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Abstract— Accurate recovery of the 3D structure of a deform-
ing surgical environment during minimally invasive surgery is
important for intra-operative guidance. One key component
of reliable reconstruction is accurate camera pose estimation,
which is challenging for monocular cameras due to the paucity
of reliable salient features, coupled with narrow baseline during
surgical navigation. With recent advances in miniaturized
MEMS sensors, the combination of inertial and vision sensing
can provide increased robustness for camera pose estimation
particularly for scenes involving tissue deformation. The aim
of this work is to propose a robust framework for intra-
operative free-form deformation recovery based on structure-
from-motion. A novel adaptive Unscented Kalman Filter (UKF)
parameterization scheme is proposed to fuse vision information
with data from an Inertial Measurement Unit (IMU). The
method is built on a compact scene representation scheme
suitable for both surgical episode identification and instrument-
tissue motion modelling. Detailed validation with both synthetic
and phantom data is performed and results derived justify the
potential clinical value of the technique.

I. INTRODUCTION

In Minimally Invasive Surgery (MIS), accurate estimation
of the motion of the endoscopic camera and reconstruction
of its surrounding 3D anatomical structure are essential for
intra-operative navigation and guidance. Dynamic motion
stabilization and controlling the motion of surgical instru-
ments by visual servoing are essential in robotically assisted
laparoscopic surgery. To this end, reliable tissue deformation
recovery is the prerequisite of all these techniques. Thus far,
approaches based on stereo reconstruction, Simultaneous Lo-
calization and Mapping (SLAM) and Structure from Motion
(SFM) [1] have been used but they are mainly applied to
static scenes.

For the reconstruction of deforming surfaces observed with
moving cameras, the assumption of periodic tissue motion
has been made [2] [3] to recondition the problem such that
it is solvable. However, this assumption is not always realistic
for in-vivo MIS procedures where the tissue motion is too
complex to be expressed by a single model. To overcome this
problem, a free form deformation recovery approach using
Gaussian Mixture Model based SFM [4] has been proposed
without the use of explicit models on deformation.

In practice, the prerequisite for reliable deformation recov-
ery is accurate camera pose estimation. Direct application of
the commonly used vision techniques for pose estimation
during MIS has significant problems due to the paucity of
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reliable salient features to track coupled with changing visual
appearance of the surgical environment and what is often
a narrow baseline during surgical navigation. With increas-
ing miniaturization and reliability of Microelectromechanical
Systems (MEMS) based inertial sensors and gyroscopes,
their integration with normal surgical instruments is a reality.
The integration of information from vision and inertial
sensing can provide increased robustness for feature tracking
and reduced ambiguity in camera pose estimation. This
offers the possibility of developing more practical approaches
for SFM based on the complementary nature of these two
sensing modalities. More specifically, inertial sensors have
large measurement uncertainty during slow motion and lower
relative uncertainty at high velocities, whereas vision-based
approaches are unable to cope with fast and unpredictable
motions.

In recent years, the combination of inertial sensors
with camera tracking has received increased attention. The
monocular SLAM framework has been combined with IMU
measurement data to enhance the robustness of the classical
SLAM method [5] or estimate the scale parameter [6]. The
Extended Kalman Filter (EKF) has been extensively used to
combine visual and inertial information for robust egomotion
[71, [8]. Multi-rate Kalman filters have also been designed to
deal with data at different sampling rates for camera motion
and structure estimation [9].

The use of the gravity reference provided either by inertial
sensors or estimated based on the vanishing points from
visual data, has been explored to reduce the minimum
number of points required for camera motion estimation [10]
[11]. In [12] the gravity was used as a vertical reference to
estimate the camera focal distance based on the orthogonality
between the vertical reference and the vanishing points of
horizontal lines, using only one vanishing point.

A number of closed-form solutions [13] have been derived
for the determination of attitude (roll and pitch angles),
speed, absolute scale and bias. This is based on a system
comprising of an IMU and a single monocular camera. These
different contexts include the case of multiple or single
features, the presence or absence of gravity and bias in
inertial measurements.

The combination of inertial sensors with monocular cam-
eras for real-time robust camera motion estimation and
reconstruction over trajectories with challenging dynamics
is presented in [14]. In [15] two autonomous Micro Air
Vehicles (MAVSs), each fitted with an IMU and a monocular
camera are used to perform collaborative stereo. The IMU
measurements are fused with the vision data to resolve
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Fig. 1: Sample camera trajectory from the synthetic data.

scale ambiguity. A real-time hybrid solution to articulated
3D arm motion tracking for home-based rehabilitation by
combining visual and inertial sensors is introduced in [16]. In
robotic surgery, the tracking of a hand-held input devices is
demonstrated in [17] where inertial data and and 2D locations
of optical markers in the stereo camera images are fused by
using an EKF.

The aim of this paper is to present a novel approach
to robust 3D reconstruction of a deforming surgical scene
observed with a projective monocular camera. A novel
adaptive Unscented Kalman Filter (UKF) parameterization
scheme is proposed to fuse vision information with data
from an Inertial Measurement Unit (IMU). A simplified UKF
process model has been designed to reduce the computa-
tional complexity, thus making it more amenable to real-
time implementation. Interference from the accelerometer
is adaptively compensated and the UKF also incorporates
angular velocity measurements from the gyroscope of the
IMU. The proposed deformation recovery framework is built
on a compact scene representation scheme that is suitable
for both surgical episode identification and instrument-tissue
motion modelling. Detailed validation is provided on both
synthetic and phantom data.

II. METHODS

Prior to deformation recovery, temporal segmentation of
the video sequence is applied to ensure coherent episodes
are derived. This avoids tracking across episode boundaries,
which are both technically difficult and practically meaning-
less. To this end, a succinct content-based data representation
scheme that is suitable for both surgical episode identification
and instrument-tissue motion modelling is used [18]. Each
surgical episode is reconstructed separately and the motion
characteristics of salient features are used to identify tissue
deformation in response to instrument interaction.

A. Structure from Motion

For reliable and persistent feature tracking, an affine-
invariant anisotropic region detector [19] is employed. An
EKF parameterization scheme is used to adaptively adjust the
optimal templates of the detected regions, enabling accurate

identification and matching of a set of tracked features over
a series of video frames [18].

Given a set of feature tracks W between the first and
the last frame of a detected episode, the camera motion R
and ¢ is required for the estimation of the scene structure
S. In this work, the 5-point algorithm [20] is applied in
the above two views to generate a number of hypothesis
for the essential matrix E = [t], R which are scored based
on the reprojection error over all the points tracked. For
subsequent episode frames where the camera baseline is not
wide enough for triangulation, the method switches to the
PnP method proposed in [21] for perspective pose estimation
in order to derive the relative camera pose. For outlier
removal, both the 5-point algorithm and the PnP method
are used in conjunction with Random Sampling Consensus
(RANSAC). Each camera pose and the estimated structure
are refined by an iterative non-linear optimization step on the
inlier subset. Common features tracked between consecutive
episodes are used to resolve the relative scale between the
estimated structures.

The above SFM framework is based on the assumption of
a static scene. The aim of the proposed work is to simulta-
neously recover both camera motion and tissue deformation.
To this end, features on deforming areas are automatically
identified as outliers while the inliers correspond to static
scene parts. The static areas are used to estimate the camera
motion and are successfully reconstructed with the above
framework. However, the accuracy in the deforming areas
is low. In order to recover an accurate 3D structure of the
entire observed environment, deformable areas are localized
and their 3D shape is further refined [4]. To this end, inertial
and vision measurements are fused by using the Unscented
Kalman Filter (UKF).

B. Fusion of Visual and Inertial Measurement Data

For the proposed UKF scheme, the state of the system
is composed of the position and orientation of the camera.
Position is described with Cartesian positions, their veloc-
ities and accelerations. The orientation is represented with

quaternion.
T

qt

where by, i), b are the camera position, velocity and acceler-
ation in the reference coordinate system, respectively. q; is
the orientation of the camera with respect to the reference
coordinate system. The unit quaternion ¢; is selected to
represent the orientation, because it does not suffer from
the singularity problem associated with Euler angles/rotation
matrix. Moreover, the quaternion is computationally efficient
as opposed to Euler angles, as it does not involve trigono-
metric functions to compute the rotation matrix. It has only
one redundant parameter, as opposed to six in the rotation
matrix. The relationship between x; and x;_1 can be written
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Fig. 2: Validation results on synthetic data (a) Camera translation error and (b) rotation error with varying translation noise and constant rotation noise
(std = 0.1rad) (c) Camera translation error and (d) rotation error with varying rotation noise and constant translation noise (std = 3mm,).

as:
Ty =Fri 1 +e 2
where
I3xz  I3x3At  I3x3At?)2 0
0 0 Isy3 0
0 0 0 O (At)

Here, I343 is the identity matrix of order 3, At is the
sampling rate, and e; is the process noise which is assumed
to be zero mean Gaussian noise with covariance matrix Q).
O¢(At) = exp{3R(w")At}, where w; = (wi, w, wt) is
the gyroscope measurement at time ¢ resolved in the camera
coordinate system and

t t t
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t t t
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We can rewrite the matrix exponential ©, using its Taylor
series expansion as:

1 1.1

1

. i (3)

where 144 is the identity matrix of dimension 4. The matrix
R(w:) has the following properties,

R(wt)Q = —|wt|2 . I4><4

R(ws)® = —|we|* « R(wy)

R(wt)4 = |Wt|4 Ly 4)

R(we)® = |wi|* + R{wr)

R(wt)ﬁ = —|wt|6 . I4><4

By substituting these properties into (3), we can get
At
O1(At) = cos( i ) o Iyxa
5)
1 |wAt (
— R
+ o sin( 5 ) e R(we)

The position z;, and orientation z;, measurements ob-

tained from the SFM and the acceleration 2" and orien-

tation zfzf;}“ measured by the accelerometer and gyroscope

measurement integration, respectively, are combined in the
following measurement model:

v v
2.t Ut
v v
z (Y
_ q,t _ _ q,t
Zt = ima = h(l‘t) + v = h(xt) + ima (6)
Za,t a,t
imu imu
Zq,t Ug,t

where v; is assumed to be zero mean Gaussian noise with
covariance matrix V. The position and orientation measure-
ment model is constructed as:

v v
2.t Up ¢
o v - v 7
2t = Zq,t - Tt + vq,t ( )
imu mu
Zq,t Vgt
where
I3x3 03x3 03x3 Oixs
H = 03x3 03x3 03x3 Iaxa
03x3 03x3 0O3x3z Jaxs

The accelerometer signal z}f}" contains measurements of the

body acceleration vector b; and the gravity vector g, both
expressed in the sensor coordinate system as:

st =gt @ (bt 9) © au+ vag, ®)

where ® is the quaternion multiplication.

It is well-known that at slow motion, the MEMS ac-
celerometer is unable to sense accurately the camera move-
ment Bt, which is drowned in the noise v}l"t’“ In that case, the
acceleration b, should be ignored for the estimation of the
measurement ZZL”Z“ In order to compensate the interference
from the accelerometer an adaptive model is proposed for

zimu - defined as:

| ai' @ (b +9) @ +vas, it llgll = Nzl > ea
a,t —
(I;1 ® g R qt + Va,t, otherwise
(C)]

where €4 was set to 0.1¢g in our work.
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C. Deformation Localization and Recovery

For deformation localization and recovery, probabilistic
motion modelling is used to represent the motion of the
tracked features. Rather than using explicit priors for motion
modelling, only a weak constraint of locally similar motion
is assumed. This makes the technique more generalizable
to in vivo cases with unknown deformation. The motion of
each tracked feature is modelled as a mixture of Gaussian
distributions and the motion models of the features are
clustered to identify areas of coherent motion within the
episode [18]. The static part of the observed scene corre-
sponds to the cluster that includes the highest number of
inliers extracted from the SFM framework. The remaining
clusters that have survived the refinement process represent
independently deforming areas. The initial structure esti-
mated from the SFM framework explained above is refined
for each independently moving area, individually. The only
assumption of the proposed approach to recover free-form
deformation is that prior to the tool-tissue interaction, the
camera navigates in the surgical environment in order to
estimate the initial 3D structure of the scene while it is static
[4].

III. RESULTS

In order to assess the practical value of the proposed
framework, quantitative evaluation has been performed on
synthetic and phantom data. Related work is not suitable for
comparison here as assumptions of static background [1],
known tissue motion model [2] or priors on the camera pose
and surface shape are made in previous studies.

For the synthetic data, a set of camera trajectories was
generated using an optical tracking device (Northern Digital
Inc., Ontario, Canada). To obtain the position of the camera,
a rigid stereo laparoscope fitted with eight optical markers
was used. The position and orientation of the centre of the
camera relative to the optical markers were acquired using
standard hand-eye calibration. IMU measurement data were
collected by attaching a Xsens MEMS-based miniature IMU
on the rigid body. A sample camera trajectory is shown in
Fig. 1.

In order to evaluate the robustness of the method to noise,
the generated camera trajectories were contaminated with
noise and used as input to our adaptive fusion framework.
Observation error was added to the camera position in the
X, v and z-axes, in the form of Gaussian noise with zero
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Fig. 3: (a) Episode border frames from Sequence 1 of the liver phantom
data with tracked points represented by green squares (b) Camera orientation
estimation.

mean and standard deviation ranging from 0 to 15 mm. In a
similar way, Gaussian noise with zero mean and standard
deviation ranging from 0 to 0.25 rad was added to the
camera orientation with respect to the x, y and z-axis. For
each noise level, we run 50 trials and the final result is the
mean error from all the trials. The camera rotational error
is estimated as the smallest angle of rotation that can bring
the estimate to the true value. The translational error is the
deviation of the estimated translation direction from the true
value. The ability of the proposed framework to suppress the
noise in the estimation of the camera pose is illustrated in
Fig.2, where the error is always lower when visual data is
combined with inertial measurement data compared to when
only visual information is used. The error of the proposed
adaptive fusion method at zero noise is slightly higher than
zero due to measurement noise from the UKF which makes
the fusion result more blurred than the vision.

The performance of the proposed framework was further
evaluated on a liver phantom made of silicon rubber. A
laparoscope was used to capture two sequences of video
data with the camera navigating around the phantom in the

TABLE I: Validation results on phantom data

Deform. Recovery

Error (mm) Error (mm)

Surface Reconstr.

Translational
Error (rad)

Rotational
Error (rad)

Method SFM  SFM+IMU SFM  SFM+IMU  SFM  SFM+IMU SFM  SFM+IMU
Seq. 1 526 4.70 3.6 35 0.051 0.026 0.31 0.30
Seq. 2 5.10 4.90 5.89 4.85 0.013 0.003 0.49 0.48
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Fig. 4: (a) Sample frame from Sequence 2 of the liver phantom data (b) Deformation localization (c) Clustering of the motion models in the scene.
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Fig. 5: (a) Scene structure prior to the tool-phantom interaction (b) Refine-
ment of structure (a) after deformation recovery. Deformation corresponds
to the dark red area at the peak of the surface.

presence of tool-tissue interaction. Validation was performed
by measuring the accuracy in the estimation of the defor-
mation recovery and the 3D surface reconstruction in the
camera space and the error in the estimated camera motion
as the laparoscope navigated around the phantom. Ground
truth data of the camera pose was collected using an optical
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Fig. 6: (a) Sample frames from the colon phantom data with tracked points
represented by green squares (b) Camera orientation estimation.

tracking device in the same way as explained above. To
obtain the ground truth of the 3D structure, optical markers
were attached to the phantom surface. For each optical
marker, the salient feature on the phantom surface closest to
the marker was identified. The 3D position of these features
estimated with the proposed framework was compared to
the ground truth 3D structure to estimate the 3D surface
reconstruction error. The ground truth of the deformation
of the phantom surface was obtained by estimating the
displacement in the 3D position of the markers closer to
the point where the tool-phantom interaction took place.

Episode border frames from Sequence 1 of the liver data
and tracked affine-invariant anisotropic regions are illustrated
in Fig. 3(a). A set of 150 regions were detected in the first
frame of each episode and those that have been successfully
tracked during each episode are used for camera pose esti-
mation and reconstruction. The camera orientation curves in
Fig. 3(b) show that the proposed adaptive fusion framework
outperforms the SFM approach and gives a camera pose
estimation close to the ground truth.
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Areas of coherent motion within an episode with tool-
phantom interaction from Sequence 2 of the liver data,
are graphically classified using the colormap in Fig. 4(c)
to demonstrate the similarity between the motion of scene
points and a reference point (the upper left corner of the
scene). In Fig. 4(b) the similarity colormap is superimposed
on the episode frame in Fig. 4(a) to illustrate the deformation
localization result. The reconstructed surfaces when the scene
is static and when the maximum deformation is applied are
presented in 5(a) and 5(b), respectively. The surface of the
phantom liver is generated by interpolating the 3D position of
the tracked salient features. The colormap in Fig. 4 represents
the distance of the surface from the camera. Due to tool-
phantom interaction the distance between the points on the
deformed area and the camera has increased and corresponds
to the dark red area at the peak of the surface in Fig. 4(b).

Table 1 presents the deformation recovery error when
the maximum deformation is applied, for each phantom
sequence. The surface reconstruction and camera motion
errors are the mean errors for the whole sequence. The
performance improvement gained by the proposed adaptive
fusion framework is evident. The high error values in Table 1
are justified by the narrow baseline between the reconstructed
frames as it can be noticed in Fig. 3(a).

The robustness of the proposed framework in a more chal-
lenging navigation environment such as the colon phantom
in Fig. 6(a) is shown in Fig. 6(b). In the above scenario, the
paucity of reliable features and the narrow baseline between
the borders of the detected episodes makes the camera pose
estimation difficult. Fig. 6(b) shows that the fusion of the
vision and inertial data reduces significantly the error in the
estimation of the camera orientation.

IV. CONCLUSIONS

In this paper, we have proposed a novel approach for
fusion of vision and inertial measurement data to facilitate
robust recovery of free-form deformation of the surgical
environment in MIS. This represents one of the first at-
tempts to combine vision and inertial sensing for robust
pose estimation in MIS. Unlike previous approaches, the
proposed framework does not impose explicit constraints on
tissue deformation, allowing realistic free-form deformation
recovery. The proposed framework has been tailored for
adaptive motion stabilization and visual servoing in robot-
ically assisted laparoscopic surgery. It can also be used to
maintain consistent force of imaging probes such as point
based confocal laser microscopy on the tissue surface to
prevent distortion to the image morphology due to excessive
probe pressure. Furthermore, the proposed method could help
the diagnosis of diseases such as liver cirrhosis by measuring
the modulus of stiffness of the liver during instrument-tissue
interaction. Results derived from validation on synthetic and
phantom data demonstrate the intrinsic accuracy achievable
and the potential clinical value of the technique.
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