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ABSTRACT

The attention mechanism is an indispensable component of any state-of-the-art
neural machine translation system. However, existing attention methods are often
token-based and ignore the importance of phrasal alignments, which are the back-
bone of phrase-based statistical machine translation. We propose a novel phrase-
based attention method to model n-grams of tokens as the basic attention entities,
and design multi-headed phrasal attentions within the Transformer architecture to
perform token-to-token and token-to-phrase mappings. Our approach yields im-
provements in English-German, English-Russian and English-French translation
tasks on the standard WMT’14 test set. Furthermore, our phrasal attention method
shows improvements on the one-billion-word language modeling benchmark.

1 INTRODUCTION

The encoder-decoder neural architectures have established breakthroughs in many natural language
processing (NLP) tasks including machine translation (Luong et al., 2015), summarization (See
et al., 2017), and parsing (Vinyals et al., 2015). Particularly for machine translation, most state of
the art neural machine translation (NMT) models possess attention mechanisms to perform align-
ments of the target tokens to the source tokens. The attention module therefore plays a role anal-
ogous to the word alignment model in Statistical Machine Translation or SMT (Koehn, 2010). In
fact, the Transformer network introduced recently by Vaswani et al. (2017) achieves state-of-the-art
performance in both speed and BLEU scores (Papineni et al., 2002) by using only attention modules.
Furthermore, its proposed self-attention layer extends the application of attention way beyond the
scope of machine translation and achieves tremendous success in other NLP tasks such as contextual
representation learning (Devlin et al., 2018) and machine reading comprehension (Yu et al., 2018).

On the other hand, phrasal interpretation is an important aspect for many NLP tasks, and forms
the basis of Phrase-Based Machine Translation (Koehn, 2010). Phrasal (n-gram based) alignments
(Koehn et al., 2003) can model one-to-one, one-to-many, many-to-one, and many-to-many rela-
tions between target and source tokens while exploiting local context. They are also robust to non-
compositional phrases. Despite the advantages, the concept of explicit phrasal attentions has largely
been neglected in neural NLP. In fact, most language generation models produce sentences token-
by-token autoregressively, and tend to use the token-based attention method which is order invariant.

Therefore, the intuition of phrasal alignments is vague in existing systems that solely depend on the
underlying neural architectures (recurrent, convolutional, or self-attention) to incorporate contextual
information. However, the information aggregation strategies employed by the underlying neural
architectures provide context-relevant clues to represent only the current token, and do not explicitly
model phrasal alignments. We argue that having an explicit inductive bias for phrases and phrasal
alignments is beneficial for neural sequence transduction models to exploit the strong correlation
between source and target language phrases. This would also make self-attention more capable of
tackling other sequence modeling tasks such as language modeling.

In this paper, we propose a novel n-gram-level attention technique to leverage phrasal alignments
in various NLP tasks. The technique is designed to assign attention scores directly to phrases in the
source and compute phrase-level attention vectors for the target token. It is then applied in a new
attention structure to conduct token-to-token and token-to-phrase mappings.
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To show the effectiveness of our approach, we apply our phrase-based attention method to all multi-
head attention layers of the Transformer network. Our experiments on WMT’14 translation tasks
show improvements of up to 0.69, 1.84 and 1.65 BLEU in English-to-German, English-to-Russian
and English-to-French translation tasks respectively, compared to the baseline Transformer trained
in identical settings. Furthermore, when evaluated on the language modeling task, our phrasal mod-
els outperform the Transformer base model by up to 4.6 points in perplexity on the one-billion-word
language modeling task. We make our code available at anonymous for research purposes.

2 BACKGROUND

Most NMT models adopt an encoder-decoder framework, where the encoder network first trans-
forms an input sequence of symbols x = (x1, x2, . . . , xn) to a sequence of continuous repre-
sentations Z = (z1, z2, . . . ,zn). From this, the decoder generates a target sequence of symbols
y = (y1, y2, . . . , ym) autoregressively, one element at a time. Recurrent seq2seq models with di-
verse structures and complexity (Sutskever et al., 2014; Bahdanau et al., 2014; Luong et al., 2015;
Wu et al., 2016) were the first to yield state-of-the-art results. Convolutional seq2seq models (Kalch-
brenner et al., 2016; Gehring et al., 2017; Kaiser et al., 2018) alleviate the drawback of sequential
computation of recurrent models and leverage parallel computation to reduce training time. Wu et al.
(2019) recently proposed a light-weight convolution, which shows very promising results.

The Transformer network (Vaswani et al., 2017) structures the encoder and the decoder entirely
with stacked self-attentions and cross-attentions (only in the decoder). In particular, it uses a multi-
headed, scaled multiplicative attention defined as follows:

Attention(Q,K,V ,Wq,Wk,Wv) = softmax(
(QWq)(KWk)

T

√
dk

)(V Wv) (1)

Headi = Attention(Q,K,V ,W i
q ,W

i
k,W

i
v) for i = 1 . . . h (2)

AttentionOutput(Q,K,V ,W ) = concat(Head1,Head2, . . . ,Headh)W (3)

where Q ∈ IRlq×d, K ∈ IRlk×d, and V ∈ IRlk×d are the matrices with query, key, and value
vectors respectively, with d being the number of dimensions; W i

q , W i
k, W i

v are the head-specific
weights for query, key, and value vectors respectively, and W is the weight matrix that combines
the outputs of the heads. To encode a source sequence, the encoder applies self-attention, where
Q, K and V identically contain the same vectors coming from the output of the previous layer.
In the decoder, each decoder layer first applies the masked-self-attention over the outputs from the
previous layer. The results are then used as queries to compute cross-attentions (encoder-decoder
attentions) over the encoder states. For cross-attention, Q comprises of the decoder self-attention
states, while K and V comprise of the encoder states. We refer the reader to (Vaswani et al., 2017)
for further details. Since the self-attention based encoder (or decoder) considers the input as a fully-
connected directed graph, it can model long-range dependencies by explicitly attending to all tokens,
and the maximum path length that signals need to travel is O(1). The non-sequential computation
also makes it highly parallelizable to multiple threads.

However, one crucial issue with the attention mechanisms employed in the Transformer as well as
other NMT architectures is that they are order invariant locally and globally. That is, changing the
order of the vectors in Q, K and V does not change the resulting attention weights and vectors.
If this problem is not tackled properly, the model may not learn the sequential characteristics of
the sentences. RNN-based models (Bahdanau et al., 2014; Luong et al., 2015) tackle this issue
with a recurrent encoder and decoder, CNN-based models like (Gehring et al., 2017) use position
embeddings, while the Transformer uses positional encoding. Shaw et al. (2018) further encode
relative positions inside the self-attention layers.

Another limitation is that these attention methods attend to tokens, and play a role analogous to word
alignment models in traditional SMT. It is, however, well admitted in SMT that phrases are better
as translation units than words (Koehn, 2010). Without explicit attention to phrases, a particular
attention function has to depend entirely on the token-level scores of a phrase for phrasal alignment,
which is not robust or reliable, thus making it difficult for the model to learn the required mappings.
For example, the attention heatmaps of the Transformer (Vaswani et al., 2017) show a concentration
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of the scores on individual tokens even if it uses multiple heads concurrently in multiple layers. Our
main hypothesis is that in order to exploit the strong correlation between source and target phrases,
the NMT models should have explicit inductive biases for phrases.

There exists some research on phrase-based decoding in the NMT framework. For example, Huang
et al. (2018) proposed a phrase-based decoding approach based on a soft reordering layer and a
Sleep-WAke Network (SWAN), a segmentation-based sequence model proposed by Wang et al.
(2017a). Their decoder uses a recurrent architecture without any attention on the source. Tang et al.
(2016) and Wang et al. (2017b) used an external phrase memory to decode phrases for Chinese-
to-English translation. In addition, hybrid beam search with phrase translation features from the
statistical phrase table of a phrase-based SMT system was used to perform phrasal translation in
(Dahlmann et al., 2017). Nevertheless, to the best of our knowledge, our work is the first to embed
phrases into attention modules, which then propagate the information through the entire end-to-end
Transformer network, including the encoder, decoder, and the cross-attention.

3 PHRASAL ATTENTION MODEL

In this section, we present our phrase-based attention model. In Subsection 3.1, we first describe our
proposed module to compute attention weights and attention vectors based on n-grams of queries,
keys, and values. Then, in Subsection 3.2, we describe how we use this module to compute different
kinds of phrasal attentions. We describe our methods in the context of the Transformer (Vaswani
et al., 2017). However, it is straight-forward to adopt them into other architectures such as the RNN-
or CNN-based seq2seq models.

Key Operations and Notations. The core element in our method is a temporal (or one-
dimensional) convolutional operation that is applied to a sequence of vectors representing the tokens
in a sequence. Formally, we define the convolutional operator applied to each token xi with the cor-
responding vector representation xi ∈ IRd as:

ai,j = wT
j (⊕n−1

k=0xi+k) (4)

where n is the convolution window size, wj ∈ IRnd is the kernel weight taken from the weight
matrix W ∈ IRn×d×d, and ⊕ denotes a vector concatenation that produces a vector in IRnd. The
convolution over the entire sequence X ∈ IRl×d of length l gives a feature map aj . By repeating
this process with d different weight vectors from W , we get a d-dimensional representation for each
token xi. In the rest of the paper, we will use the following notations.

• Convn(X,W ) to denote a convolution operation with window size n and kernel weights W ∈
IRn×d×d over an input sequence X ∈ IRl×d, based on the definition in Equation 4. The result
of this convolution is a matrix in IR(l−n+1)×d, whose columns represent the feature maps corre-
sponding to the kernels, and rows represent feature representations corresponding to the tokens in
the sequence.

• SConvn(X,Y) to denote a serial convolution operation with window size n over an input X ∈
IRl×d for all the rows Wi ∈ IRn×d×1 in the kernel tensor Y = (W1, . . . ,Wt) ∈ IRt×n×d×1. In
other words, SConvn(X,Y) = ⊕t−1

i=0Convn(X,Wi) that produces a matrix in IRt×(l−n+1).

• ρn(x) to denote a reshape1 operation on the vector x ∈ IRnd to reshape it to a matrix X ∈
IRn×d×1, and ψn(X) to denote a serial reshape operation to reshape the matrix X ∈ IRt×(nd) to
a tensor X ∈ IRt×n×d×1.

• softmax(A) to denote a softmax operation over each row of the matrix A. Formally, for A′ =
softmax(A), each entry A′(i, j) is computed as: A′(i, j) = exp(A(i,j))∑

j exp(A(i,j)) .

1Tensorflow: tf.reshape(); Pytorch: .view()
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3.1 n-GRAM-LEVEL ATTENTION

Our n-gram based attention method computes the attention weights and vectors based on n-gram
representations of the tokens. In particular, when computing the attention scores ai ∈ IRlk for each
query qi in Q = (q1, . . . , qlq ) ∈ IRlq×d, we use the query vector qi as the kernel in the convolution
operation applied to the set of keys K = (k1, . . . ,klk) ∈ IRlk×d. More formally,

ai =
Convn(KWk, ρn(q

T
i Wq))√

d ∗ n
(5)

where Wk ∈ IRd×d and Wq ∈ IRd×(nd) are trainable weights (head weights) to linearly transform
K and Q respectively, and ρn is the required reshaping operation to make the dimensions compat-
ible. Applying Equation 5 for all the queries in Q gives the score matrix A = (a1, . . . ,alq ) ∈
IRlq×lk , where each row vector ai ∈ A contains the attention scores for the query vector qi ∈ Q.

Next, we compute the attention (or context) vectors as follows.

C = softmax(A) Convn(V ,Wv) (6)

where Wv ∈ IRn×d×d are the kernel parameters to achieve the n-gram representations by convolv-
ing over the value vectors V = (v1, . . . ,vlk) ∈ IRlk×d, which are in turn linearly combined using
the attention weights computed by the softmax.

By using the queries as the kernel parameters, we allow the queries to dynamically (kernels vary
for different queries) and directly interact with the window of key vectors and compute the n-gram
based attention scores. An alternative way to achieve phrasal attentions would be to use A =
(QWq) Convn(K,Wk)

T

√
d

to compute the attention scores in Equation 5. In contrast to our approach,
this method is static and indirect in the sense that the convolution uses a static kernel and the queries
do not interact directly with the keys; instead the model relies on the kernel weights (Wk) to learn
n-gram patterns. In our initial experiments, we also found the direct approach to perform better.

3.2 MULTI-HEADED PHRASAL ATTENTION

Having presented our core method to perform attentions based on n-grams, we now introduce our
novel extension to the multi-headed attention framework of the Transformer to enable it to pay
attention not only to tokens but also to other n-grams across many sub-spaces and locations. In
particular, each head uses the token (unigram) representation of the query to attend to all n-gram
types (e.g., n = 1, 2, . . . , N ) simultaneously. To achieve this, we first use the query vectors to
compute the attention scores for each n-gram type separately by performing convolution over the
key vectors with the respective window sizes. All the n-gram scores are then concatenated before
passing them through a softmax to compute the attention weights over all n-grams. Similarly, the
value vectors for the n-gram types are concatenated to produce the overall attention output. Figure
1 exemplifies the process for attentions over unigrams and bigrams. For self-attention, the query
vectors in Q represent the unigrams (‘India’, ‘and’, ‘Japan’) of the input sequence, whereas for
cross-attention, they represent the decoder states of the target side tokens. The overall attention
output Cn can be formally described by the following sequence of equations:

Q1 = QWq,1; Qn = QWq,n (7)

A1 =
Q1(KWk)

T

√
d

(8)

An =
SConvn(KWk, ψn(Qn))√

d ∗ n
(9)

Sn = softmax([A1;A2; . . . ;An]) (10)
Vn = [(V Wv,1);Conv2(V ,Wv,2); . . . ;Convn(V ,Wv,n)] (11)
Cn = SnVn (12)
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Figure 1: Multi-Headed phrasal attention for each head. Each query token attends to uni- and bi-
grams of key/value tokens.

where Wq,n ∈ IRd×(nd) and Wv,n ∈ IRn×d×d are the respective weight matrices for the queries
and values, and Wk ∈ IRd×d is a weight matrix for the keys that is shared across all n-gram types.

Note that the serial convolution SConvn() and the serial reshape ψn() functions in Equation 9
implies the computation of all attention scores ai ∈ An (i.e., applying Convn and ρn in Equation
5 for each row qi of Q). We can aggregate multiple n-gram types within an attention module (e.g.,
1-2-3 grams). In our method, we do not need to pad the input sequences before the convolution
operation to ensure identical sequence length. The key/value sequences that are shorter than the
window size do not have any valid phrasal component to be attended.

4 EXPERIMENTS

To demonstrate the effectiveness of our phrase-based attention method, we experiment with two
different tasks: machine translation (MT) and language modeling (LM). In the following, we present
the training settings, experimental results and analysis of our models on these two tasks.

4.1 TRAINING SETTINGS

We replicate most of the training settings from (Vaswani et al., 2017) for our models, to enable a fair
comparison with the original Transformer and the Transformer with relative positioning (Shaw et al.,
2018). Specifically, we use the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.98,
and ε = 10−9. We follow a similar learning rate schedule with a warmup steps of 16000 updates:
LearningRate = 2× d−0.5 ×min(step num−0.5, step num× warmup steps−1.5).
Similar to Vaswani et al. (2017), we also applied residual dropout with 0.1 probability and label
smoothing with εls = 0.1. Our models are implemented in the tensor2tensor2 library (Vaswani
et al., 2018), on top of the original Transformer codebase.

We conducted all the experiments with our models and the original Transformer in an identical setup
for a fair comparison. While Vaswani et al. (2017) trained their base and big models at a massive
scale with 8 GPUs, we could only train our models and the baselines on a single GPU because of
limited GPU facilities. However, we could (virtually) replicate the 8-GPU setup with a single GPU
following the gradient aggregation method proposed recently by Ott et al. (2018).

Setup for MT Experiments. To compare our models with state-of-the-art models, we train all
the models with the identical 8-GPU (by gradient aggregation) setup on WMT’16 English-German
(En-De), WMT’17 English-Russian (En-Ru) and WMT’14 English-French (En-Fr) datasets. The
training datasets contain about 4.5, 25, and 35 million sentence pairs for En-De, En-Ru, and En-Fr,
respectively. The effective batches were formed by sentence pairs containing approximately 32,768
source and 32,768 target tokens.

All translation tasks are evaluated in case-sensitive tokenized BLEU. For validation (development)
purposes, we use newstest2013 for En-De, newstest2016 for En-Ru, and a random split from the

2https://github.com/tensorflow/tensor2tensor
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Model #-Params N-grams En→De En→Ru En→Fr
Base size
Vaswani et al. (2017) 63M - 27.16 34.37 39.21
Shaw et al. (2018) 63M - 27.20 33.59 39.37

Big size
Vaswani et al. (2017) 214M - 27.77 35.54 40.61

Ours, Base size
Ours 81M 1-2 27.70 35.44 40.57
Ours 110M 1-2-3 27.85 36.21 40.86

Table 1: BLEU (cased) scores on WMT’14 testsets for En→De, En→Ru, and En→Fr translation
tasks. All the models were trained with gradient aggregation to replicate a 8-GPU setup on a single
physical GPU.

training set for En-Fr. We evaluate all our models on WMT’14 translation tasks (newstest2014 test
sets). We use Byte-Pair Encoding or BPE (Sennrich et al., 2016) with a combined (source and
target) vocabulary of 37,000 subwords for En-De, 40,000 subwords for En-Ru and En-Fr. We take
the average of the last 5 checkpoints (saved at 5000-update intervals) for evaluation, and use a beam
search size of 5 and length penalty of 0.6 (Wu et al., 2016).

Setup for LM Experiments. For our LM experiments, we use the One Billion Word Benchmark
dataset (Chelba et al., 2013), which contains 768 million words of data compiled from WMT 2011
News Crawl data,3 with a vocabulary of 32,000 words. We use its held-out data as the test set. We
train the base-size models (monolingual decoders) on virtually 4 GPUs for 100,000 updates by using
the gradient aggregation technique on a single GPU. The effective batch size is 16,384 tokens.

4.2 MACHINE TRANSLATION RESULTS

Comparison with State-of-the-art. In Table 1, we compare our models on the En→De, En→Ru
and En→Fr translation tasks with the base and big size Transformer models (Vaswani et al., 2017),
and the base size Transformer with relative position model (Shaw et al., 2018). All the models
are trained in the identical 8-GPU setup using gradient aggregation for 100K updates for En→De,
120K updates for En→Ru, and 150K updates for En→Fr.

Generally, we can see that our models outperform the base models. Some of them also surpass the
Transformer big model trained in identical settings, while having only half the number of parameters.

More specifically, on the En→De translation task, our base-size model with 1-2 grams achieves
a BLEU of 27.70, exceeding the Transformer base by 0.6 BLEU. Including higher order n-grams
contributes further improvements, reaching up to 27.85 BLEU for 1-2-3 grams. It also performs on
par with the big Transformer, while requiring less than half of the number of parameters.

Likewise, on the En→Ru translation task, our models boost the performances significantly over the
Transformer base. They achieve 36.21 BLEU with 1-2-3 grams, which is 1.84 points higher than
that of the Transformer base. They also outperform the Transformer big by 0.67 points.

Similar trends can also be seen in the En→Fr translation task, where our model with 1-2-3 grams
scores at 40.86 BLEU, exceeding the Transformer base by 1.65 points. It also outdoes the Trans-
former big by 0.2, even though it has considerably fewer parameters. These results demonstrate the
effectiveness of our approach over the existing methods.

Effect of Higher-Order n-grams and Training Batch Size. To analyze our models further with
respect to the effect of higher-order n-grams and the impact of training batch size, we conducted
another set of experiments on En-De and En-Ru translation tasks (both directions) in a single-GPU
setup, and compared with the Transformer base and big models on the same setup. The effective

3http://www.statmt.org/lm-benchmark/
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Model N-grams En→De De→En En→Ru Ru→En
Transformer big - 26.62 —– 32.31 —–
Transformer base - 26.31 29.76 33.12 32.87

Ours 1-2 27.11 30.16 34.18 33.12
Ours 1-2-3 27.37 30.55 34.72 33.53
Ours 1-2-3-4 27.37 30.04 34.90 33.70

Table 2: BLEU (cased) scores on WMT’14 testsets for English-German (En-De) and English-
Russian (En-Ru) language pairs (in both directions). All models were trained with 1 GPU (no
gradient aggregation). The decrease in scores in this table compared to the ones in Table 1 is due to
the number of GPUs used (1 vs. 8).

Model N-grams Perplexity
Vaswani et al. (2017) - 46.37
Shaw et al. (2018) - 46.13

Ours 1-2 41.77

Table 3: Perplexity scores on one-billion-word language modeling benchmark. All models are of
base-size and were trained for 100K updates with gradient aggregation to produce a virtual 4-GPU
setup on a single GPU.

batch size in this experiment was 4096 tokens. En-De models were trained for 500K updates while
En-Ru ones were trained for 900K updates. The results are shown in Table 2.

It is evident that almost all of our models achieve higher BLEU scores than the Transformer base
and big models. For the En-De pair, our model with 1-2 grams achieves 27.11 and 30.16 BLEU
for En→De and De→En translation tasks, giving improvements of 0.8 and 0.4 points, respectively.
Including higher-order n-grams does improve the performance (for 1-2-3 grams), but diminishing
patterns are also observed (for 1-2-3-4 grams) in these tasks.

On the other hand, for the En-Ru pair, the models with higher-order n-grams excel in BLEU per-
formances. Specifically, with 1-2-3-4 grams it yields up to 34.90 and 33.70 BLEU for En→Ru and
Ru→En, surpassing the baselines by 1.78 and 0.83 points, respectively.

If we compare the corresponding translation results for En→De and En→Ru in Table 1 vs. Table
2, we notice a significant drop in BLEU for the 1-GPU setup across all the models, though the 1-
GPU models were offset by longer training (more updates). The performance of the Transformer
big is outstandingly low in the 1-GPU setup. There has been evidence that practical training of the
Transformer (theirs and ours) is significantly susceptible to the batch size (which increases with the
number of GPUs used), and training on a single GPU with a lower batch size for sufficiently long
does not produce similar results as with 8 or more GPU settings; please see Popel & Bojar (2018);
Ott et al. (2018) and the discussions4 for details on this issue.

4.3 LANGUAGE MODELING RESULTS

Table 3 presents the results on the language modeling task, where we compare our model with
uni- and bi-gram attentions against the three baseline models in terms of perplexity. Our model
outperforms the Transformer base by 4.6 perplexity points. It also surpasses the Transformer with
relative positional encoding (Shaw et al., 2018) by a comparable margin. These results demonstrate
that our models are superior to the baselines in the language modeling task, as well.

4.4 MODEL INTERPRETATION

To interpret our phrasal attention models, we now discuss how they learn the alignments. Figure
2 and 3 show attention heatmaps for an En→De sample in newstest2014; Figure 2 displays the
heatmap in layer 3 (mid layer), while Figure 3 shows the one in layer 6 (top layer) within a 6-layer

4https://github.com/tensorflow/tensor2tensor/issues/444

7

https://github.com/tensorflow/tensor2tensor/issues/444


Under review as a conference paper at ICLR 2020

Figure 2: Attention heat maps at layer 3 of our model for a sample sentence pair in English-German
newstest2014 test set. The left half in each figure indicates token-to-token mappings, while the right
half indicates token-to-phrase mappings.

Figure 3: Attention heat maps at layer 6 of our model for a sample sentence pair in English-German
newstest2014 test set. The left half in each figure indicates token-to-token mappings, while the right
half indicates token-to-phrase mappings.

Transformer with our phrasal attention. Each figure shows two squares representing token-to-token
(left square) and token-to-phrase (right square) attentions, respectively. We can see in the two figures
that phrasal (token-to-phrase) attentions are activated strongly in the mid-layers. On the other hand,
token-token attentions are activated the most in the top layer, whose final representations are used
to predict translated tokens. Although the distribution of attentions can vary depending on model
initialization, we observed that 50%-60% of the attentions are concentrated on phrases.

5 CONCLUSION

We have presented novel approaches to incorporating phrasal alignments into the attention mecha-
nism of state-of-the-art sequence transduction models. Our methods assign attentions to both tokens
and phrases of the source sequences. While we have applied our attention mechanism to the Trans-
former network, it is generic and can be implemented in other architectures. We have shown the
effectiveness of our approach on two NLP tasks. On machine translation, our models show signif-
icant gains on WMT’14 English-German, English-Russian, and English-French translation tasks.
Our phrasal models also outperform the Transformer in the one-billion-word language modeling
task. We are planning future extensions of our techniques to other tasks, such as summarization and
question answering. We also plan to improve our models with a phrase-based decoding procedure.
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