
Decoupling Backpropagation using Constrained
Optimization Methods

Akhilesh Gotmare∗
EPFL

akhilesh.gotmare@epfl.ch

Valentin Thomas∗
MILA, Université de Montréal
vltn.thomas@gmail.com

Johanni Brea
EPFL

johanni.brea@epfl.ch

Martin Jaggi
EPFL

martin.jaggi@epfl.ch

Abstract

We propose BlockProp, a neural network training algorithm. Unlike backpropa-
gation [1], it does not rely on direct top-to-bottom propagation of an error signal.
Rather, by interpreting backpropagation as a constrained optimization problem
we split the neural network model into sets of layers (blocks) that must satisfy a
consistency constraint, i.e. the output of one set of layers must be equal to the
input of the next. These decoupled blocks are then updated with the gradient of the
optimization constraint violation. The main advantage of this formulation is that
we decouple the propagation of the error signal on different subparts (blocks) of
the network making it particularly relevant for multi-devices applications.

1 Introduction

The backpropagation algorithm [1] has been the core ingredient to most successes in deep learning,
from image recognition to reinforcement learning [2, 3]. Nevertheless, studying alternatives to
backpropagation is currently a very active recent area of research, see e.g. [4, 5] and many others.
While motivation for some approaches comes from biological plausibility of the learning, others
address on computational aspects, such as large-scale distributed training in the data-parallel or
model-parallel scenario.

The focus of our work here is the latter scenario, when a neural network is split into several pieces.
Here, we consider joint training with many devices, each device only holding (the weights of) a
subgroup of the layers. This setup becomes increasingly important with the ever increasing growth of
model sizes on one hand, and with Moore’s law on single-chip density increase coming to an end.
In this setting, our main contribution is an algorithm called BlockProp for efficient model-parallel
training, which shares similarities with [6] and [7]. By viewing backpropagation as a constrained
optimization problem we divide the neural network into different “blocks” which can consist in either
a single layer as in [6, 8, 7] but more importantly a block can also be a subset of layers. Between
blocks, we introduce a consistency constraint epitomizing the fact that the output of block k: hk must
be equal to the input of next block, block k + 1. This way, we can train the network by decoupling
optimization between the blocks, by alternating the steps of updating the auxiliary variables, or
"gluing" variables h (h-step) and the weights of each block (W-step) as shown in Figure 2 and
Section 2. Furthermore, compared to [6] and [8] which are batch algorithms our algorithm is on-line –

∗Equal contribution

Submitted to 35th International Conference on Machine Learning’s Workshop on Credit Assignment in Deep
Learning and Deep Reinforcement Learning (ICML 2018 ECA), Stockholm, Sweden.

i.e. forms updates based on one training example a time – and uses backpropagation in each of the
blocks sequentially to satisfy the induced constraints.

2 Backpropagation as an optimization procedure

We begin by establishing some notation before describing our proposed training strategy. Given a
dataset of N training instance pairs, let {x(n), y(n)} where x(n) ∈ Rd is the feature vector of n-th
data instance and y(n) is the corresponding scalar (regression) or one-hot target vector of size p (p-ary
classification). The predictions or output values for input x(n) obtained by a forward pass of a neural
network with L hidden layers can be written as

ŷ(n) = f(x(n); {W1 . . .WL+1}) = fL+1(W
>
L+1fL(W

>
L fL−1(. . . f1(W

>
1 x

(n))))) (1)

where W1,W2 . . .WL+1 are the linear transformations (weight matrices corresponding to respective
hidden layers) of the neural network and f1, f2 . . . fL are non-linear activation functions (typically
we use the same non-linearities for all the layers e.g. ReLU or softmax) while fL+1 represents the
last layer’s non-linearity that performs the desired task (often identity for regression and softmax for
classification).

Training the neural network amounts to minimizing the empirical risk

minimize
{W1,W2,...WL+1}

N∑
n=1

`(f(x(n); {W1, . . .WL+1}), y(n)) = `(f(x;W), y) (2)

where ` is a loss function (eg. cross-entropy for classification, `2 or mean-squared error for regression).

In our formulation we split the ordered set consisting of layer weights W = {W1,W2, . . .WL+1}
into K consecutive blocks {B1, . . . BK} where each block is a subset of W , Bk =
{Wlk ,Wlk+1, . . .Wlk+1−1}. While we could allow this division to be arbitrary, as we discuss
in Section 4, it is preferable to have a small number of blocks and roughly equal number of layers in
each block. We specify the forward pass function of a block Bk in Definition 2.1.

L1 L2 L3 L4 L5 L6 L7
y

B1 B2 B3

h1 = x h2 h3 h4 = ŷ

Figure 1: Neural network with 7 layers (L1, . . . , L7) separated into 3 arbitrary blocks. The spring
links represent the relaxed constraints.

Definition 2.1. If block Bk consists of the weights {Wj , . . . ,Wj+l} the function associated with
block Bk is

bk(h) = fj+l(W
>
j+lfj+l−1(. . . fj(W

>
j h)))

We can then re-write the optimization problem in (2) as

minimize
{Wl}

∑
n

`(bK(h
(n)
K), y(n))

subject to h
(n)
k+1 = bk(h

(n)
k) for 2 ≤ k ≤ K − 1

and h
(n)
2 = b1(x

(n))

(3)

Given a training instance n, we choose to minimize an augmented (stochastic) loss function for the
above problem, that is

L(h(n);W) =

K−1∑
k=1

˜̀
k(h

(n)
k+1 − bk(h

(n)
k)) + `(y(n), bK(h

(n)
K)) (4)

2

Where the functions ˜̀k are positive and null if and only if both arguments are equal. Note that in
most case we will simply choose the L2 penalty ˜̀k(a, b) = λk||a− b||2 for λk > 0.

where h(n) is the set {h(n)2 , h
(n)
3 . . . h

(n)
K }. Note that we arbitrarily chose a L2 quadratic penalty,

but other choices are valid as well. Now that we have the augmented loss function, we solve the
constrained optimization problem in (3) by minimizing the Lagrangian in (4) with respect to the set
of h variables first, and then with respect to the weights W and by iterating over these two sets of
variables in an alternating fashion.

Let us first consider minimization with respect to h(n)k for a given k. We begin by defining the
quantity L(n)

k , the Lagrangian for the k-th block as follows

L(n)
k (h

(n)
k , Bk, Bk−1) =


˜̀
1(h

(n)
2 , b1(x

(n))) + ˜̀2(h(n)3 , b2(h
(n)
2)), if k = 2˜̀

k(h
(n)
k+1, bk(h

(n)
k)) + ˜̀k−1(h(n)k , bk−1(h

(n)
k−1)), if 2 < k ≤ K − 1

`(y(n), bK(h
(n)
K)) + ˜̀K−1(h(n)K , bK−1(h

(n)
K−1)), if k = K

(5)
For a given k in the above definition we assume {h(n)2 , . . . h

(n)
k−1} and {h(n)k+1 . . . h

(n)
K } as fixed. The

quantity L(n)
k for each block is defined by collecting terms in the augmented loss L(n)(h(n),W) in

(4) that involve h(n)k for a given k, thus we have

argmin
{h(n)

k }
L(n) = argmin

{h(n)
k }

L(n)
k

To obtain (or approximate) the optimal h(n)k one could take SGD steps (as shown in Section 3)
or use second-order methods. We denote the optimal h(n)k obtained by h(n)?k and by h(n)? the set
{h(n)?2 , h

(n)?
3 . . . h

(n)?
K }.

We now discuss the minimization over the W variable, by first defining

J (n)(W) = min
h
L(n)(h,W)

The h step discussed before approximates the argmin
h

L(n) as h(n)?. Therefore

J (n)(W) ≈ L(n)(h(n)?,W)

(the sanity of this approximation depends on how well the optimization is performed in the h-step).
The next step would then be to minimize L(n)(h(n)?,W) over the W variable. Using (4) we can
write

J (n)(W) = L(n)(h(n)?,W) = ˜̀1(h(n)?2 , b1(x
(n)))+

K−1∑
k=2

˜̀
k(h

(n)?
k+1 , bk(h

(n)?
k))+`(y(n), bK(h

(n)?
K))

(6)

We now define J (n)
k for the k-th block as

J (n)
k (Bk) =


˜̀
1(h

(n)?
2 , b1(x

(n))), if k = 1˜̀
k(h

(n)?
k+1 , bk(h

(n)?
k)), if 2 ≤ k ≤ K − 1

`(y(n), bK(h
(n)?
K)), if k = K

(7)

Note J (n)(W) =
∑
k

J (n)
k (Bk). Using (7), it is clear that for a given k,

argmin
Bk

J (n)(W) = argmin
Bk

J (n)
k (Bk)

It is worth emphasizing here that these minimization subproblems of finding the optimal weights Bk
for different k can be solved in parallel since they are independent in the sense that solving one does
not require solving the other. These substeps of minimizing with respect to the weights in Bk are
essentially backpropagation procedures over the blocks defined by our splitting. Lemma B.1 presents
a straightforward way to compute these gradients. In the next section, we present the algorithm
involving the minimization steps discussed here.

3

3 Algorithm

The weights of the neural network are randomly initialized, similar to standard training. For each
training instance, the ‘h-step’ optimizes the partial objective L(n)

k (h
(n)
k , Bk, Bk−1) defined in (5),

withh respect to the gluing variable h(n)k , for each k, in a sequential manner, starting from k = K

down to k = 2. We use SGD to perform this subproblem minimization, by computing ∇
h
(n)
k

L(n)
k for

each k and taking negative steps in this direction to obtain an approximately optimal h(n)?k . Next, for
each k, we optimize J (n)

k over the set of weights Bk by performing the smaller backpropagation on
the k-th block with h(n)?k as its input and h(n)?k+1 as its output, where h(n)?1 = x(n) and h(n)?K+1 = y(n).
The pseudo-code for the resulting training strategy is shown in Algorithm 1. We need to choose the
hyperparameter Nh, which denotes the number of steps taken in the ‘h-step’ of the minimization. In
the pseudo-code below, we consider a single training instance at a time (similar to online learning
setup), however we could also run the training using mini-batches as a trivial extension of the
presented framework.

In Algorithm 1, the blocks Bk, obtained after splitting the set of weights in the neural network, are
assumed to be residing on the memory of different devices (block Bk on device DBk

’s memory).
This setup brings the possibility of parallelizing the W -step (operation 20 in the pseudocode). This
step of block updates is equivalent to :

W ←W − γ∇WJ (n)(W)

as W =
K⋃
k=1

Bk and J (n)(W) =
∑K
k=1 J

(n)
k (Bk). Note there is no overlap between the variables

inside different blocks and therefore it is possible to parallelize this step as discussed in the previous
section.

Hence the last step of block updates can be computed in a parallel fashion; either on different devices
(GPUs) or different threads of a single device. This would however require that the initialization for
h
(n)
k and the optimal gluing variable h(n)?k get communicated within devices (operations 6 and 15 in

the pseudo-code). Note that the algorithm can be run equivalently on a single device D0 by treating
DBk

= D0 ∀ k and ignoring the data copy operations 6 and 15 in the pseudo-code.

We need not store a copy of the entire network on each device (GPU). Each device only takes care of
one block (DBk

stores Bk), thus we have a lesser RAM footprint, we could potentially use much
deeper/larger networks. In comparison with Data Parallelism, the algorithm discussed above incur
lesser communication overhead, since unlike the gather and broadcast of weights (shared parameters)
in data parallel training, here we need only the gluing variables, that will typically be smaller in size
than the weights, to be communicated between devices. However, Data Parallelism can be thought of
as an orthogonal way to speed up training and it might not be fair to compare the two.

As we allude to in Appendix A, the above strategy will be necessarily slower than standard (sequential)
training using backpropagation, since the h-step would involve backpropagation over the subsequent
blocks. In order to be faster than standard backpropagation using model parallelism, we need to
cache the activations from the gluing variable as described in Appendix C and perform the h-steps
infrequently.

In order to investigate the effectiveness of the methods discussed, we study the empirical performance
of Algorithm 1 in the next section. These experiments focus on the validating the training capabilities
of the above strategy for simple networks trained on small scale datasets (MNIST and CIFAR10).
Further large scale experiments that make use of model parallelism, in order to speed up the training
process using our framework, are future pieces of this ongoing work.

4 Experiments

4.1 MLP on MNIST

We use the algorithm discussed in the previous section to decouple and train deep neural networks on
small scale datasets. A fully connected neural network with a single hidden layer (L = 1) and set

4

Algorithm 1 BlockProp
1: Initialize weights {W1, . . .WL+1} of the neural network
2: for epoch = 1, 2 . . . , Nepoch do
3: for n = 1, 2 . . . , N do

4: // h step
5: Initialize h(n)k ∀k with the activations of the forward pass
6: // Device DBk

will send h(n)k+1 = bk(h
(n)
k) to the next device DBk+1

7: for k = K,K − 1, . . . 2 do
8: // Compute the h(n)?k to get J (n)

k

9: // Find h(n)?k ≈ argmin
h
(n)
k

L(n)
k (h

(n)
k , Bk, Bk−1) via gradient descent (Nh steps):

10: h̃(1) ← h
(n)
k

11: for t = 1, 2 . . . , Nh do
12: h̃(t+1) ← h̃(t) − γhk

∇
h
(n)
k

L(n)
k (h

(n)
k , Bk, Bk−1) |h(n)

k =h̃(t)

13: end for
14: h

(n)?
k ← h̃(Nh+1)

15: // Device DBk
will send h(n)?k to the previous device DBk−1

16: end for

17: // W-step
18: // Compute∇J (n) and take an SGD step with respect to the weights
19: // Perform stochastic gradient step on block Bk
20: Bk ← Bk − γBk

∇Bk
J (n)
k ,∀k

21: end for
22: end for

Figure 2: Fully connected network with single hidden layer trained on MNIST

of weights W = {W1,W2} is split into blocks B1 = {W1} and B2 = {W2} as per the formulation
discussed in Section 2. We could write the Lagrangian for this setup as

L(n)
2 (h

(n)
2 , B2, B1) = ˜̀1(h(n)2 , b1(x

(n))) + `(y(n), b2(h
(n)
2))

= λ1 ‖h(n)2 − b1(x(n))‖2︸ ︷︷ ︸
gluing loss

+ `(y(n), b2(h
(n)
2))︸ ︷︷ ︸

last layer loss

where λ1 is the weight of the gluing loss penalty. We use MNIST digit classification dataset of
60, 000 images [9] for training.

We begin by fixing the hyper-parameter λ1 to 1 and observe that increasing Nh (the number of
‘h-steps’ taken) seems to improve the training as shown in Figure 2 (left). We also vary the penalty

5

weight λ1 for Nh = 4 (Figure 2 (center)) and Nh = 2 (Figure 2), where an evident pattern is hard to
find. The baseline shown in Figure 2 corresponds to standard training using SGD. The difference in
test accuracies attained between standard training and the algorithm from Section 3 can be attributed
to the inconsistency that we allow in our network training by the means of introducing gluing variables
and breaking the inter-block dependencies. Finding ways of mitigating this limitation is a challenging
future direction of our work.

4.2 ResNet on CIFAR10

The framework and analysis presented in previous sections for fully connected networks can be
easily extended to convolutional networks, by simply treating the convolution operation as a sparse
linear transformation. We therefore experiment with Residual Networks, specifically the ResNet18
architecture presented in [10, 11] and train them on the CIFAR10 dataset [12]. The network is split
into two blocks B1 and B2 such that each block carries roughly equal number of layers.

Figure 3 consists plots for the gluing loss ||b1(x)−h||22 without the λ1 scaling (top left), cross entropy
loss `(b2(h), y) computed at the last layer (top right), test accuracy (bottom left) and test loss (bottom
right) over the course of training iterations for different choices of λ1, γB1

- the step-size for B1

update and γB2
- step-size for B2 update. For all these variants, the number of h-steps Nh is fixed to

1 and the step-size for the h-step γh is fixed to 0.01. The four subplots in Figure 3 share the same
legend as in subplot 3 (bottom left). As can be seen from the plots, higher values of λ1 seem to help
the performance to a certain extent. For very small values, the training seems to be unstable (the light
blue curve below). For an unidentified reason, we were unable to successfully train these models
when using dropout, this might partially explain the performance gap for our strategy in comparison
to standard training.

Figure 3: Distributed training vs Standard backpropagation - ResNet18

5 Related work

5.1 Link with other works in optimization

From an optimization perspective, looking for more scalable alternatives to backprogagation is also
an active area of research. [6] proposed to rewrite the backpropagation as a constrained optimization
problem which is solved sequentially. Another work [8] extends this idea using an Alternating
Direction Method of Multipliers (ADMM) [13] and were able to train neural networks without using
gradients from backpropagation at all. However both these methods work in a batch setting, where
the updates have to be computed on the whole training set, which makes it impractical for modern

6

deep learning with very large datasets. In practice, we also found the lagrangian multiplier in [8] to
be unnecessary, and the algorithm to be more stable without the same. Using SGD to minimize the
constraints enables us to be on-line and as such much more efficient. In a similar line of work, [7]
recently proposed a proximal variant of backpropagation, allowing for bigger learning rates and thus
faster convergence.

5.2 Relation to Equilibrium Propagation

In [4], authors present the Equilibrium Propagation algorithm for energy based models and introduce
it as a framework for training the continuous Hopfield model. The objective to be minimized is a sum
of the internal and external energy of the model.

We present some theoretical analysis to justify the validity of the proposed decoupling scheme.
Theorem 5.1 (Equivalence with Equilibrium propagation). BlockProp is equivalent to Equilibrium
propagation, if each block consists of only one layer and the (unweigthed) internal energy function is
given by

En =

K−1∑
k=1

‖h(n)k+1 − bk(h
(n)
k)‖22

and the external cost
Cn = `(y(n), h

(n)
K)

with h(n)1 = x(n) (instead of Eq. (1) in [4]).

More concretely, for the 2 block case (K = 3), if we denote the usual loss by J , where

J (x(n), y(n)) := `(y(n), b2(b1(x
(n)))) = Cn(y

(n), argminEn)

and the augmented loss function by L, where

L(x(n), y(n), h(n), β) := `1(x
(n), h(n)) + β `2(y

(n), h(n))

with `1(x(n), h(n)) = ‖h(n) − b1(x(n))‖22 and `2(y(n), h(n)) = ‖y(n) − b2(h(n))‖22 ,
then the following equality holds true

−dJ
dθ

= − lim
β→0

1

β

[
d

dθ
`1(x

(n), h(n)(β)) + β
d

dθ
`2(y

(n), h(n)(β))

]

Proof. In the augmented loss function L, for a given β, we denote the optimal h variable and the
corresponding loss value using

h(n)(β) := argminh(n)L(x(n), y(n), h(n), β) and L?(x(n), y(n), β) := L(x(n), y(n), h(n)(β), β) .
respectively. Using these definitions, we can write

h(n)(0) = b1(x
(n)) and C(x(n), y(n)) = ∂L?

∂β
|β=0 .

Thus, the gradient of the cost function with respect to the parameters is given by
dJ
dθ

=
d

dθ

∂L?

∂β
|β=0 =

∂

∂β

dL?

dθ
|β=0

= lim
β→0

1

β

[
dL?

dθ
(x(n), y(n), β)− dL?

dθ
(x(n), y(n), 0)

]

= lim
β→0

1

β

[
dL?

dθ
(x(n), y(n), β)− 0

]
and with `1(x(n), h(n)) = ‖h(n) − b1(x(n))‖22 and `2(y(n), h(n)) = ‖y(n) − b2(h(n))‖22 we get

−dC
dθ

= − lim
β→0

1

β

[
d

dθ
`1(x

(n), h(n)(β)) + β
d

dθ
`2(y

(n), h(n)(β))

]
We prove this equivalence using the simple case of the 2 block split, extending this result to the
general case is straightforward.

7

6 Discussion

We proposed BlockProp with distributed optimization on conventional computer hardware in mind.
It may, however, also be interesting from a neuroscience perspective. We can think of the blocks
as subnetworks or brain regions that run an approximation of backpropagation, e.g. with random
feedback weights [14]. Learning in these subnetworks would be coordinated with the gluing variables
that follow the dynamics dictated by some form of equilibrium propagation. It could be a topic of
future work to show that the gradient descent dynamics proposed in Algorithm 1 can be linked to
biophysical processes or propose alternative dynamics for the gluing variables.

We empirically show that the proposed decoupling strategy can achieve comparable performance
to standard backpropagation for a single hidden layer neural network and deep residual networks.
However there is some difference in the performance attained, ideally we would like to make
insignificant compromise on the accuracy side while being able to guarantee faster training using
model parallelism. Incorporating modern empirical methods like layer normalization and dropout
into our framework could be further steps in addressing this limitation. Other prominent next steps of
our work include large scale experiments that make use of the decoupling to split the network using
multiple nodes (potentially more than 2 blocks) along with caching strategies that enable bypassing
the h-step.

The inference procedure followed during the test time is another aspect that could be reexamined.
In the framework discussed, we pass the unseen data through B2 and B1, and generate the estimate
ŷ = b2(b1(x)). The gluing variables learned during the training phase are ignored and this could
mean that we lose of information about the inter-block inconsistency in the network due to the
proposed decoupling. However, it is not straightforward to incorporate this information into the
inference procedure.

8

References
[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error

propagation,” California Univ San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of go with deep
neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[4] B. Scellier and Y. Bengio, “Equilibrium propagation: Bridging the gap between energy-based
models and backpropagation,” Frontiers in computational neuroscience, vol. 11, 2017.

[5] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random synaptic feedback
weights support error backpropagation for deep learning,” Nature communications, vol. 7, p.
13276, 2016.

[6] M. Carreira-Perpinan and W. Wang, “Distributed optimization of deeply nested systems,” in
Artificial Intelligence and Statistics, 2014, pp. 10–19.

[7] T. Frerix, T. Möllenhoff, M. Moeller, and D. Cremers, “Proximal backpropagation,” arXiv
preprint arXiv:1706.04638, 2017.

[8] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Goldstein, “Training neural networks
without gradients: A scalable admm approach,” in International Conference on Machine
Learning, 2016, pp. 2722–2731.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444,
2015.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[11] ——, “Identity mappings in deep residual networks,” in European Conference on Computer
Vision. Springer, 2016, pp. 630–645.

[12] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online: http://www. cs. toronto.
edu/kriz/cifar. html, 2014.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed optimization and statistical
learning via the alternating direction method of multipliers,” Foundations and Trends R© in
Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[14] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random synaptic feedback
weights support error backpropagation for deep learning,” Nature Communications, vol. 7, p.
13276, Nov 2016. [Online]. Available: http://dx.doi.org/10.1038/ncomms13276

9

http://dx.doi.org/10.1038/ncomms13276

A Performance Analysis of algorithm without caching

To evaluate the performance of the presented algorithm, let us first consider the cost of W -step which
involves K smaller backpropagation procedures.

C(Wstep) =

K∑
k=1

C(∇Bk
J (n)
k) = C(backprop)

where C(∇Bk
J (n)
k) is the cost of the k-th backpropagation. It is straightforward to prove that the cost

for the smaller backpropagation procedures sum up to the cost correspoding to that of backpropagation
across the entire network.

In the h-step, we compute the forward pass for initialization and make Nh gradient calls for the
gluing variable updates.

C(hstep) = C(initialization) +
K∑
k=1

Nh · C(∇h(n)
k

L(n)
k) = C(forward prop) +Nh · C(h-backprop)

Here C(h-backprop) is the cost of computing∇
h
(n)
k

(L(n)
k (h

(n)
k , Bk, Bk−1)) |h(n)

k =h̃
(n)
t

and taking a
single gradient step on the gluing variable. Note that this cost is less than the cost of full backpropa-
gation i.e. C(h-backprop) < C(backprop)

Thus, the total cost will be

C(total) = C(Wstep) + C(hstep) = C(backprop) + C(forward prop) +Nh · C(h-backprop)

C(backprop) + C(forward prop) < C(total) < C(forward prop) + (Nh + 1) · C(backprop)

B

Lemma B.1 (Function of 2 variables). Let us consider L a function of two variables, h and w. For,
J defined as

J(w) = min
h

[
L(h,w)

]
= L(h?(w), w)

we have

∇J(w) = ∂L

∂w
(h?(w), w)

Proof.

∇J(w) =
d

dw
L(h?(w), w))

=
∂L

∂h?
(h?(w), w)

∂h?

∂w
(w) +

∂L

∂w
(h?(w), w)

However, by definition of h?(w) = argmin
h

L(h,w), we have ∂L
∂h? (h

?, w) = 0.

C Caching the activations

For a given n ∈ N , the Algorithm 1 re-initializes the gluing variables with the forward pass at
every epoch using the current state of weights e.g. h(n)2 = b1(x

(n)) where b1 corresponds to the
current state of the set of weights B1. One alternative to this re-initialization is to store for every
n ∈ N the last state of gluing variables (h(n)?k) in each epoch and use h(n)?k obtained this time as the
initialization in the next epoch for the corresponding instance. Note that the weights in Bk in the
e-th epoch can be different from Bk in the (e+ 1)-th epoch, hence we are solving different problems

10

in the h-step of the two epochs, meaning that one finds argmin h L
it
k (h,B

(e)
k , B

(e)
k−1) and the other

finds argmin h L
it
k (h,B

(e+1)
k , B

(e+1)
k−1).

Algorithm 2
for t = 1..∞ do

Sample it ∼ U(1, . . . , n)
// h-step
Initialize the hitk with the last known activations for this example. If there is no cache for it,
initialize with the forward propagation
for k=K..2 do

// Compute the hit?k to get J itk (this step is executed in parallel by the K computing entities)
Find and store hit?k via numerical optimization: hit?k = argmin h L

it
k (h,Bk, Bk−1)

end for

// W-step
// Compute∇J it and take a gradient step
Perform stochastic gradient step on Bk: Bk ← Bk − γBk

∇Bk
J itk (Bk),∀k

end for

In practice, the h-step involving numerical optimization in Algorithm 2 can be computed infrequently
(once every E epochs). If the blocks reside on different devices’ memory, the advantage with caching
the activations of the gluing variable h is that W -steps (block updates) can now be computed in a
parallel fashion. However, this could lead to the difficulty of the gluing variables in memory being
very stale and possibly hindering optimization.

11

	Introduction
	Backpropagation as an optimization procedure
	Algorithm
	Experiments
	MLP on MNIST
	ResNet on CIFAR10

	Related work
	Link with other works in optimization
	Relation to Equilibrium Propagation

	Discussion
	Performance Analysis of algorithm without caching
	
	Caching the activations

