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Abstract

Understanding the principles of causal inference in the visual system has a long
history at least since the seminal studies by Albert Michotte. Many cognitive
and machine learning scientists believe that intelligent behavior requires agents to
possess causal models of the world. Recent ML algorithms exploit the dependence
structure of additive noise terms for inferring causal structures from observational
data, e.g. to detect the direction of time series; the arrow of time. This raises
the question whether the subtle asymmetries between the time directions can
also be perceived by humans. Here we show that human observers can indeed
discriminate forward and backward autoregressive motion with non-Gaussian
additive independent noise, i.e. they appear sensitive to subtle asymmetries between
the time directions. We employ a so-called frozen noise paradigm enabling us to
compare human performance with four different algorithms on a trial-by-trial basis:
A causal inference algorithm exploiting the dependence structure of additive noise
terms, a neurally inspired network, a Bayesian ideal observer model as well as a
simple heuristic. Our results suggest that all human observers use similar cues or
strategies to solve the arrow of time motion discrimination task, but the human
algorithm is significantly different from the three machine algorithms we compared
it to. In fact, our simple heuristic appears most similar to our human observers.

1 Introduction

Discriminative convolutional neural networks (CNNs) have produced impressive results in machine
learning, but certain striking failures of generalisation have been pointed out as well in terms
of adversarial examples [1–3] or the recent findings of Geirhos and colleagues that CNNs show
surprisingly large generalisation errors under image degradations [4, 5]. Many cognitive and machine
learning scientists maintain that flexible and robust intelligent behaviour in the real world requires
agents to possess generative or causal models of the world [6]. The importance of causality for
cognitive science and psychology has long been recognized [7–16]. In visual perception, for example,
it is fundamental to identify the causal structure in a visual scene: are objects moving or standing
still, are some objects causing the movement of other objects [17–19], are the movements caused by
(intentional) actors or rather by forces of nature? [20, 21] On a cognitive rather than perceptual level
progress has been made to understand how we intuitively understand physics [22], how humans learn
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causal structures from data [10, 7, 8, 13] and on human causal inference via counterfactual reasoning
[16, 23].

Much less research has explored whether the earlier, perceptual and unconscious—cognitively
impenetrable [24]—processing stages in humans possess already causal inference algorithms, see
Danks [25] for a recent overview on the relationship between causal perception, causal inference and
causal reasoning. Rolfs et al. [26] found evidence for perceptual adaptation to causality, thus arguing
that the perceptual system already possesses mechanisms tuned to “causal features” in the visual
input (but c.f. for a critique of the paper on methodological grounds [27]). More recently it was
shown, using the continuous flash suppression paradigm, that simple Michotte style launching-events
enter awareness faster when they are perceived as continuous causal events, again suggesting that
rather early, perceptual and pre-conscious processes may already be tuned to “causal features” [28].

Recently there has been considerable progress in understanding causal inference by approaching it as
a machine learning problem [29–32]. In the last two decades algorithms for causal inference with
different approaches have been suggested. Based on the language of graphical models and structural
equation models, the “classical approaches” infer the directed acyclic graph (DAG) formalizing
the causal relations from the observed conditional statistical (in)dependences subject to causal
Markov condition and causal faithfulness [29, 30]. After about 2004, several other approaches were
suggested that infer causal DAGs using properties of distributions other than conditional independence.
These approaches also consider DAGs that consist of two variables only (in which case conditional
independence testing is futile), i.e., to decide what is cause and what is effect, see chapter 4 of [32] for
an overview. It was shown that one can still infer the structure if one is willing to place restrictions on
the action of the noise disturbances, specifically, that it is additive and independent, and that either the
noise is non-Gaussian or the functions are nonlinear [33–36]. These methods have also been applied
to determine the causal direction of time series by fitting autoregressive models, i.e., by predicting
future from past, and examining the noise terms [37–39].

Investigation of the arrow of time in causal learning was motivated by its role in physics [40, 41, 37],
since it can be shown that the time asymmetry based on the independence of noise can be explained
by the usual thermodynamic arrow of time [42] and that recent approaches to causal inference are
thus linked to statistical physics [43]. Pickup et al. showed that the independence of noise can be
employed to detect the arrow of time in real world YouTube videos, without semantic or cognitive
knowledge about the visual world [39]. Recently it was shown that also neural networks can infer
the arrow of time from movies alone [44], suggesting that even low-level motion information in the
video contains information about the arrow of time.

Clearly, humans can perceive the arrow of time in settings where semantic information or world
knowledge is available. In a famous movie by the Lumière brothers, a wall falls over, subsequently
shown backwards to illustrate the perceptual contrast.1 Similarly, humans can perceive the arrow of
time if there is a clear non-stationarity in the data, or a directionality due to a perceivable increase in
entropy, e.g. if we observe an explosion. However, ML causality methods can also infer the arrow
of time in cases that at first sight appear hard, i.e. where the marginals are the same in both motion
directions and the setting is stationary. For humans, in contrast, the perception of the arrow of time
in such settings is unclear. Although it is well established that humans are sensitive to higher-order
regularities in the spatial statistics of static natural images [45], for motion sequences or motion
discrimination analogous results have not yet been established. It was even recently shown—at least
when assessing the motion direction of random dot kinematograms (RDKs)—that humans appear
only sensitive to the mean and variance of the displacement angles but were insensitive to skewness
and kurtosis [46]. Thus, for RDKs, and unlike in the case of static spatial structure, the human visual
system appears insensitive to higher-order statistics. Causal dependency algorithms, however, in the
linear case crucially rely on non-Gaussianity of additive noise, for which kurtosis and additional
non-zero higher-order moments are a measure.

Thus we investigated whether the human visual system is sensitive to dependencies in the motion of a
single disk. Furthermore, we investigate in depth the relationship between the abilities of different
machine learning algorithms: a Residual Dependence based algorithm, a Neural Network, a Bayesian
ideal observer and a very simple ecological valid heuristic. We show, first, that human observers can
indeed discriminate the arrow of time in autoregressive (AR) motion with non-Gaussian additive
independent noise, i.e. they appear sensitive to subtle time reflection asymmetries. Second, we show

1https://www.youtube.com/watch?v=W_bB0TVTwg8
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that humans are remarkably efficient in this task, requiring only a short motion sequence to identify
the direction of the time series. Third, humans might use a strategy similar to the heuristic. Fourth,
we show that the ideal observer algorithm and the neural network both achieve “super-human”—and
quantitatively very similar—performance, but the frozen noise paradigm we employed shows that
both algorithms use different cues or strategies.

2 Methods

Here we provide the minimum information necessary to understand our experiments and results. We
refer to the supplementary material for detailed explanations and all information needed to allow all
experiments to be reproduced.

2.1 The arrow of time: Causal and anti-causal time series

We constructed time series from a generative additive noise model:

xt = 0.05 · xt−4 + 0.1 · xt−3 + 0.2 · xt−2 + 0.4 · xt−1 + εt

The noise εt is independent from all previous states xt−1, xt−2, .... Clearly, future states
xt, xt+1, xt+2, ... are dependent on εt since εt influences them (the arrow of time in this setting). This
is true for all types of noise distributions for εt, however, the direction is not detectable for Gaussian
noise in a linear time series since a linear Gaussian time series can be modeled in the forward and
backward direction with independent noise terms. For non-Gaussian noise, however, this is not true:
it is not possible to fit a time series in the backward direction with independent noise terms [37].

Multiple algorithmic ways exist to detect the direction of such a time series based on this dependence
structure. We describe them in section 2.3. Note that we can use the case with the Gaussian
distribution for εt as “sanity check” to test our psychophysical experiment as well as our algorithms:
neither humans nor algorithms should be able to identify the direction with Gaussian noise.

Throughout we use time series for which the additive noise component εt is distributed according to
εt ∼ sgn(Y ) · |Y |r, with Y Gaussian distributed. We choose the exponent r in the range of 0.1− 6.
This yields noise which is either Bimodal (r < 1) or peaked Super-Gaussian (r > 1). The closer the
value of r is to 1, the more Gaussian εt becomes. An Exponent r = 1 yields Gaussian distributed
noise. The noise parameterization with exponent r has the advantage that the non-Gaussianity of
the time series can be precisely controlled with one parameter. Additionally, we choose a single
smoothed Uniform distribution with tails extending to ±∞. In total 16 noise distributions were used
in our experiment, seven with Super-Gaussian additive noise, seven with Bimodal additive noise, one
with smoothed Uniform and one with Gaussian additive noise. All noise distributions had mean 0 and
standard deviation of 44.72 pixels on screen (1,13 cm), see appendix sec. A.1. These values ensure,
in practice, that the time series is bounded to the range of possible coordinates of the monitor used in
our experiment. Time series in the true time direction are in the following denoted as causal time
series, and time series which are flipped along the temporal axis are denoted as anti-causal. Movies
of the stimuli are presented in the supplementary material.

2.2 Psychophysical Experiment

We tested if humans have the ability to discriminate causal from anti-causal time series in a psy-
chophysical experiment. Observers saw a white random dot moving across the horizontal axis on a
computer screen. The dot position followed a linear non-Gaussian time series with additive noise
described as above. Observers had to press a button whether they saw the moving dot belonging
to the green (causal) or to red (anti-causal) category—observers were unaware that the difference
between the categories was a time-reversal; they were given a cover story to identify harmless from
dangerous bacteria based on their motion. We hypothesized that humans are better at classifying
very strong non-Gaussian time series as algorithms do [37]. Thus we began by training subjects with
easily classifiable noise and made the time series progressively more difficult (making r approach
1.0). Human observers should be able to use the same cue for different intensities of the Bimodal or
Super-Gaussian noise. The discrimination task is rather difficult and we screened participants based
on their performance in what we considered “easy conditions” with r = 6, 4, 2 (Super-Gaussian) and
r = 0.1, 0.3, 0.5 (Bimodal). Participants had to achieve at least 67.5% in these blocks (40 trials) to
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be significantly different from chance level and to participate further in our experiment. Seven of our
17 naive observers failed to reach the criterion. We provide detailed information in the supplementary
material A.2.2 why we think this does not influence our overall results about human performance

Ten naive observers participated successfully in the first experiment (6 female, 4 male mean, mean
age = 24 yrs, std = 2.5 yrs). All subjects received monetary compensation. The observers were
tested on time series with all 16 noise distributions. For Bimodal and Super-Gaussian noise observers
progressed from easy to difficult noise. Each observer classified every of the 16 noise distributions
40 times, 640 trials in total per observer and it took each observer four hours to complete the first
experiment.

The first experiment assessed how well observers were able to discriminate forward and backward
AR motion sequences as a function of the degree of non-Gaussianity of the additive noise, i.e. to see
the arrow of time. Our second experiment aimed to investigate both human and algorithmic strategies
for the detection of the arrow of time. In this experiment the noise was randomly sampled for all
subjects. To this end all subjects were tested on exactly the same time series: the so-called frozen
noise paradigm often successfully employed in auditory psychophysics [47–49] This experimental
technique allows to examine inter-subject or subject-algorithmic correlation and consistency. In the
second experiment we only used a single noise distribution, Bimodal noise with exponent r = 0.5.
The length of the motion sequence—and thus the viewing time—was reduced progressively from
the initial 100 time-points to finally only 2 time points (100, 50, 25, 20, 16, 12, 8, 4, 2). Participants
classified 40 trials for each sequence length yielding in total 360 trials per observer. Similar to
experiment one the task got more difficult as the experiment progressed. Four of the best observers in
the previous experiment participated in this experiment (2 male, 2 female, age =22.5 yrs, std = 2.3
yrs). The experiment lasted 1.5 hours per observer.

2.3 Algorithms for causal inference

One central aim of ours is to compare the abilities of humans and algorithms to detect the arrow of
time. We compared the performance of our human observers to three different algorithms: First, an
algorithm which directly exploits the residual dependence structure (ResDep). Second, a neurally
inspired network and, third, a Bayesian ideal observer algorithm. Furthermore, a simple heuristic is
tested.
The ResDep algorithm proposed by Jonas Peters et al. [37] uses directly the residual dependence
structure of εt to the value xt−1. The algorithm fits an autoregressive model to the time series and a
series flipped along the time dimension. Subsequently an independence test is performed between
fitted residuals and data points. The direction is decided using the Hilbert-Schmidt Independence
Criterion test. The true time direction maximizes the independence-score between residuals and data
points.
The second algorithm was a (simple) neurally inspired network [50, 51]. The network consisted of
one convolution layer, followed by a batch normalization layer, a ReLU-layer and a fully connected
layer (see A.3.1 in the appendix for further details). For each noise distribution the network was
trained with 30000 time series. We used the Adam optimizer with an initial learning rate of 0.01.
The network was trained for a maximum of 30 epochs. Both the ResDep algorithm and the neural
network has full temporal memory since we input the full time series at the first step.
While the neural network gets as input the full time series and thus has perfect temporal memory, we
can contrast this algorithm with one based on Bayes statistics. In the vision literature this is often
done in an ideal observer framework [52]. An ideal observer analysis is a statistical framework which
provides the upper limit of performance given a set of constraints since the ideal observer has perfect
knowledge about the underlying model and its constraints.
We calculated the probability of the direction d given the data X = (x1, x2, ..., xN ) using Bayes rule:

p(d|X) =
p(X|d) · p(d)

p(X)
=

ΠN
t=1p(xt|xt−1, xt−2, ..., x1, d) · p(d)

p(X)
.

If we consider only stationary and stable time series of order 4—as in our experiments—the terms
in the numerator become p(xt|xt−1, xt−2, xt−3, xt−4) for the forward time series. This term cor-
responds exactly to the chosen noise distribution. We compare this expression in the forward and
backward direction and choose the direction for which the corresponding probability is larger. This
method is very similar to calculating the Bayes Factor. See section A.3.1 in the appendix for a
detailed explanation.
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As a final algorithm we fitted a heuristic to the data in spirit similar to heuristics proposed e.g. by
Stengård and Berg [53]. The heuristics were developed after we had evaluated the feedback from our
observers and the analysis of the noise structure. We found two different principles for Bimodal and
Super-Gaussian noise. For Super-Gaussian noise noise values are often sampled around 0. Therefore
in the forward direction, the dot often jumps around the center and rarely makes a big jump outwards.
After such a big jump, the point slowly sprints back to the center. This means that in the forward
direction there are big jumps to the outside, in the backward direction there are big jumps to the
centre. The Bimodal condition behaves the other way around. Often large values are sampled and
only rarely smaller ones. We have used this observation to develop a heuristic in a few lines of code.
At the maximum displacement, it is checked whether a large jump occurred before or after it. This
5-line code heuristic also works to identify the arrow-of-time of “real” data (EEG recordings; 60%
accuracy). For details see section A.3.1 in the appendix.

Figure 1: Psychometric Function for Bimodal noise (A) and Super-Gaussian noise (B). The black dots
represent the human accuracy for different exponents, pooled over all 10 subjects. The psychometric
functions are fitted with cumulative Gaussian distributions. Performance gets worse towards an
exponent of 1 which corresponds to the non-identifiable Gaussian noise case. The horizontal line
marks the width, the scaled 75% threshold for the different fits. Whiskers show 95% Credible
Intervals (CI) for the threshold.

3 Results

The following psychometric functions and Bayesian Credible Intervals (CI) were calculated with the
Beta Binomial Model in Psignifit 4 [54]. Figure 1 shows the main result of Experiment one. The
black psychometric functions show the human data (pooled across all ten observers) and the coloured
curves results for the algorithms on the same time series seen by our human observers: ResDep in
red, the neural network in yellow, the ideal observer in blue, our heuristic in light blue. Data for
single observers are shown in Figure A.8. All individual psychometric functions can be found in
figure A.9 and A.10, and the thresholds with credible intervals in table 4. On the one hand, humans
can indeed detect the direction of a time series for Super-Gaussian and Bimodal noise with thresholds
r = 0.67, 95% CI [0.62, 0.72] (Bimodal) and r = 1.62, 95% CI [1.45, 1.81] (Super-Gaussian). The
ResDep algorithm, on the other hand, performs similar to humans with Bimodal noise (threshold
r = 0.64, 95% CI [0.61, 0.68]) and, perhaps, marginally better with Super-Gaussian noise (threshold
r = 1.48, 95% CI [1.4, 1.56])2. Algorithmic performance of the neural network and the ideal
observer is superior to human and ResDep performance and both algorithms show remarkably similar
results. A detailed analysis of the neural network can be found in A.5. Thresholds for the exponents
of the Neural Network are r = 0.85, 95% CI [0.82, 0.96] and r = 1.19, 95% CI [0.98, 1.24], for the
ideal observer r = 0.87, 95% CI [0.83, 0.96] and r = 1.18, 95% CI [0.99, 1.25] and for the heuristic

2The best three human observers for Super-Gaussian noise had thresholds of r = 1.32, 1.36, 1.38—at least
as sensitive as ResDep.
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r = 0.67, 95% CI [0.61, 0.74] and r = 1.52, 95% CI [1.11, 1.88].

The parameterization with exponent r is somewhat arbitrary and we tested other distant scales
(Kullback-Leibler divergence, Jensen-Shannon divergence, Kolmogorov-Smirnov distance and nor-
malized exponents), see figure A.14. Normalized exponents yield most similar scales.

The results for the smoothed Uniform noise were much more diverse—remember that there is only
a single smoothed Uniform distribution with zero mean and the same variance as all other noise
distributions we used: The average human accuracy was 50% (chance performance), for ResDep
70%, for the neural network 96%, for the ideal observer 97% and for the heuristic 75%; we discuss
these results in the next section.
From Figures 1 and the block by block comparison in A.15 it appears as if human observers may
use an internal algorithm similar to ResDep (top left panel in A.15) or the heuristic, and the neural
network may have learned a strategy mimicking that of the ideal observer,

The frozen noise paradigm described above in section 2.2 and used in our experiment 2 allows us
to investigate this question in a much more stringent way: All human observers and the algorithms
classified exactly the same time series—they were not only drawn from the same distribution but the
very same time series. In addition, in experiment 2 we explored how human observers and algorithms
cope with shorter time series (Bimodal noise, r = 0.5 fixed throughout the experiment). This, too,
may offer a way to distinguish human observers and algorithms from each other.

Figure 2 shows the results for experiment 2. Plotting conventions as in Figure 1: The black psychome-
tric function shows human data (pooled across all four observers) and the coloured curves results for
the algorithms on exactly the same time series seen by our human observers: ResDep in red, the neural
network in yellow, the ideal observer in blue, the heuristic in light blue. Individual psychometric
functions of the four human observers are shown in Figure A.16. The neural network was exactly
trained as in experiment one with the exception that we shrink the size of the convolutional layer
for very short time series, see A.3.1 for details. Human observers are able to detect the direction of
time series even for rather short time series, with a threshold of about 17.76, 95% CI [14.40,22.44]
time points. The results are even more impressive if we exclude observer 2—who told us after the
experiment that he had been not fully attentive during the experiment: the threshold drops to 15.17
time points, 95% CI [11.51,19.18], see figure A.17 in the appendix. In this respect, humans clearly
outperform the ResDep algorithm which requires 42.67, 95% CI [28.88,58.86] time points for 75%
correct discrimination. The neural network with a threshold of 8.13, 95% CI [-1.85,12.52] time points
and the ideal observer algorithms with a threshold of 7.73, 95% CI [-0.71,11.16] again show similar
performance and are again superior to that of human observers and ResDep. However the heuristic
shows a threshold very close to human observers, 18.07 time points, 95% CI [14.20, 46.50]. Please
note, however, that the somewhat poor performance of ResDep may not (only) reflect its intrinsic
inferiority but may in part be due to the difficulty of fitting short time series. ResDep relies on the
ARMA method in MATLAB; ResDep is effectively guessing for time series shorter or equal than 8
time points. Also, the ideal observer has intrinsic problems with short time series since our underlying
assumptions for the approximation does not hold anymore, see A.3.1 in the supplementary material
for further details.

The frozen noise method allows us to compare observer consistency within observers and consistency
between humans and algorithms. If subject 1 has for a given block an accuracy p1 and subject 2
has for the same block an accuracy p2, then we would expect for independent binomial observers
a fraction of p1 · p2 + (1 − p1) · (1 − p2) equally answered (“consistent”) trials. This fraction of
expected consistency is compared to the number of actually equally answered trials per block. If
the observed proportion is significantly higher than expected, this provides evidence that subjects 1
and 2—be them two humans, two algorithms or a human and an algorithm—are not independent,
which in turns indicates that they rely on similar processing strategies or at least use similar stimulus
information.
Figure 3 shows this comparison for humans and algorithms, with the expected consistency shown on
the x-axis, plotted on the observed consistency on the y-axis. Comparing human observers to each
other (top left panel in Figure 3), we see that humans tend to have more similarities than expected
from independent observers. (The shaded ellipsoidal regions indicate the confidence regions around
the null hypothesis that they are independent given the amount of data.) The first column in Figure 3
strongly suggests that humans observers use a strategy or internal algorithm independent from all
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Figure 2: Performance of humans and algorithms for time series (bimodal 0.5) of different lengths,
plot conventions are as in figure 1.

four of our ML algorithms. Furthermore, the graph shows that all algorithms show only a consistency
consistent with them being independent. (Because we can generate more data for the algorithmic
comparisons, we confirmed this using many more trials, reaching the same conclusion, see Figure
A.18.). Finally we note that human observers and our heuristic show a high observed consistency.

4 Conclusion

Our frozen noise paradigm shows that ideal observers and the neural networks have unique strategies.
Even if we use more data points in figure A.18 we see only a small effect of similarity. One could
argue that we do not find an agreement of the ideal observer and neural network due to the intrinsic
problem of the ideal observer algorithm for short time series. But even if we redo the frozen noise
paradigm using long sequences but varying the exponent—thus rendering the sequences difficult
not by shortening them but by making the noise more Gaussian—we again see only a minor effect,
see figure A.19. The ideal observer and the neural network use different, albeit equally successful,
strategies.
Despite the fact that, on the one hand human observers, ResDep and the heuristic and on the other
hand the neural network and the ideal observer, show roughly the same performance in experiment 1,
the frozen noise paradigm in experiment 2 allows us to conclude that they actually all use independent
strategies. In particular, human observers do not use a ResDep dependency algorithm, and neither do
they use an ideal (or suboptimal, see A.3.2) Bayesian probability calculation—especially the latter is
a popular notion in visual perception and the cognitive sciences. Instead, our human observers appear
to use an approach similar to our (simple) heuristic.

Another main outcome of our study is how remarkably efficient the unique strategy of the vi-
sual system is: Our observers only needed 17.76 95% CI [14.40,22.44] time points (15.17,
95% CI [11.51,19.18] if we exclude one somewhat poorer performing observer) for 75% correct
discrimination of the forward or backward played AR motion sequences. They require fewer data
samples than a successful ML algorithm for causal inference (ResDep; with the caveat regarding
implementation mentioned above. A different implementation of the ResDep ideas may perform
better). Performance approached that of the ideal observer that knows the underlying statistics
perfectly, i.e., the order of the AR process, the AR coefficients, the variance and exponent of the
noise of the time series. We deem it unlikely that the human observers could extract these parameters
from visual input alone, let alone for the very short sequences. Our heuristic, on the other hand, is
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Figure 3: Human observer consistency and observer-algorithmic consistency for the frozen noise
paradigm. The x-axis shows the expected proportion of equally answered trials under the assumption
of independent observers or algorithms. The y-axis shows the actual observed number of equally
answered trials in the experiment. The shaded area shows a 95% confidence interval calculated
based on the Wilson score interval [55]. Colour codes the number of time points. We used in the
algorithm-algorithm comparison not only time series with lengths from the experiment but also a
finer grid: 10-30 time points with spacing 1 and 35-100 with spacing 5. The upper number on the
right shows the proportion of point lying above the diagonal, the lower number the p-value for the
null hypothesis that the same number of points are lying above as below the diagonal. Red numbers
indicate significant deviations from the null hypothesis.
implemented in a few lines of code, is incredibly stable and fast. The surprisingly good performance
and the high degree of observed consistency with humans indicates that human observers may be
using a rather similar strategy.

In addition we also tried to use suboptimal algorithms [53]3. We used two approaches to make
the Bayesian observer and the Neural Network suboptimal. First, we fitted an additive noise term
to the decision variable (Model 2 in Stengård and Berg). This corresponds to late noise in the
visual pathway. Second, we fitted an additive noise term to the individual time series points before
calculating the decision of the ideal observer. This corresponds to noise in the early visual pathway,

3We would like to thank one of our reviewers for suggesting the suboptimal analyses
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that is uncertainty about the exact location of the disk (e.g. micro-saccadic eye movements). The
addition of both early and late noise yields more similar fits between the algorithms and human
data. However, on a trial-by-trial basis, only minor similarities are visible. See section A.3.2 in the
appendix for details.

When performing demanding psychophysical experiments with human observers there is always
the question of learning—are we really reporting and interpreting stationary performance? In
causal inference in cognitive science structure learning from data is an important topic (e.g.
dynamical causal learning [10]). However, in our experiments observers were able to do the motion
discrimination after a few training trials. More importantly, the accuracy in the first and second
half of every block was very similar. Average performance in experiment 1 pooled for all subjects
and across all noise distributions was 82% for trials 1-20 and 80% for trials 20-40; 64%/63% in
experiment 2. This strongly suggests that our data are not contaminated by learning effects during
our experiments.

One puzzle we are unable to resolve is why our human observers typically failed to reach above
chance performance with the smoothed Uniform distribution: performance for smoothed Uniform
was at 50% across all observers. From a psychophysical point of view the smoothed Uniform
condition was more difficult by experimental design: Observers could not start with easy smoothed
Uniform noise since there was no free parameter. On the other hand, Bimodal and smoothed Uniform
distributions have a similar dependence structure, see Figure A.1. We expected that at least those
observers that were already trained on Bimodal noise should be able to detect the direction of the
smoothed Uniform time series—however, that was not the case. Only observer 10 achieved an
accuracy above 65%. (The JS-Divergence of the smoothed Uniform distribution corresponds to a
Bimodal exponent of 0.73. As we can see from Figure 1 we expect around 65% performance, in
line with LL’s performance.) The surprising difficulty of the smoothed Uniform distribution should
help constrain which strategy or algorithm was used by our human observers during our experiments.
Recent advances in causal inference have been strongly driven by human intuition about how the
shape of joint distribution indicates causal directions [56, 33]. This line of argument, together with
our experimental results, suggests that many of the human abilities regarding the recognition of causal
and time asymmetries are not known yet.

In any case, we argue that we can learn a lot about the inner workings of a cognitive system by probing
it with appropriate artificial—not ecologically valid–stimuli [57, 58] —this is not to say one should
only and always use simple, artificial stimuli, but there is a place for their use, particularly when
studying less well known areas—such as the human visual system’s sensitivity to subtle temporal
dependencies. In a predictive coding framework, e.g., it would be useful to know the exact temporal
statistical structure of e.g. the motion of leaves and grass in the wind. An unusual motion pattern—e.g.
having the “wrong” dependencies—may signal a hidden predator behind the foliage.

Ever since Albert Michotte performed his studies there is the question whether causal inference may
under certain circumstances already be a perceptual rather than a cognitive ability [26, 28]. In our
experiment observers were able to discriminate very subtle temporal asymmetries, similar to the
remarkable sensitivity to higher-order spatial dependencies in patches of natural images [45]. To us
this hints at an early, perceptual locus in our experiments.

Author contributions

B.S. had the initial project idea connecting causal inference with (early) visual perception. B.S. and
F.W. developed the idea of using AR motion and additive noise as a visual stimulus with help from
D.J. The concrete psychophysical experiments with all parameters were designed by K.M.; F.W.
suggested the use of the “frozen noise” inspired analyses; K.M. conducted all experiments and wrote
all the code. K.M. did the statistical analyses and implemented the algorithmic observers with help
from F.W. and D.J. The paper was jointly written by K.M. and F.W. with input from D.J. and B.S.

Acknowledgments

This work was supported by the German Research Foundation (DFG): SFB1233, Robust Vision
(project number 276693517): Inference Principles and Neural Mechanisms, TP4 Causal inference
strategies in human vision (F.W. and B.S.).

9



We would like to thank Frank Jäkel for invaluable intuitions about the structure of the arrow of time
problem. Additionally, we thank Heiko Schütt and Bernhard Lang for discussion about Bayesian
observers and Robert Geirhos for discussion about neural networks. Moreover we are grateful to
Karin Bierig and Vincent Plikat for help with data collection and Silke Gramer for administrative
and Uli Wannek for technical support. Finally we thank the internal reviewers at the Max-Planck
Institute for Intelligent Systems and our three anonymous reviewers for constructive feedback. We
are particularly indebted to reviewer #3 and the suggestion to explore suboptimal observers.

References
[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and

Rob Fergus. Intriguing properties of neural networks. arXiv, 1312.6199v4:1–10, 2014.

[2] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. arXiv
preprint arXiv:1607.02533, 2016.

[3] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia conference
on computer and communications security, pages 506–519. ACM, 2017.

[4] Robert Geirhos, Carlos R. Medina Temme, Jonas Rauber, Heiko H. Schütt, Matthias Bethge, and Felix A.
Wichmann. Generalisation in humans and deep neural networks. Advances in Neural Information
Processing Systems, 31:7549–7561, 2018.

[5] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and Wieland
Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and
robustness. International Conference on Learning Representations (ICLR), 2019.

[6] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building machines
that learn and think like people. Behavioral and Brain Sciences, 40:e253, 2017.

[7] Patricia W. Cheng. From covariation to causation: a causal power theory. Psychological review, 104(2):
367–405, 1997.

[8] Joshua B. Tenenbaum and Thomas L. Griffiths. Structure learning in human causal induction. In Advances
in neural information processing systems, volume 13, pages 59–65, 2001.

[9] Tamar Kushnir, Alison Gopnik, Laura Schulz, and David Danks. Inferring hidden causes. In Proceedings
of the Annual Meeting of the Cognitive Science Society, volume 25, 2003.

[10] David Danks, Thomas L. Griffiths, and Joshua B. Tenenbaum. Dynamical causal learning. In Advances in
neural information processing systems, volume 15, pages 83–90, 2003.

[11] Mark Steyvers, Joshua B. Tenenbaum, Eric-Jan Wagenmakers, and Ben Blum. Inferring causal networks
from observations and interventions. Cognitive science, 27(3):453–489, 2003.

[12] Alison Gopnik, Clark Glymour, David M. Sobel, Laura E. Schulz, Tamar Kushnir, and David Danks. A
theory of causal learning in children: causal maps and bayes nets. Psychological review, 111(1):3–32,
2004.

[13] Thomas L. Griffiths and Joshua B. Tenenbaum. Structure and strength in causal induction. Cognitive
psychology, 51(4):334–384, 2005.

[14] Alison Gopnik and Laura Schulz. Causal learning: Psychology, philosophy, and computation. Oxford
University Press, 2007.

[15] Noah D. Goodman, Tomer D. Ullman, and Joshua B. Tenenbaum. Learning a theory of causality.
Psychological review, 118(1):110, 2011.

[16] David A. Lagnado, Tobias Gerstenberg, and Ro’i Zultan. Causal responsibility and counterfactuals.
Cognitive science, 37(6):1036–1073, 2013.

[17] Albert Michotte. The perception of causality. Oxford, England: Basic Books, 1963.

[18] Alan M. Leslie and Stephanie Keeble. Do six-month-old infants perceive causality? Cognition, 25(3):
265–288, 1987.

10



[19] Lance J. Rips. Causation from perception. Perspectives on Psychological Science, 6(1):77–97, 2011.

[20] Fritz Heider and Marianne Simmel. An experimental study of apparent behavior. The American journal of
psychology, 57(2):243–259, 1944.

[21] Brian J. Scholl and Tao Gao. Perceiving animacy and intentionality: Visual processing or higher-level
judgment. Social perception: Detection and interpretation of animacy, agency, and intention, pages
197—-230, 2013.

[22] James R. Kubricht, Keith J. Holyoak, and Hongjing Lu. Intuitive physics: Current research and controver-
sies. Trends in cognitive sciences, 21(10):749–759, 2017.

[23] Tobias Gerstenberg, Noah D. Goodman, David A. Lagnado, and Joshua B. Tenenbaum. How, whether,
why: Causal judgments as counterfactual contrasts. In Proceedings of the 37th Annual Conference of the
Cognitive Science Society, pages 782–787, Austin, TX, 2015. Cognitive Science Society.

[24] Jerry A Fodor. The Modularity of Mind. Cambridge, MA: MIT Press, 1983.

[25] David Danks. The psychology of causal perception and reasoning. In Oxford handbook of causation, pages
447–470. Oxford University Press, 2010.

[26] Martin Rolfs, Michael Dambacher, and Patrick Cavanagh. Visual adaptation of the perception of causality.
Current Biology, 23(3):250–254, 2013.

[27] Regan M. Gallagher and Derek H. Arnold. Comparing the aftereffects of motion and causality across
visual co-ordinates. bioRxiv, 2018.

[28] Pieter Moors, Johan Wagemans, and Lee de-Wit. Causal events enter awareness faster than non-causal
events. PeerJ, 5:e2932, 2017.

[29] Peter Spirtes, Clark N. Glymour, and Richard Scheines. Causation, prediction, and search. MIT press,
2000.

[30] Judea Pearl. Causality: models, reasoning, and inference. Cambridge University Press, 2000.

[31] Daniel Malinsky and David Danks. Causal discovery algorithms: A practical guide. Philosophy Compass,
13(1):e12470, 2018.

[32] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and
learning algorithms. MIT press, 2017.

[33] Patrik O. Hoyer, Dominik Janzing, Joris M. Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal
discovery with additive noise models. In Advances in neural information processing systems, volume 21,
pages 689–696, 2009.

[34] Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-gaussian acyclic
model for causal discovery. Journal of Machine Learning Research, 7(Oct):2003–2030, 2006.

[35] Kun Zhang and Aapo Hyvärinen. On the identifiability of the post-nonlinear causal model. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence, pages 647–655. AUAI Press, 2009.

[36] Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with continuous
additive noise models. The Journal of Machine Learning Research, 15(Jun):2009–2053, 2014.

[37] Jonas Peters, Dominik Janzing, Arthur Gretton, and Bernhard Schölkopf. Detecting the direction of causal
time series. In Proceedings of the 26th Annual International Conference on Machine Learning, pages
801–808, 2009.

[38] Stefan Bauer, Bernhard Schölkopf, and Jonas Peters. The arrow of time in multivariate time series. In
Proceedings of the 33rd International Conference on International Conference on Machine Learning -
Volume 48, pages 2043–2051, 2016.

[39] Lyndsey C. Pickup, Zheng Pan, Donglai Wei, YiChang Shih, Changshui Zhang, Andrew Zisserman,
Bernhard Schölkopf, and William T. Freeman. Seeing the arrow of time. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2035–2042, 2014.

[40] Hans Reichenbach. The direction of time. University of California Press, Berkeley, USA, 1956.

[41] Huw Price. Time’s arrow & Archimedes’ point: new directions for the physics of time. Oxford University
Press, 1997.

11



[42] Dominik Janzing. On the entropy production of time series with unidirectional linearity. Journ. Stat. Phys.,
138:767–779, 2010.

[43] D. Janzing, R. Chaves, and B. Schölkopf. Algorithmic independence of initial condition and dynamical
law in thermodynamics and causal inference. New Journal of Physics, 18:093052, 2016.

[44] Donglai Wei, Joseph Lim, Andrew Zisserman, and William T. Freeman. Learning and using the arrow of
time. In IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[45] Holly E. Gerhard, Felix A. Wichmann, and Matthias Bethge. How sensitive is the human visual system to
the local statistics of natural images? PLOS Computational Biology, 9(1):1–15, 01 2013.

[46] Michael L Waskom, Janeen Asfour, and Roozbeh Kiani. Perceptual insensitivity to higher-order statistical
moments of coherent random dot motion. Journal of vision, 18(6):9–9, 2018.

[47] Newman Guttman and Bela Julesz. Lower limits of auditory periodicity analysis. The Journal of the
Acoustical Society of America, 35(4):610, 1963.

[48] Trevor R. Agus, Simon J. Thorpe, and Daniel Pressnitzer. Rapid formation of robust auditory memories:
insights from noise. Neuron, 66(4):610–618, 2010.

[49] Vinzenz H. Schönfelder and Felix A. Wichmann. Identification of stimulus cues in narrow-band tone-in-
noise detection using sparse observer models. The Journal of the Acoustical Society of America, 134(1):
447–463, 2013.

[50] Robbe LT. Goris, Tom Putzeys, Johan Wagemans, and Felix A. Wichmann. A neural population model for
visual pattern detection. Psychological review, 120(3):472–496, 2013.

[51] Heiko H Schütt and Felix A. Wichmann. An image-computable spatial vision model. Journal of Vision, 17
(12):12, 1–35, 2017.

[52] Wilson S. Geisler. Ideal observer analysis. The visual neurosciences, 10(7):825–837, 2003.

[53] Elina Stengård and Ronald van den Berg. Imperfect bayesian inference in visual perception. PLOS
Computational Biology, 15(4):1–27, 04 2019.

[54] Heiko H. Schütt, Stefan Harmeling, Jakob H. Macke, and Felix A. Wichmann. Painfree and accurate
bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision Research, 122:
105 – 123, 2016.

[55] Edwin B. Wilson. Probable inference, the law of succession, and statistical inference. Journal of the
American Statistical Association, 22(158):209–212, 1927.

[56] Sun Xiaohai, Janzing Dominik, and Schölkopf Bernhard. Causal inference by choosing graphs with most
plausible Markov kernels. In Proceedings of the 9th International Symposium on Artificial Intelligence
and Mathematics, pages 1–11, 2006.

[57] Nicole C. Rust and J. Anthony Movshon. In praise of artifice. Nature Neuroscience, 8(12):1647–1650,
2005.

[58] Marina Martinez-Garcia, Marcelo Bertalmío, and Jesús Malo. In praise of artifice reloaded: Caution with
natural image databases in modeling vision. Frontiers in Neuroscience, 13:8, 2019.

[59] David H Brainard. The psychophysics toolbox. Spatial vision, 10:433–436, 1997.

[60] Kleiner Mario, Brainard David, Pelli Denis, Ingling Allen, Murray Richard, and Broussard Christopher.
What’s new in psychtoolbox-3. Perception, 36(14):1–16, 2007.

[61] H. Akaike. Information theory and an extension of the maximum likelihood principle. Second International
Symposium on Information Theory, Tsahkadsor, Armenia, 267-281., 1973.

[62] Felix A. Wichmann and N. Jeremy Hill. The psychometric function: I. fitting, sampling, and goodness of
fit. Perception & Psychophysics, 63(8):1293–1313, Nov 2001.

12


