βgk−1 − gk〉,

where the inequality follows from (1), monotonicity of G, and

−〈gk, 2βgk−1 − gk〉 = 4β2〈gk − gk−1, zk − zk+1〉 − (2β − 1)‖zk+1 − zk‖2 − β2(1 + 2β)‖gk − gk−1‖2

≤ 4β2〈gk − gk−1, zk − zk+1〉 − (2β − 1)‖zk+1 − zk‖2.
We can bound

4β2〈gk − gk−1, zk − zk+1〉 ≤
2β2

R
‖gk − gk−1‖2 + 2β2R‖zk+1 − zk‖2

≤ 2β2R‖zk − zk−1‖2 + 2β2R‖zk+1 − zk‖2,
where the first inequality follows from (5), Young’s inequality, with ε = R and the second inequality
follows from Assumption (A3), R-Lipschitz continuity of G. Putting these together we get

‖zk+1 + βgk − z?‖2 ≤ ‖zk + βgk−1 − z?‖2

+ 2β2R‖zk − zk−1‖2 −
(
2β − 1− 2β2R

)
‖zk+1 − zk‖2. (10)

Since β > 1/2 and R < (2β − 1)/(4β2) is assumed for Theorem 2, we have

2β2R <
(
2β − 1− 2β2R

)
.
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By summing (10), we have

(
2β − 1− 2β2R

) k∑
i=0

‖zi+1 − zi‖2 − 2β2R

k∑
i=0

‖zi − zi−1‖2 ≤ ‖z0 + βg−1 − z?‖2

(
2β − 1− 4β2L

) k∑
i=0

‖zi+1 − zi‖2 ≤ ‖z0 + βg−1 − z?‖2, (11)

where we use z0 = z−1.

Next,

‖gk‖2 = ‖zk+1 − zk + β(gk − gk−1)‖2

≤ 2‖zk+1 − zk‖2 + 2β2‖gk − gk−1‖2

≤ 2‖zk+1 − zk‖2 + 2β2R2‖zk − zk−1‖2,
where we use (6). Using (11), we get

k∑
i=1

(
2‖zi+1 − zi‖2 + 2β2R2‖zi − zi−1‖2

)
≤ 2 + 2β2R2

2β − 1− 4β2R
‖z0 + βg−1 − z?‖2.

Therefore, 2‖zk+1 − zk‖2 + 2β2R2‖zk − zk−1‖2 → 0 and ‖gk‖2 → 0. Moreover, we have

min
i=0,...,k

‖gi‖2 ≤
2 + 2β2R2

(2β − 1− 4β2R)k
‖z0 + βg−1 − z?‖2.

By scaling G by α, we get the first stated result.

By summing (10), we have

‖zk + βgk−1 − z?‖2 ≤ ‖z0 + βg−1 − z?‖2,
and using the triangle inequality we get

‖zk − z?‖ ≤ ‖z0 + βg−1 − z?‖+ β‖gk−1‖ → ‖z0 + βg−1 − z?‖
as k → ∞. (Remember gk → 0.) So zk is a bounded sequence, and let z∞ be the limit of a
convergent subsequence znk . SinceG is a continuous mapping with gnk = G(znk), znk → z∞, and
gnk → 0, we have G(z∞) = 0.

Finally, we show that the entire sequence zk converges to z∞. Reorganizing (10), we get

‖zk+1 + βgk − z?‖2 + 2β2R‖zk+1 − zk‖2 ≤ ‖zk + βgk−1 − z?‖2 + 2β2R‖zk − zk−1‖2

−
(
2β − 1− 4β2R

)︸ ︷︷ ︸
>0

‖zk+1 − zk‖2.

So ‖zk+1 + βgk − z?‖2 + 2β2R‖zk+1 − zk‖2 is a nonincreasing sequence, and the following limit
exists

lim
k→∞

‖zk + βgk−1 − z?‖2 + 2β2R‖zk − zk−1‖2 = ‖z∞ − z?‖2.

Since z? can be any equilibrium point, we let z? = z∞. This proves ‖zk − z∞‖2 → 0, i.e.,
zk → z∞.

E ANALYSIS OF THEOREM 3

E.1 PRELIMINARY LEMMAS

We quickly state a few identities and inequalities we later use. As the verification of these results
are elementary, we only provide a short summary of their proofs.
Lemma 8. For p ∈ (0, 1) and k ≥ 1,

p

k
− p(1− p)

2k2
<

(k + 1)p − kp

kp
<
p

k
.
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The proof follows from a basic application of the inequality

1 + px− p(1− p)
2

x2 ≤ (1 + x)p ≤ 1 + px

for x ∈ [0, 1] and p ∈ (0, 1).
Lemma 9. For p ∈ (0, 1) and k ≥ 1,

p

k + 1
<

(k + 1)p − kp

kp
.

The proof follows from integrating the decreasing function p/x1−p from k to k + 1.
Lemma 10. For p ∈ (0, 1) and k ≥ 1,

0 ≤ p

k(k + 1)
− (k + 1)p − kp

kp(k + 1)
≤ p(1− p)

2k3
.

The proof follows from Lemma 8.
Lemma 11. Given any V0, V1, . . . ∈ R, we have

k∑
j=1

(
j(j + 1)

2
(Vj − Vj−1) + jVj−1

)
=
k(k + 1)

2
Vk

The proof follows from basic calculations. This result can be thought of as the discrete analog of∫ t

0

s2

2
V̇ (s) + sV (s) ds =

t2V

2
.

Lemma 12. Let z0, z1, . . . ∈ Rm+n be an arbitrary sequence. Then for any k = 0, 1, . . . ,

1

2
‖zk+1 − z0‖2 −

1

2
‖zk − z0‖2 =

〈
zk+1 − zk,

1

2
(zk+1 + zk)− z0

〉
.

The proof follows from basic calculations. This result can be thought of as the discrete analog of

d

dt

1

2
‖z(t)− z0‖2 = 〈ż(t), z(t)− z0〉 .

E.2 CONVERGENT SEQUENCE LEMMAS

In the proofs of Theorems 3 and 4, we establish certain descent inequalities. The following lemmas
state that these inequalities imply boundedness or convergence.
Lemma 13. Let {Vk}k∈N+ and {Uk}k∈N+ be nonnegative (deterministic) sequences satisfying

Vk+1 ≤
(
1− C1

k1−ε
+ f(k)

)
Vk +

C2

k1−ε

√
Vk + Uk

where C1 > 0, C2 > 0, f(k) = o(1/k1−ε) with ε ∈ [0, 1), and
∞∑
k=1

Uk <∞.

Then lim supk→∞ Vk ≤ C2
2/C

2
1 .

Proof. For any δ ∈ (0, C1), there is a large enough K ≥ 0 such that for all k ≥ K,

C1

k1−ε
− f(k) ≥ C1 − δ/2

k1−ε
.

Define

ν =
C2

2

(C1 − δ)2

21



Under review as a conference paper at ICLR 2020

for k ≥ 0. Then

Vk+1 ≤
(
1− C1 − δ/2

k1−ε

)
Vk +

C2
2

(C1 − δ)k1−ε
max

{√
Vk
ν
,
Vk
ν

}
+ Uk

Vk+1 − ν ≤
(
1− C1 − δ/2

k1−ε

)
(Vk − ν)−

C2
2δ

2k1−ε(C1 − δ)2

+
C2

2

(C1 − δ)k1−ε
max

{√
Vk
ν
− 1,

Vk
ν
− 1

}
+ Uk

Note that max{
√
x− 1, x− 1} ≤ max{0, x− 1} for all x ≥ 0. So

Vk+1 − ν ≤
(
1− C1 − δ/2

k1−ε

)
(Vk − ν) +

C2
2

(C1 − δ)k1−ε
max

{
0,
Vk
ν
− 1

}
+ Uk

=

(
1− C1 − δ/2

k1−ε

)
(Vk − ν) +

C1 − δ
k1−ε

max {0, Vk − ν}+ Uk

≤
(
1− C1 − δ/2

k1−ε

)
max {0, Vk − ν}+

C1 − δ
k1−ε

max {0, Vk − ν}+ Uk

=

(
1− δ

2k1−ε

)
max {0, Vk − ν}+ Uk

for large enough k. Since

0 ≤
(
1− δ

2k1−ε

)
max {0, Vk − ν}+ Uk

for large enough k, we have

max {0, Vk+1 − ν} ≤
(
1− δ

2k1−ε

)
max {0, Vk − ν}+ Uk

With a standard recursion argument (e.g. Lemma 3 of (Polyak, 1987)) we conclude
max {0, Vk − ν} → 0. Since this holds for any δ > 0, we conclude lim supk→∞ Vk ≤ C2

2/C
2
1 .

Lemma 14. Let ε ∈ (0, 1). Let {Vk}k∈N+
and {Uk}k∈N+

be nonnegative (deterministic) sequences
satisfying

Vk+1 ≤
(
1− C

k1−ε
+ f(k)

)
Vk + g(k)

√
Vk + Uk

where C > 0, f(k) = o(1/k1−ε), g(k) = O(1/k), and
∞∑
k=1

Uk <∞.

Then Vk → 0.

Proof. For any δ > 0, there is a large enough K ≥ 0 such that

Vk+1 ≤
(
1− C − δ

k1−ε

)
Vk +

δ

k1−ε

√
Vk + Uk

for all k ≥ K. By Lemma 13, we conclude lim supk→∞ Vk ≤ δ2/(C − δ)2. Since this holds for all
δ > 0, we conclude Vk → 0.

E.3 PROOF OF THEOREM 3

For convenience, we restate the update, assumptions, and the theorem:

zk+1 = zk −
1− p

(k + 1)p
G(zk) +

(1− p)γ
k + 1

(z0 − zk) (SimGD-A)

L is convex-concave and has a saddle point (A0)
L is differentiable and∇L is R-Lipschitz continuous (A3)
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Theorem 3. Assume (A0) and (A3). If p ∈ (1/2, 1) and γ ≥ 2, then SimGD-A converges in the
sense of

‖G(zk)‖2 ≤ O
(

1

k2−2p

)
.

Proof outline. Lemma 15 shows the iterates zk are bounded. Lemma 16 shows that ‖zk+1−2zk+
zk−1‖2, the analog of ‖z̈‖2, is small. The second-order derivative z̈ does not arise in the continuous-
time analysis of Section 4.1. In the discrete-time setup, ‖zk+1 − 2zk + zk−1‖2 does arise, but we
use Lemma 16 to show that its contribution is small. The main proof follows by mimicking the
continuous-time analysis by bounding the higher-order terms.

Throughout this section, write gk = G(zk) for k ≥ −1.

Lemma 15. For SimGD-A,

‖zk − z?‖2 ≤ C

for all k ≥ 0 for some C > 0. (This result depends on assumption p > 1/2.)

Proof.

‖zk+1 − z?‖2 = ‖zk − z?‖2 −
2(1− p)
(k + 1)p

〈gk, zk − z?〉+
2γ(1− p)
k + 1

〈z0 − zk, zk − z?〉

+

∥∥∥∥ 1− p
(k + 1)p

gk +
γ(1− p)
k + 1

(z0 − zk)
∥∥∥∥2

≤
(
1− 2γ(1− p)

k + 1

)
‖zk − z?‖2 +

2γ(1− p)
k + 1

〈z0 − z?, zk − z?〉

+
2(1− p)2

(k + 1)2p
‖gk‖2 +

2γ2(1− p)2

(k + 1)2
‖z0 − zk‖2

≤
(
1− 2γ(1− p)

k + 1
+

4γ2(1− p)2

(k + 1)2

)
‖zk − z?‖2 +

2γ(1− p)
k + 1

‖z0 − z?‖‖zk − z?‖

+
2(1− p)2

(k + 1)2p
R2‖zk − z0‖2 +

4γ2(1− p)2

(k + 1)2
‖z0 − z?‖2

=

(
1− 2γ(1− p)

k + 1
+

4γ2(1− p)2

(k + 1)2
+R2

1

4(1− p)2

(k + 1)2p

)
‖zk − z?‖2

+
2γ(1− p)
k + 1

‖z0 − z?‖‖zk − z?‖+
4γ2(1− p)2

(k + 1)2
‖z0 − z?‖2

where the first inequality follows from (1), the monotonicity inequality, and (6) and the second
inequality follows from Assumption A3. We conclude the statement with Lemma 13.

Lemma 16. For SimGD-A,

‖zk+1 − 2zk + zk−1‖2

≤ 4(1− p)2
(
γ2

k2
+
R2

k2p

)
‖zk − zk−1‖2 + 4(1− p)2

(
p2R2

k2+2p
+
γ2

k4

)
‖z0 − zk‖2
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Proof.

‖zk+1 − 2zk + zk−1‖2

=

∥∥∥∥ 1− p
(k + 1)p

gk −
1− p
kp

gk−1 −
(1− p)γ
k + 1

(z0 − zk) +
(1− p)γ

k
(z0 − zk−1)

∥∥∥∥2
≤ 2

∥∥∥∥ 1− p
(k + 1)p

gk −
1− p
kp

gk−1

∥∥∥∥2 + 2

∥∥∥∥γ(1− p)k + 1
(z0 − zk)−

γ(1− p)
k

(z0 − zk−1)
∥∥∥∥2

≤ 4(1− p)2

k2p
‖gk − gk−1‖2 + 4

(
1− p

(k + 1)p
− 1− p

kp

)2

‖gk‖2

+
4γ2(1− p)2

k2
‖zk − zk−1‖2 + 4

(
γ(1− p)
k + 1

− γ(1− p)
k

)2

‖z0 − zk‖2

≤ 4(1− p)2
(
γ2

k2
+
R2

k2p

)
‖zk − zk−1‖2 + 4(1− p)2

(
p2R2

k2+2p
+
γ2

k4

)
‖z0 − zk‖2

where the first and second inequalities follow from (6) and the third inequality follows from As-
sumptions (A3) and Lemma 8.
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Main proof. In Section 4.1, we showed

d

dt

1

2
‖ż(t)‖2 ≤ −γ

t
‖ż(t)‖2 + γ

t2
〈z(t)− z0, ż〉

in continuous time. We mimic analogous calculations in the discrete-time setup:

1

2
‖zk+1 − zk‖2 −

1

2
‖zk − zk−1‖2

=

〈
1

2
(zk+1 − zk−1), zk+1 − 2zk + zk−1

〉
= −1− p

kp
〈zk − zk−1, gk − gk−1〉+ (1− p) (k + 1)p − kk

kp(k + 1)p
〈zk − zk−1, gk〉 −

γ(1− p)
k

‖zk − zk−1‖2

− γ(1− p)
k(k + 1)

〈zk − zk−1, z0 − zk〉+
1

2
‖zk+1 − 2zk + zk−1‖2

≤ (1− p) (k + 1)p − kk

kp(k + 1)p
〈zk − zk−1, gk〉 −

γ(1− p)
k

‖zk − zk−1‖2

− γ(1− p)
k(k + 1)

〈zk − zk−1, z0 − zk〉+
1

2
‖zk+1 − 2zk + zk−1‖2

= −
(
γ(1− p)

k
+

(k + 1)p − kp

kp
− γ(1− p)

2k(k + 1)
+
γ(1− p)

2

(k + 1)p − kp

kp(k + 1)

)
‖zk − zk−1‖2

− (k + 1)p − kp

kp
〈zk − zk−1, zk+1 − 2zk + zk−1〉+

1

2
‖zk+1 − 2zk + zk−1‖2

− γ(1− p)
(

1

k(k + 1)
− (k + 1)p − kp

kp(k + 1)

)〈
zk − zk−1, z0 −

1

2
(zk + zk1)

〉
≤ −

(
γ(1− p)

k
+
p

k
− p(1− p)

2k2
− γ(1− p)

2k(k + 1)
+
γp(1− p)
2(k + 1)2

)
‖zk − zk−1‖2

− (k + 1)p − kp

kp
〈zk − zk−1, zk+1 − 2zk + zk−1〉+

1

2
‖zk+1 − 2zk + zk−1‖2

− γ(1− p)
(

1

k(k + 1)
− (k + 1)p − kp

kp(k + 1)

)〈
zk − zk−1, z0 −

1

2
(zk + zk1)

〉
≤ −

(
γ(1− p)

k
+
p

k
− p(1− p)

2k2
− γ(1− p)

2k(k + 1)
+
γp(1− p)
2(k + 1)2

)
‖zk − zk−1‖2

p

2k2
‖zk − zk−1‖2 +

p

2
‖zk+1 − 2zk + zk−1‖2

+
1

2
‖zk+1 − 2zk + zk−1‖2

− γ(1− p)
(

1

k(k + 1)
− (k + 1)p − kp

kp(k + 1)

)〈
zk − zk−1, z0 −

1

2
(zk + zk1)

〉
= −

(
γ(1− p)

k
+
p

k
− p(1− p)

2k2
− γ(1− p)

2k(k + 1)
+
γp(1− p)
2(k + 1)2

− p

2k2

)
‖zk − zk−1‖2

+
1 + p

2
‖zk+1 − 2zk + zk−1‖2

− γ(1− p)2

k(k + 1)

〈
zk − zk−1, z0 −

1

2
(zk + zk1)

〉
− γ(1− p)

(
1

k(k + 1)
− (k + 1)p − kp

kp(k + 1)
− 1− p
k(k + 1)

)
︸ ︷︷ ︸

=C1(k,p)

〈
zk − zk−1, z0 −

1

2
(zk + zk1)

〉

where the first inequality follows from (1), the monotonicity inequality, the second inequality fol-
lows from Lemma 8 and (6), and the third inequality follows from Lemma 8 and (5), Young’s
inequality, with ε = k.
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By Lemma 10, |C1(k, p)| ≤ p(1−p)
2k3 . Using (5), Young’s inequality, with ε = 1/k and (6) we get

− γ(1− p)
(

1

k(k + 1)
− (k + 1)p − kp

kp(k + 1)
− 1− p
k(k + 1)

)〈
zk − zk−1, z0 −

1

2
(zk + zk1)

〉
≤ γp(1− p)2

4k2
‖zk − zk−1‖2 +

γp(1− p)2

4k4
‖z0 −

1

2
(zk + zk−1)‖2

≤ γp(1− p)2

4k2
‖zk − zk−1‖2 +

γp(1− p)2

8k4
(
‖z0 − zk‖2 + ‖z0 − zk−1‖2

)
.

Putting these together we get

1

2
‖zk+1 − zk‖2 −

1

2
‖zk − zk−1‖2 +

1

k + 1
‖zk − zk−1‖2 −

γ(1− p)2

k(k + 1)

〈
zk − zk−1,

1

2
(zk + zk1)− z0

〉
≤ −

(
(γ − 1)(1− p)

k
+
γp(1− p)
2(k + 1)2

− p(1− p)
2k2

− γ(1− p)
2k(k + 1)

− p

2k2
− γp(1− p)2

4k2

)
‖zk − zk−1‖2

+
1 + p

2
‖zk+1 − 2zk + zk−1‖2 +

γp(1− p)2

8k4
(
‖z0 − zk‖2 + ‖z0 − zk−1‖2

)
With Lemma 15 and Lemma 16, we get

1

2
‖zk+1 − zk‖2 −

1

2
‖zk − zk−1‖2 +

1

k + 1
‖zk − zk−1‖2 −

γ(1− p)2

k(k + 1)

〈
zk − zk−1,

1

2
(zk + zk1)− z0

〉
≤−

(
(γ−1)(1−p)

k − 2(1+p)(1−p)2R2

k2p
+
γp(1−p)
2(k+1)2

− p(1−p)
2k2

− γ(1−p)
2k(k+1)

− p

2k2
− γp(1−p)

2

4k2
− 2γ2(1+p)(1−p)2

k2

)
‖zk − zk−1‖2

+

(
2(1 + p)(1− p)2

(
p2R2

k2+2p
+
γ2

k4

)
+
γp(1− p)2

8k4

)
C2

≤
(
− (γ − 1)(1− p)

k
+O

(
1

k2p

))
︸ ︷︷ ︸

=C3(k,γ,p,R)

‖zk − zk−1‖2 +O
(

1

k2+2p

)

Note that there is a K ∈ N such that C3(k, γ, p,R) ≤ 0 for all k ≥ K (with γ, p, and R fixed).

In Section 4.1, we multiplied the established inequality by t2 and integrating both sides to get

t2

2
‖ż(t)‖2 ≤ γ

2
‖z(t)− z0‖2.

We mimic analogous calculations in the discrete-time setup. Multiply both sides with k(k + 1) and
sum both sides from k = 1 to k = k, and apply Lemma 11 and Lemma 12 to get

k(k + 1)

2
‖zk+1 − zk‖2 ≤

γ(1− p)2

2
‖zk − z0‖2 + C4 +O

(
1

k2p−1

)
where C4 <∞ since C3(k, γ, p,R) > 0 for only finitely many k. Reorganizing we get

k(k + 1)(1− p)2

2(k + 1)2p
‖gk‖2 +

k(1− p)2γ2

2(k + 1)
‖z0 − zk‖2 −

k(1− p)2γ
(k + 1)p

〈gk, z0 − zk〉

≤ γ(1− p)2

2
‖zk − z0‖2 + C4 +O

(
1

k2p−1

)
Reorganizing yet again we get

k(k + 1)(1− p)2

2(k + 1)2p
‖gk‖2 −

k(1− p)2γ
(k + 1)p

〈gk, z0 − zk〉

≤ γ(1− p)2

2

(
1− γk

k + 1

)
‖zk − z0‖2 + C4 +O

(
1

k2p−1

)
≤ C4 +O

(
1

k2p−1

)
,
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where we use the assumption that γ ≥ 2. Reorganizing again, we get

‖gk‖2 ≤
2γ

(k + 1)1−p
〈gk, z0 − zk〉+

2C4

(1− p)2k(k + 1)1−2p
+O

(
1

k

)
≤ 2γ

(k + 1)1−p
〈gk, z0 − z?〉+

4C4

(1− p)2(k + 1)2−2p
+O

(
1

k

)
≤ 1

2
‖gk‖2 +

2γ2

(k + 1)2−2p
‖z0 − z?‖2 +

4C4

(1− p)2(k + 1)2−2p
+O

(
1

k

)
for k ≥ 1, where the second inequality follows from (1), the monotonicity inequality, and the third
inequality follows from (5), Young’s inquality, with ε = γ/(k + 1)1−p. Finally, we have

‖gk‖2 ≤
C

k2−2p
+O

(
1

k

)
with C = 4γ2 + 8C4/(1− p)2.

F ANALYSIS OF THEOREM 4

For convenience, we restate the update, assumptions, and the theorem:

zk+1 = zk −
1− p

(k + 1)p
g(zk;ωk) +

(1− p)γ
(k + 1)1−ε

(z0 − zk) (SSSGD-A)

L is convex-concave and has a saddle point (A0)

Eω1,ω2
‖g(z1;ω1)− g(z2;ω2)‖2 ≤ R2

1‖z1 − z2‖2 +R2
2 ∀ z1, z2 ∈ Rm+n (A2)

Theorem 4. Assume (A0) and (A2). If p ∈ (1/2, 1), ε ∈ (0, 1/2), and γ > 0, then SSSGD-A

converges in the sense of zk
L2

→ z?, where z? is a saddle point.

To clarify, we do not assume L is differentiable for Theorem 4.

Proof outline. The key insight is to define ζk to be something like a “fixed point” of the k-th
iteration of SSSGD-A and then to show zk shrinks towards to ζk in the following sense

‖zk+1 − ζk+1‖2 ≤ (1− something)‖zk − ζk‖2 + (something small).

Lemma 17 states that ζk slowly (stably) converges to a solution. Using the fact that zk shrinks
towards ζk and the fact that ζk is a slowly moving target converging to a solution, we conclude zk
converges to a solution.

Preliminary definition and result. More precisely, we define ζk to satisfy

ζk ∈ ζk −
1− p

(k + 1)p
G(ζk) +

(1− p)γ
(k + 1)1−ε

(z0 − ζk).

(However, ζk is not actually a fixed point, since SSSGD-A has noise and since G is a multi-valued
operator.) We equivalently write

ζk+1 =

(
I +

(k + 1)1−p−ε

γ
G

)−1
(z0).

Lemma 17 (Proposition 23.31 and Theorem 23.44 of Bauschke & Combettes (2017)). Let G be a
maximal monotone operator such that Zer(G) 6= ∅. Then (I + τG)−1(z0)→ PZer(G)(z0) and

‖(I + (τ + s)G)−1(z0)− (I + τG)−1(z0)‖ ≤ O
( s
τ

)
for any s ≥ 0 as τ →∞.
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F.1 PROOF OF THEOREM 4

Main proof. Since 1− p− ε > 0, Lemma 17 gives us

ζk → PZer(G)(z0).

Then we have

E
[
‖zk+1 − ζk+1‖2

∣∣Fk]
= E

[∥∥∥zk − ζk − 1− p
(k + 1)p

g(zk;ωk) +
(1− p)γ
(k + 1)1−ε

(z0 − zk) + ζk − ζk+1

∥∥∥2 ∣∣∣Fk]
= ‖zk − ζk‖2 −

〈
1− p

(k + 1)p
G(zk) +

(1− p)γ
(k + 1)1−ε

(zk − z0), zk − ζk
〉

+ 〈zk − ζk, ζk − ζk+1〉

+ E

[∥∥∥∥ 1− p
(k + 1)p

g(zk;ωk)−
(1− p)γ
(k + 1)1−ε

(z0 − zk)− ζk + ζk+1

∥∥∥∥2 ∣∣∣Fk
]

≤
(
1− (1− p)γ

(k + 1)1−ε

)
‖zk − ζk‖2 + ‖zk − ζk‖ ‖ζk − ζk+1‖

+ E
[
O
(

1

(k + 1)2p

)
‖g(zk;ωk)‖2

∣∣∣Fk]+O( 1

(k + 1)2(1−ε)

)
‖z0 − zk‖2 +O

(
1

(k + 1)2

)
≤
(
1− (1− p)γ

(k + 1)1−ε

)
‖zk − ζk‖2 +O(1/k) ‖zk − ζk‖

+O
(

1

(k + 1)2p

)
(R2

3‖z0 − zk‖2 +R2
4) +O

(
1

(k + 1)2(1−ε)

)
‖z0 − zk‖2 +O

(
1

(k + 1)2

)
,

where the first inequality follows from (1), the monotonicity inequality, Cauchy-Schwartz inequality,
and (6), Now we take the full expectation to get

E
[
‖zk+1 − ζk+1‖2

]
≤
(
1−O

(
1

(k + 1)1−ε

)
+O

(
1

(k + 1)2p

)
+O

(
1

(k + 1)2(1−ε)

))
E
[
‖zk − ζk‖2

]
+O(1/k)E

[
‖zk − ζk‖2

]1/2
+O

(
1

(k + 1)2p

)
(‖z0 − z?‖2 + 1) +O

(
1

(k + 1)2(1−ε)

)
‖z0 − z?‖2 +O

(
1

(k + 1)2

)
,

where we used E[‖zk − ζk‖]2 ≤ E[‖zk − ζk‖2]. Applying Lemma 14, we get E
[
‖zk − ζk‖2

]
→ 0.

Since ζk → PZer(G)(z0), we conclude zk
L2

→ PZer(G)(z0).

G EXPERIMENT DETAILS

In this section, we prodvide further details of the experiments of Section 5. Our Optimistic Adam is
a variation of the Optimistic Adam of (Daskalakis et al., 2018), which uses β = 1 while we allow
for a general optimism rate β > 0. For Anchored Adam, we do not diminish the strength of the
anchor proportional to 1/k1−ε since Adam does not diminish the learning rate. Rather, we maintain
a constant anchor strength γ but refresh the anchor point every T iterations. The notation ∇2 in
algorithm tables denote the element-wise square operation.
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Generator
latent space 100 (Gaussian noise)

dense 128 lReLU
dense 256 batchnorm lReLU
dense 512 batchnorm lReLU
dense 1024 batchnorm lReLU

dense 1024 tanh
Discriminator

Resize the input image 28× 28 to 32× 32
dense 512 lReLU
dense 256 lReLU

dense 1

Table 1: Generator and discriminator architectures for the MNIST experiment

Optimistic Adam

Parameters: learning rate η, exponential decay rates for moment estimates β1, β2 ∈ [0, 1), optimism
rate ρ > 0, and initial parameters z0
Repeat k = 0, 1, 2 . . . ,K (iteration):

Compute stochastic gradient∇z,k = G(zk)
Update biased estimate of first moment: mk = β1mk−1 + (1− β1)∇z,k
Update biased estimate of second moment: vk = β2vk−1 + (1− β2)∇2

z,k

Scale the step-size: η̂k = η
√
1− βk2/(1− βk1 )

Perform optimistic gradient step: zk = zk−1 − η̂k(1 + ρ) mk√
vk+ε

+ η̂k−1ρ
mk−1√
vk−1+ε

Return zK

Anchored Adam

Parameters: learning rate η, exponential decay rates for moment estimates β1, β2 ∈ [0, 1), anchor
rate γ > 0, anchor update period T , and initial parameters z0
Repeat k = 0, 1, 2 . . . ,K (iteration):

set anchor ak = zk if mod(k, T ) = 0 else ak = ak−1
Compute stochastic gradient∇z,k = G(zk)
Update biased estimate of first moment: mk = β1mk−1 + (1− β1)∇z,k
Update biased estimate of second moment: vk = β2vk−1 + (1− β2)∇2

z,k

Scale the step-size: η̂k = η
√
1− βk2/(1− βk1 )

Perform anchored gradient step: zk = zk−1 − η̂k mk√
vk+ε

+ γ(ak − zk−1)
Return zK
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batch size = 64
Adam learning rate = 0.0002

Adam β1 = 0.5
Adam β2 = 0.999

max iteration = 200000
GAN objctive = “WGAN-GP”

Gradient penalty parameter λ = 10
ndis = 5

Optimizer = “Adam”, “Optimistic Adam”, or “Anchored Adam”
Optimism rate ρ = 1
Anchor rate γ = 1

Anchor refresh period T = 10000

Table 2: Hyperparameters for the MNIST experiment

Generator
latent space 128 (Gaussian noise)

dense 4× 4× 512 batchnorm ReLU
4× 4 conv.T stride=2 256 batchnorm ReLU
4× 4 conv.T stride=2 128 batchnorm ReLU
4× 4 conv.T stride=2 64 batchnorm ReLU
4× 4 conv.T stride=1 3 weightnorm tanh

Discriminator
Input Image 32× 32× 3

3× 3 conv. stride=1 64 lReLU
3× 3 conv. stride=2 128 lReLU
3 conv. stride=1 128 lReLU
3 conv. stride=2 256 lReLU
3 conv. stride=1 256 lReLU
3 conv. stride=2 512 lReLU
3 conv. stride=1 512 lReLU

dense 1

Table 3: Generator and discriminator architectures for the CIFAR-10 experiment

batch size = 64
Adam learning rate = 0.0001

Adam β1 = 0.0
Adam β2 = 0.9

max iteration = 100000
GAN objctive = “WGAN-GP”

Gradient penalty parameter λ = 1
ndis = 1

Optimizer = “Adam”, “Optimistic Adam”, or “Anchored Adam”
Optimism rate ρ = 1
Anchor rate γ = 1

Anchor refresh period T = 10000

Table 4: Hyperparameters for the CIFAR-10 experiment
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