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ABSTRACT

Ensembles of models often yield improvements in system performance. These
ensemble approaches have also been empirically shown to yield robust measures
of uncertainty, and are capable of distinguishing between different forms of un-
certainty. However, ensembles come at a computational and memory cost which
may be prohibitive for many applications. There has been significant work done
on the distillation of an ensemble into a single model. Such approaches decrease
computational cost and allow a single model to achieve an accuracy comparable
to that of an ensemble. However, information about the diversity of the ensemble,
which can yield estimates of different forms of uncertainty, is lost. This work
considers the novel task of Ensemble Distribution Distillation (EnD2) — distilling
the distribution of the predictions from an ensemble, rather than just the average
prediction, into a single model. EnD2 enables a single model to retain both the
improved classification performance of ensemble distillation as well as information
about the diversity of the ensemble, which is useful for uncertainty estimation.
A solution for EnD2 based on Prior Networks, a class of models which allow a
single neural network to explicitly model a distribution over output distributions, is
proposed in this work. The properties of EnD2 are investigated on both an artificial
dataset, and on the CIFAR-10, CIFAR-100 and TinyImageNet datasets, where it
is shown that EnD2 can approach the classification performance of an ensemble,
and outperforms both standard DNNs and Ensemble Distillation on the tasks of
misclassification and out-of-distribution input detection.

1 INTRODUCTION

Neural Networks (NNs) have emerged as the state-of-the-art approach to a variety of machine
learning tasks (LeCun et al., 2015) in domains such as computer vision (Girshick, 2015; Simonyan
& Zisserman, 2015; Villegas et al., 2017), natural language processing (Mikolov et al., 2013b;a;
2010), speech recognition (Hinton et al., 2012; Hannun et al., 2014) and bio-informatics (Caruana
et al., 2015; Alipanahi et al., 2015). Despite impressive supervised learning performance, NNs tend
to make over-confident predictions (Lakshminarayanan et al., 2017) and, until recently, have been
unable to provide measures of uncertainty in their predictions. As NNs are increasingly being applied
to safety-critical tasks such as medical diagnosis (De Fauw et al., 2018), biometric identification
(Schroff et al., 2015) and self driving cars, estimating uncertainty in model’s predictions is crucial, as
it enables the safety of an AI system (Amodei et al., 2016) to be improved by acting on the predictions
in an informed manner.

Ensembles of NNs are known to yield increased accuracy over a single model (Murphy, 2012), allow
useful measures of uncertainty to be derived (Lakshminarayanan et al., 2017), and also provide
defense against adversarial attacks (Smith & Gal, 2018). There is both a range of Bayesian Monte-
Carlo approaches (Gal & Ghahramani, 2016; Welling & Teh, 2011; Garipov et al., 2018; Maddox et al.,
2019), as well as non-Bayesian approaches, such as random-initialization (Lakshminarayanan et al.,
2017) and bagging (Murphy, 2012; Osband et al., 2016), to generating ensembles. Crucially, ensemble
approaches allow total uncertainty in predictions to be decomposed into knowledge uncertainty and
data uncertainty. Data uncertainty is the irreducible uncertainty in predictions which arises due to the
complexity, multi-modality and noise in the data. Knowledge uncertainty, also known as epistemic
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uncertainty (Gal, 2016) or distributional uncertainty (Malinin & Gales, 2018), is uncertainty due to a
lack of understanding or knowledge on the part of the model regarding the current input for which the
model is making a prediction. This form of uncertainty arises when the test input x∗ comes either
from a different distribution than the one that generated the training data or from an in-domain region
which is sparsely covered by the training data. Mismatch between the test and training distributions is
also known as a dataset shift (Quiñonero-Candela, 2009), and is a situation which often arises for real
world problems. Distinguishing between sources of uncertainty is important, as in certain machine
learning applications it may be necessary to know not only whether the model is uncertain, but also
why. For instance, in active learning, additional training data should be collected from regions with
high knowledge uncertainty, but not data uncertainty.

A fundamental limitation of ensembles is that the computational cost of training and, more importantly,
inference can be many times greater than that of a single model. One solution to speed up inference
is to distill an ensemble of models into a single network to yield the mean predictions of the
ensemble (Hinton et al., 2015; Korattikara Balan et al., 2015). However, this collapses an ensemble
of conditional distributions over classes into a single point-estimate conditional distribution over
classes. As a result, information about the diversity of the ensemble is lost. This prevents measures of
knowledge uncertainty, such as mutual information (Malinin & Gales, 2018; Depeweg et al., 2017a),
from being estimated.

In this work, we investigate the explicit modelling of the distribution over the ensemble predictions,
rather than just the mean, with a single model. This problem — referred to as Ensemble Distribution
Distillation (EnD2) — yields a method that preserves both the distributional information and improved
classification performance of an ensemble within a single neural network model. It is important to
highlight that Ensemble Distribution Distillation is a novel task which, to our knowledge, has not
been previously investigated. Here, the goal is to extract as much information as possible from an
ensemble of models and retain it within a single, possibly simpler, model. As an initial solution to
this problem, this paper makes use of a recently introduced class of models, known as Prior Networks
(Malinin & Gales, 2018; 2019), which explicitly model a conditional distribution over categorical
distributions by parameterizing a Dirichlet distribution. Within the context of EnD2 this effectively
allows a single model to emulate the complete ensemble.

The contributions of this work are as follows. Firstly, we define the task of Ensemble Distribution
Distillation (EnD2) as a new challenge for machine learning research. Secondly, we propose and
evaluate a solution to this problem using Prior Networks. EnD2 is initially investigated on artificial
data, which allows the behaviour of the models to be visualized. It is shown that distribution-
distilled models are able to distinguish between data uncertainty and knowledge uncertainty. Finally,
EnD2 is evaluated on CIFAR-10, CIFAR-100 and TinyImageNet datasets, where it is shown that
EnD2 yields models which approach the classification performance of the original ensemble and
outperform standard DNNs and regular Ensemble Distillation (EnD) models on the tasks of identifying
misclassifications and out-of-distribution (OOD) samples.

2 ENSEMBLES

In this work, a Bayesian viewpoint on ensembles is adopted, as it provides a particularly elegant prob-
abilistic framework, which allows knowledge uncertainty to be linked to Bayesian model uncertainty.
However, it is also possible to construct ensembles using a range of non-Bayesian approaches. For
example, it is possible to explicitly construct an ensemble of M models by training on the same data
with different random seeds (Lakshminarayanan et al., 2017) and/or different model architectures.
Alternatively, it is possible to generate ensembles via Bootstrap methods (Murphy, 2012; Osband
et al., 2016) in which each model is trained on a re-sampled version of the training data.

The essence of Bayesian methods is to treat the model parameters θ as random variables and place a
prior distribution p(θ) over them to compute a posterior distribution p(θ|D) via Bayes’ rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ p(D|θ)p(θ) (1)

Here, model uncertainty is captured in the posterior distribution p(θ|D). Consider an ensemble of
models {P(y|x∗,θ(m))}Mm=1 sampled from the posterior:{

P(y|x∗,θ(m))
}M
m=1

→
{
P(y|π(m))

}M
m=1

, π(m) = f(x∗;θ(m)), θ(m) ∼ p(θ|D) (2)
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(a) Confident Prediction (b) Data Uncertainty (c) Knowledge Uncertainty

Figure 1: Desired behaviors of a ensemble on a simplex of categorical probabilities.

where π are the parameters of a categorical distribution [P(y = ω1), · · · , P(y = ωK)]T and x∗ is a
test input. The expected predictive distribution, or predictive posterior, for a test input x∗ is obtained
by taking the expectation with respect to the model posterior:

P(y|x∗,D) = Ep(θ|D)

[
P(y|x∗,θ)

]
(3)

Each of the models P(y|x∗,θ(m)) yields a different estimate of data uncertainty. Uncertainty in
predictions due to model uncertainty is expressed as the level of spread, or ‘disagreement’, of an
ensemble sampled from the posterior. The aim is to craft a posterior p(θ|D), via an appropriate
choice of prior p(θ), which yields an ensemble that exhibits the set of behaviours described in
figure 1. Specifically, for an in-domain test input x∗, the ensemble should produce a consistent set
of predictions with little spread, as described in figure 1a and figure 1b. In other words, the models
should agree in their estimates of data uncertainty. On the other hand, for inputs which are different
from the training data, the models in the ensemble should ‘disagree’ and produce a diverse set of
predictions, as shown in figure 1c. Ideally, the models should yield increasingly diverse predictions
as input x∗ moves further away from the training data. If an input is completely unlike the training
data, then the level of disagreement should be significant. Hence, the measures of model uncertainty
will capture knowledge uncertainty given an appropriate choice of prior.

Given an ensemble
{
P(y|x∗,θ(m))

}M
m=1

which exhibits the desired set of behaviours, the entropy of
the expected distribution P(y|x∗,D) can be used as a measure of total uncertainty in the prediction.
Uncertainty in predictions due to knowledge uncertainty can be assessed via measures of the spread,
or ‘disagreement’, of the ensemble such as Mutual Information:

MI[y,θ|x∗,D]︸ ︷︷ ︸
Knowledge Uncertainty

= H
[
Ep(θ|D)[P(y|x∗,θ)]

]︸ ︷︷ ︸
Total Uncertainty

− Ep(θ|D)

[
H[P(y|x∗,θ)]

]︸ ︷︷ ︸
Expected Data Uncertainty

(4)

This formulation of mutual information allows the total uncertainty to be decomposed into knowledge
uncertainty and expected data uncertainty (Depeweg et al., 2017a;b). The entropy of the predictive
posterior, or total uncertainty, will be high whenever the model is uncertain - both in regions of
severe class overlap and out-of-domain. However, the difference of the entropy of the predictive
posterior and the expected entropy of the individual models will be non-zero only if the models
disagree. For example, in regions of class overlap, each member of the ensemble will yield a high
entropy distribution (figure 1b) - the entropy of the predictive posterior and the expected entropy will
be similar and mutual information will be low. In this situation total uncertainty is dominated by data
uncertainty. On the other hand, for out-of-domain inputs the ensemble yields diverse distributions
over classes such that the predictive posterior is near uniform (figure 1c), while the expected entropy
of each model may be much lower. In this region of input space the models’ understanding of data is
low and, therefore, knowledge uncertainty is high.

3 ENSEMBLE DISTRIBUTION DISTILLATION

Previous work (Hinton et al., 2015; Korattikara Balan et al., 2015; Wong & Gales, 2017; Wang et al.,
2018; Papamakarios, 2015; Buciluǎ et al., 2006) has investigated distilling a single large network into
a smaller one and an ensemble of networks into a single neural network. In general, distillation is
done by minimizing the KL-divergence between the model and the expected predictive distribution
of an ensemble:

L(φ,Dens) = Ep̂(x)

[
KL
[
Ep̂(θ|D)[P(y|x;θ)] || P(y|x;φ)]

]]
(5)
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This approach essentially aims to train a single model that captures the mean of an ensemble, allowing
the model to achieve a higher classification performance at a far lower computational cost. The
use of such models for uncertainty estimation was investigated in (Li & Hoiem, 2019; Englesson &
Azizpour, 2019). However, the limitation of this approach with regards to uncertainty estimation is
that the information about the diversity of the ensemble is lost. As a result, it is no longer possible to
decompose total uncertainty into knowledge uncertainty and data uncertainty via mutual information
as in equation 4. In this work we propose the task of Ensemble Distribution Distillation, where the
goal is to capture not only the mean of the ensemble, but also its diversity. In this section, we outline
an initial solution to this task.

An ensemble can be viewed as a set of samples from an implicit distribution of output distributions:{
P(y|x∗,θ(m))

}M
m=1

→
{
P(y|π(m))

}M
m=1

, π(m) ∼ p(π|x∗,D) (6)
Recently, a new class of models was proposed, called Prior Networks (Malinin & Gales, 2018;
2019), which explicitly parameterize a conditional distribution over output distributions p(π|x∗; φ̂)

using a single neural network parameterized by a point estimate of the model parameters φ̂. Thus, a
Prior Network is able to effectively emulate an ensemble, and therefore yield the same measures of
uncertainty. A Prior Network p(π|x∗; φ̂) models a distribution over categorical output distributions
by parameterizing the Dirichlet distribution.

p(π|x; φ̂) = Dir(π|α̂), α̂ = f(x; φ̂), α̂c > 0, α̂0 =

K∑
c=1

α̂c (7)

The distribution is parameterized by its concentration parametersα, which can be obtained by placing
an exponential function at the output of a Prior Network: α̂c = eẑc , where ẑ are the logits predicted
by the model. While a Prior Network could, in general, parameterize arbitrary distributions over
categorical distributions, the Dirichlet is chosen due to its tractable analytic properties, which allow
closed form expressions for all measures of uncertainty to be obtained. However, it is important to
note that the Dirichlet distribution may be too limited to fully capture the behaviour of an ensemble
and other distributions may need to be considered.

In this work we consider how an ensemble, which is a set of samples from an implicit distribution
over distributions, can be distribution distilled into an explicit distribution over distributions modelled
using a single Prior Network model, ie:

{
P(y|x;θ(m))

}M
m=1

→ p(π|x; φ̂).

This is accomplished in several steps. Firstly, a transfer dataset Dens = {x(i),π(i,1:M)}Ni=1 ∼
p̂(x,π) is composed of the inputs xi from the original training set D = {x(i), y(i)}Ni=1 and the
categorical distributions {π(i,1:M)}Ni=1 derived from the ensemble for each input. Secondly, given
this transfer set, the model p(π|x;φ) is trained by minimizing the negative log-likelihood of each
categorical distribution π(im):
L(φ,Dens) = − Ep̂(x)

[
Ep̂(π|x)[ln p(π|x;φ)]

]
= − 1

N

N∑
i=1

[
ln Γ(α̂

(i)
0 )−

K∑
c=1

ln Γ(α̂(i)
c ) +

1

M

M∑
m=1

K∑
c=1

(α̂(i)
c − 1) lnπ(im)

c

] (8)

Thus, Ensemble Distribution Distillation with Prior Networks is a straightforward application of
maximum-likelihood estimation. Given a distribution-distilled Prior Network, the predictive distribu-
tion is given by the expected categorical distribution π̂ under the Dirichlet prior:

P(y = ωc|x∗; φ̂) = Ep(π|x∗;φ̂)[P(y = ωc|π)] = π̂c =
α̂c∑K

k=1 α̂k

=
eẑc∑K
k=1 e

ẑk
(9)

Separable measures of uncertainty can be obtained by considering the mutual information between
the prediction y and the parameters of π of the categorical:

MI[y,π|x∗; φ̂]︸ ︷︷ ︸
Knowledge Uncertainty

= H
[
Ep(π|x∗;φ̂)[P(y|π)]

]︸ ︷︷ ︸
Total Uncertainty

− Ep(π|x∗;φ̂)

[
H[P(y|π)]

]︸ ︷︷ ︸
Expected Data Uncertainty

(10)

Similar to equation 4, this expression allows total uncertainty, given by the entropy of the expected
distribution, to be decomposed into data uncertainty and knowledge uncertainty (Malinin & Gales,
2018). If Ensemble Distribution Distillation is successful, then the measures of uncertainty derivable
from a distribution-distilled model should be identical to those derived from the original ensemble.
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3.1 TEMPERATURE ANNEALING

Minimization of the negative log-likelihood of the model on the transfer dataset Dens =
{x(i),π(i,1:M)}Ni=1 is equivalent to minimization of the KL-divergence between the model and
the empirical distribution p̂(x,π). On training data, this distribution is often ‘sharp’ at one of the
corners of the simplex. At the same time, the Dirichlet distribution predicted by the model has its
mode near the center of the simplex with little support at the corners at initialization. Thus, the com-
mon support between the model and the target empirical distribution is limited. Optimization of the
KL-divergence between distributions with limited non-zero common support is particularly difficult.
To alleviate this issue, and improve convergence, the proposed solution is to use temperature to ‘heat
up’ both distributions and increase common support by moving the modes of both distributions closer
together. The empirical distribution is ‘heated up’ by raising the temperature T of the softmax of
each model in the ensemble in the same way as in (Hinton et al., 2015). This moves the predictions
of the ensemble closer to the center of the simplex and decreases their diversity, making it better
modelled by a sharp Dirichlet distribution. The output distribution of the EnD2 model p(π|x;φ) is
heated up by raising the temperature of the concentration parameters: α̂c = eẑc/T , making support
more uniform across the simplex. An annealing schedule is used to re-emphasize the diversity of
the empirical distribution and return it to its ‘natural’ state by lowering the temperature down to 1 as
training progresses.

4 EXPERIMENTS ON ARTIFICIAL DATA

(a) Spiral Dataset (b) Spiral Dataset with AUX data ( )

Figure 2: 3-spiral dataset with 1000 examples per class

The current section investigates Ensemble Distribution Distillation (EnD2) on an artificial dataset
shown in figure 2a. This dataset consists of three spiral arms extending from the center with both
increasing noise and distance between the arms. Each arm corresponds to a single class. This dataset
is chosen such that it is not linearly separable and requires a powerful model to correctly model the
decision boundaries, and also such that there are definite regions of class overlap.

In the following set of experiments, an ensemble of 100 neural networks is constructed by training
neural networks from 100 different random initializations. A smaller (sub) ensemble of only 10 neural
networks is also considered. The models are trained on 3000 data-points sampled from the spiral
dataset, with 1000 examples per class. The classification performance of EnD2 is compared to the
performance of individual neural networks, the overall ensemble and regular Ensemble Distillation
(EnD). The results are presented in table 1.

Table 1: Classification Performance (% Error) on Dtest of size 1000, trained on Dtrn of size 1000
with 3 spiral classes. Dataset sizes given as number of examples per class.

Num. models Individual Ensemble EnD EnD2

10 13.21 12.63 12.57 12.52
100 12.37 12.39 12.47

The results show that an ensemble of 10 models has a clear performance gain compared to the mean
performance of the individual models. An ensemble of 100 models has a smaller performance gain
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over an ensemble of only 10 models. Ensemble Distillation (EnD) is able to recover the classification
performance of both an ensemble of 10 and 100 models with only very minor degradation in perfor-
mance. Finally, Ensemble Distribution Distillation is also able to recover most of the performance
gain of an ensemble, but with a slightly larger degradation. This is likely due to forcing a single
model to learn not only the mean, but also the distribution around it, which likely requires more
capacity from the network. The measures of uncertainty derived form an ensemble of 100 models and

(a) Ensm. Total Uncertainty (b) Ensm. Data Uncertainty (c) Ensm. Knowledge Uncertainty

(d) EnD2 Total Uncertainty (e) EnD2 Data Uncertainty (f) EnD2 Knowledge Uncertainty

(g) EnD2
+AUX Total Uncertainty (h) EnD2

+AUX Data Uncertainty (i) EnD2
+AUX Knowledge Uncertainty

Figure 3: Comparison of measures of uncertainty derived from an Ensemble, EnD2 and EnD2
+AUX.

from Ensemble Distribution Distillation are presented in figures 3a-c and figures 3d-f, respectively.
The results show that EnD2 successfully captures data uncertainty and also correctly decomposes
total uncertainty into knowledge uncertainty and data uncertainty. However, it fails to appropriately
capture knowledge uncertainty further away from the training region, as there are obvious dark holes
in figure 3f, where the model yields low knowledge uncertainty far from the region of training data.

In order to overcome these issues, a thick ring of inputs far from the training data was sampled as
depicted in figure 2b. The predictions of the ensemble were obtained for these input points and used
as additional auxiliary training data DAUX. Table 2 shows how using the auxiliary training data affects
the performance of the Ensemble Distillation and Ensemble Distribution Distillation. There is a
minor drop in performance of both distillation approaches. However, the overall level of performance
is not compromised and is still higher than the average performance of each individual DNN model.
The behaviour of measures of uncertainty derived from Ensemble Distribution Distillation with
auxiliary training data (EnD2

+AUX) is shown in figures 3g-i. These results show that successful
Ensemble Distribution Distillation of the out-of-distribution behaviour of an ensemble based purely
on observations of the in-domain behaviour is challenging and may require the use of additional
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training data. This is compounded by the fact that the diversity of an ensemble on training data that
the model has seen is typically smaller than on a heldout test-set.

Table 2: Classification Performance (% Error) on Dtest, trained on either Dtrn or Dtrn +DAUX. All
datasets are of size 1000. Data for an ensemble of a 100 models.

Distillation Data Individual Ensemble EnD EnD2

Dtrn 13.21 12.37 12.39 12.47
Dtrn + DAUX 12.41 12.50

5 EXPERIMENTS ON IMAGE DATA

Having confirmed the properties of EnD2 on an artificial dataset, we now investigate Ensemble
Distribution Distillation on the CIFAR-10 (C10), CIFAR-100 (C100) and TinyImageNet (TIM)
(Krizhevsky, 2009; CS231N, 2017) datasets. Similarly to section 4, an ensemble of a 100 models
is constructed by training NNs on C10/100/TIM data from different random initializations. The
transfer dataset is constructed from C10/100/TIM inputs and ensemble logits to allow for temperature
annealing during training, which we found to be essential to getting EnD2 to train well. In addition,
we also consider Ensemble Distillation and Ensemble Distribution Distillation on a transfer set that
contains both the original C10/C100/TIM training data and auxiliary (AUX) data taken from the other
dataset1, termed EnD+AUX and EnD2

+AUX respectively. It is important to note that the auxiliary data has
been treated in the same way as main data during construction of the transfer set and distillation. This
offers an advantage over traditional Prior Network training (Malinin & Gales, 2018; 2019), where the
knowledge of which examples are in-domain and out-of-distribution is required a-priori. In this work
we also make a comparison with Prior Networks trained via reverse KL-divergence (Malinin & Gales,
2019), where the Prior Networks (PN) are trained on the same datasets, both main and auxiliary, as the
EnD+AUX and EnD2

+AUX models2. Note, that for Ensemble Distribution Distillation, models can be
distribution-distilled using any (potentially unlabeled) auxiliary data on which ensemble predictions
can be obtained. Further note that in these experiments we explicitly chose to use the simpler VGG-16
(Simonyan & Zisserman, 2015) architecture rather than more modern architectures like ResNet (He
et al., 2016) as the goal of this work is to analyse the properties of Ensemble Distribution Distillation
in a clean and simple configuration. The datasets and training configurations for all models are
detailed in appendix A.

Table 3: Mean Classification Error, % PRR , test-set negative log-likelihood (NLL) and expected
calibration error (ECE) on C10/C100/TIM across three models ±2σ.

DSET CRIT. IND ENSM EnD EnD2 EnD+AUX EnD2
+AUX PN+AUX

C10

ERR 8.0 ±0.4 6.2 ± NA 6.7 ±0.3 7.3 ±0.2 6.7 ±0.2 6.9 ±0.2 7.5 ±0.3

PRR 84.6 ±1.2 86.8 ± NA 84.8 ±0.8 85.3 ±1.1 85.1 ±0.1 85.7 ±0.3 82.0 ±1.4

ECE 2.2 ±0.4 1.3 ± NA 2.6 ±0.2 1.0 ±0.2 2.6 ±0.6 2.2 ±0.4 12.0 ±0.7

NLL 0.25 ±0.01 0.19 ± NA 0.22 ±0.01 0.25 ±0.01 0.22 ±0.01 0.24 ±0.00 0.38 ±0.01

C100

ERR 30.4 ±0.3 26.3 ± NA 28.0 ±0.4 27.9 ±0.3 28.2 ±0.3 28.0 ±0.5 28.0 ±0.7

PRR 72.5 ±1.0 75.0 ± NA 73.1 ±0.5 73.7 ±0.7 74.0 ±0.3 74.0 ±0.2 63.7 ±0.8

ECE 9.3 ±0.8 1.2 ± NA 8.2 ±0.3 4.9 ±0.5 1.9 ±0.3 5.6 ±0.5 37.9 ±0.4

NLL 1.16 ±0.03 0.88 ± NA 1.06 ±0.01 1.14 ±0.01 0.98 ±0.00 1.14 ±0.01 1.87 ±0.03

TIM

ERR 41.8 ±0.6 36.6 ±NA 38.3 ±0.2 37.6 ±0.2 38.5 ±0.3 37.3 ±0.5 40.0 ±0.6

PRR 70.8 ±1.1 73.8 ± NA 72.2 ±0.2 73.1 ±0.1 72.6 ±1.3 72.7 ±1.1 62.3 ±0.6

ECE 18.3 ±0.8 3.8 ± NA 14.8 ±0.4 7.2 ±0.4 14.9 ±0.3 7.2 ±0.2 39.1 ±1.0

NLL 2.15 ±0.05 1.51 ± NA 1.77 ±0.01 1.83 ±0.02 1.78 ±0.01 1.84 ±0.02 2.61 ±0.01

1The auxiliary training data for CIFAR-10 is CIFAR-100, and CIFAR-10 for CIFAR-100/TinyImageNet.
2This is a consistent configuration to the EnD+AUX and EnD2

+AUX models, but constitutes a degraded OOD
detection baseline for CIFAR-100 and TinyImageNet datasets due to the choice of auxiliary data.
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Firstly, we investigate the ability of a single model to retain the ensemble’s classification and
prediction-rejection (misclassification detection) performance after either Ensemble Distillation
(EnD) or Ensemble Distribution Distillation (EnD2), with results presented in table 3 in terms of
error rate and prediction rejection ratio (PRR), respectively. A higher PRR indicates that the model is
able to better detect and reject incorrect predictions based on measures of uncertainty. This metric is
detailed in appendix B. Note that for prediction rejection we used the confidence of the max class,
which also is a measure of total uncertainty, like entropy, but is more sensitive to the prediction
(Malinin & Gales, 2018).

Table 3 shows that both EnD and EnD2 are able to retain both the improved classification and
prediction-rejection performance of the ensemble relative to individual models trained with maximum
likelihood on all datasets, both with and without auxiliary training data. Note, that on C100 and
TIM, EnD2 yields marginally better classification performance than EnD. Furthermore, EnD2 also
either consistently outperforms or matches EnD in terms of PRR on all datasets, both with and
without auxiliary training data. This suggests that EnD2 is able to yield benefits on top of standard
Ensemble Distillation due to retaining information about the diversity of the ensemble. In comparison,
a Prior Network, while yielding a classification performance between that on an individual model and
EnD2

+AUX , performs consistently worse than all models in terms of PRR and for all datasets. This is
likely because of the inappropriate choice of auxiliary training data and auxiliary loss weight (Malinin
& Gales, 2019) for this task.

Secondly, it is known that ensembles yield improvements in the calibration of a model’s predictions
(Lakshminarayanan et al., 2017; Ovadia et al., 2019). Thus, it is interesting to see whether EnD
and EnD2 models retain these improvements in terms of test-set negative log-likelihood (NLL) and
expected calibration error (ECE). Note that calibration assesses uncertainty quality on a per-dataset,
rather than per-prediction, level. From table 3 we can see that both Ensemble Distillation and
Ensemble Distribution Distillation seem to give similarly minor gains in NLL over a single model.
However, EnD seems to have marginally better NLL performance, while EnD2 tends to yield better
calibration performance. There are seemingly limited gains in ECE and NLL when using auxiliary
data during distillation for EnD2, and sometimes even a degradation in NLL and ECE. This may
be due to the Dirichlet output distribution attempting to capture non-Dirichlet-distributed ensemble
predictions (especially on auxiliary data) and over-estimating the support, and thereby failing to fully
reproduce the calibration of the original ensemble. Furthermore, metrics like ECE and NLL are
evaluated on in-domain data, which would explain the lack of improvement from distilling ensemble
behaviour on auxiliary data. However, all distillation models are (almost) always calibrated as
better than individual models. At the same time, the Prior Network models yield significantly worse
calibration performance in terms of NLL and ECE than all other models. For the CIFAR-100 and
TIM datasets this may be due to the target being a flat Dirichlet distribution for the auxiliary data
(CIFAR-10), which drives the model to be very under-confident.

Table 4: OOD detection performance (mean % AUC-ROC ±2σ) for C10/C100/TIM models using
measures of total (T.Unc) and knowledge (K.Unc) uncertainty.

Train. OOD Unc. Individual Ensemble EnD EnD2 EnD+AUX EnD2
+AUX PN+AUXData Data

C10
LSUN T.Unc 91.3 ±1.3 94.5 ±N/A 89.0 ±1.3 91.5 ±0.8 88.6 ±1.1 94.4 ±0.7 95.7 ±0.9

K.Unc - 94.4 ±N/A - 92.2 ±0.7 - 93.8 ±0.7 95.8 ±0.8

TIM T.Unc 88.9 ±1.6 91.8 ±N/A 86.9 ±1.2 88.6 ±1.5 86.5 ±1.6 91.3 ±0.8 95.7 ±0.7

K.Unc - 91.4 ±N/A - 88.8 ±1.6 - 90.6 ±0.7 95.8 ±0.7

C100
LSUN T.Unc 75.6 ±1.1 82.4 ±N/A 73.8 ±0.6 80.6 ±1.1 80.6 ±0.6 83.6 ±0.5 74.8 ±1.7

K.Unc - 88.4 ±N/A - 83.8 ±0.9 - 86.5 ±0.5 73.8 ±2.2

TIM T.Unc 70.5 ±1.5 76.6 ±N/A 68.5 ±1.2 74.4 ±1.5 74.2 ±0.8 77.7 ±0.9 73.4 ±2.9

K.Unc - 81.7 ±N/A - 77.2 ±1.5 - 80.5 ±1.1 72.7 ±3.3

TIM
LSUN T.Unc 67.5 ±1.3 69.7 ±N/A 68.7 ±0.2 69.6 ±1.4 68.8 ±0.2 69.2 ±0.7 63.7 ±0.1

K.Unc - 69.3 ±N/A - 70.4 ±1.3 - 70.3 ±0.4 59.5 ±1.9

C100 T.Unc 71.7 ±2.5 75.2 ±N/A 73.1 ±0.7 74.8 ±0.3 73.1 ±0.3 74.1 ±1.3 100.0 ±0.0

K.Unc - 78.8 ±N/A - 76.7 ±0.5 - 75.3 ±0.7 100.0 ±0.0
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Thirdly, Ensemble Distribution Distillation is investigated on the task of out-of-domain (OOD) input
detection (Hendrycks & Gimpel, 2016), where measures of uncertainty are used to classify inputs as
either in-domain (ID) or OOD. The ID examples are the test set of C10/100/TIM, and the test OOD
examples are chosen to be the test sets of LSUN (Yu et al., 2015), C100 or TIM, such that the test
OOD data is never seen by the model during training. Table 4 shows that the measures of uncertainty
derived from the ensemble outperform those from a single neural network. Curiously, standard
ensemble distillation (EnD) clearly fails to capture those gains on C10 and TIM, both with and
without auxiliary training data, but does reach a comparable level of performance to the ensemble on
C100. Curiously, EnD+AUX performs worse than the individual models on C10. This is in contrast to
results from (Englesson & Azizpour, 2019; Li & Hoiem, 2019), but the setups, datasets and evaluation
considered there are very different to ours. On the other hand, Ensemble Distribution Distillation is
generally able to reproduce the OOD detection performance of the ensemble. When auxiliary training
data is used, EnD2 is able to perform on par with the ensemble, indicating that it has successfully
learned how the distribution of the ensemble behaves on unfamiliar data. These results suggest that
not only is EnD2 able to preserve information about the diversity of an ensemble, unlike standard
EnD, but that this information is important to achieving good OOD detection performance. Notably,
on the CIFAR-10 dataset PNs yield the best performance. However, due to generally inappropriate
choice of OOD (auxiliary) training data, PNs show inferior (with one exception) OOD detection
performance on CIFAR-100 and TIM.

Curiously, the ensemble sometimes displays better OOD detection performance using measures
of total uncertainty. This is partly a property of the in-domain dataset - if it contains a small
amount of data uncertainty, then OOD detection performance using total uncertainty and knowledge
uncertainty should be almost the same (Malinin & Gales, 2018; Malinin, 2019). Unlike the toy
dataset considered in the previous section, where significant data uncertainty was added, the image
datasets considered here do have a low degree of data uncertainty. It is important to note that on more
challenging tasks, which naturally exhibit a higher level of data uncertainty, we would expect that the
decomposition would be more beneficial. Additionally, it is also possible that if different architectures,
training regimes and ensembling techniques are considered, an ensemble with a better estimate of
knowledge uncertainty can be obtained. Despite the behaviour of the ensemble, EnD2, especially
with auxiliary training data, tends to have better OOD detection performance using measures of
knowledge uncertainty. This may be due to the use of a Dirichlet output distribution, which may not
be able to fully capture the details of the ensemble’s behaviour. Furthermore, as EnD2 is (implicitly)
trained by minimizing the forward KL-divergence, which is zero-avoiding (Murphy, 2012), it is likely
that the distribution learned by the model is ‘wider’ than the empirical distribution. This effect is
explored in the next subsection and in appendix C.

5.1 APPROPRIATENESS OF DIRICHLET DISTRIBUTION

Throughout this work, a Prior Network that parametrizes a Dirichlet was used for distribution-
distilling ensembles of models. However, the output distributions of an ensemble for the same input
are not necessarily Dirichlet-distributed, especially in regions where the ensemble is diverse. In the
previous section we saw that EnD2 models tend to have higher NLL than EnD models, and while
EnD2 achieves good OOD detection performance, it doesn’t fully replicate the ensemble’s behaviour.
Thus, in this section, we investigate how well a model which parameterizes a Dirichlet distribution is
able to capture the exact behaviour of an ensemble of models, both in-domain and out-of-distribution.

Figure 4 shows histograms of total uncertainty, data uncertainty and total uncertainty yielded by
an ensemble, EnD2 and EnD2

+AUX models trained on the CIFAR-10 dataset. The top row shows the
uncertainty histogram for ID data, and the bottom for test OOD data (a concatenation of LSUN
and TIM). On in-domain data, EnD2 is seemingly able to emulate the uncertainty metrics of the
ensemble well, though does have a longer tail of high-uncertainty examples. This is expected, as on
in-domain examples the ensemble will be highly concentrated around the mean. This behaviour can
be adequately modelled by a Dirichlet. On the other hand, there is a noticeable mismatch between
the ensemble and EnD2 in the uncertainties they yield on OOD data. Here, EnD2 consistently yields
higher uncertainty predictions than the original ensemble. Notably, adding auxiliary training data
makes the model yield even higher estimates of total uncertainty and data uncertainty. At the same
time, by using auxiliary training data, the model’s distribution of knowledge uncertainty starts to look
more like the ensembles, but shifted to the right (higher).

9



Published as a conference paper at ICLR 2020

(a) Total Uncertainty - ID (b) Data Uncertainty - ID (c) Knowledge Uncertainty - ID

(d) Total Uncertainty - OOD (e) Data Uncertainty - OOD (f) Knowledge Uncertainty - OOD

Figure 4: Histograms of uncertainty of the CIFAR-10 ensemble, EnD2 and EnD2
+AUX on in-domain

(ID) and test out-of-domain (OOD) data.

Altogether, this suggests that samples from the ensemble are diverse in a way that’s different from
a Dirichlet distribution. For instance, the distribution could be multi-modal or crescent-shaped.
Thus, as a consequence of this, combined with forward KL-divergence between the model and the
empirical distribution of the ensemble being zero-avoiding, the model over-estimates the support of
the empirical distribution, yielding an output which is both more diverse and higher entropy than the
original ensemble. This does not seem to adversely impact OOD detection performance as measures
of uncertainty for ID and OOD data are further spread apart and the rank ordering of ID and OOD
data is either maintained or improved, which is supported by results from section 5. However, this
does prevent the EnD2 models from fully retaining the calibration quality of the ensemble. It is
possible that the ensemble could be better modelled by a different output distribution, such as a
mixture of Dirichlet distributions or a Logistic-normal distribution.

6 CONCLUSION

Ensemble Distillation approaches have become popular, as they allow a single model to achieve
classification performance comparable to that of an ensemble at a lower computational cost. This
work proposes the novel task Ensemble Distribution Distillation (EnD2) — distilling an ensemble into
a single model, such that it exhibits both the improved classification performance of the ensemble and
retains information about its diversity. An approach to EnD2 based on using Prior Network models is
considered in this work. Experiments described in sections 4 and 5 show that on both artificial data
and image classification tasks it is possible to distribution distill an ensemble into a single model such
that it retains the classification performance of the ensemble. Furthermore, measures of uncertainty
provided by EnD2 models match the behaviour of an ensemble of models on artificial data, and
EnD2 models are able to differentiate between different types of uncertainty. However, this may
require obtaining auxiliary training data on which the ensemble is more diverse in order to allow the
distribution-distilled model to learn appropriate out-of-domain behaviour. On image classification
tasks measures of uncertainty derived from EnD2 models allow them to outperform both single NNs
and EnD models on the tasks of misclassification and out-of-distribution input detection. These results
are promising, and show that Ensemble Distribution Distillation enables a single model to capture
more useful properties of an ensemble than standard Ensemble Distillation. Future work should
further investigate properties of temperature annealing, investigate ways to enhance the diversity
of an ensemble, consider different sources of ensembles and model architectures, and examine
more flexible output distributions, such as mixtures of Dirichlets. Furthermore, while this work
considered Ensemble Distribution Distillation only for classification problems, it can and should also
be investigated for regression tasks. Finally, it may be interesting to explore combining Ensemble
Distribution Distillation with standard Prior Network training.
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APPENDIX A DATASETS, MODEL ARCHITECTURE AND TRAINING

Table 5: Description of datasets used in the experiments in terms of number of images and classes.
Dataset Train Valid Test Classes

CIFAR-10 50000 - 10000 10
CIFAR-100 50000 - 10000 100
TinyImagenet 100000 - 10000 200
LSUN (evaluation only) - - 10000 10

All models considered in this work were implemented in Pytorch (Paszke et al., 2017) using a
variant of the VGG16 (Simonyan & Zisserman, 2015) architecture for image classification. DNN
and EnD models were trained using the negative log-likelihood loss of the labels and the mean
ensemble predictions respectively. EnD2 models were trained using the negative log-likelihood of the
ensemble’s output categorical distributions. All models were trained using the Adam (Kingma & Ba,
2015) optimizer, with a 1-cycle learning rate policy and dropout regularization. For all ensembles,
models were trained using different random seed initialization, and using different seeds for shuffling
the data. In addition, data augmentation was applied via random left-right flips, random shifts up to
±4 pixels and random rotations by up to ± 15 degrees. Tables e 6 details the training configurations
for all models. Furthermore, batch normalisation was used for both Ensemble Distillation and
Ensemble Distribution Distillation, but not for Prior Networks.

Table 6: Training Configurations. η0 is the initial learning rate, T0 is the initial temperature and
’Annealing’ refers to whether a temperature annealing schedule was used. The batch size for all
models was 128. Dropout rate is quoted in terms of probability of not dropping out a unit.
Training Model General Distillation
Dataset η0 Epochs Cycle len. Dropout T0 Annealing AUX data

CIFAR-10

DNN

10−3

45 30 0.5 - - -
EnD 90 60 0.7 2.5 No -
EnD+AUX 90 60 0.7 2.5 No CIFAR-100
EnD2 90 60 0.7 10 Yes -
EnD2

+AUX 90 60 0.7 10 Yes CIFAR-100
PN 5×10−4 45 30 0.7 - No CIFAR-100

CIFAR-100

DNN

10−3

100 150 0.5 - - -
EnD 200 150 0.9 2.5 No -
EnD+AUX 200 150 0.9 2.5 No CIFAR-10
EnD2 200 150 0.9 10 Yes -
EnD2

+AUX 200 150 0.9 10 Yes CIFAR-10
PN 5×10−4 100 70 0.7 - No CIFAR-10

TinyImageNet

DNN 10−3 100 70 0.5 - - -
EnD 5×10−4 200 150 0.8 2.5 No -
EnD+AUX 5×10−4 200 150 0.8 2.5 No CIFAR-10
EnD2 5×10−4 200 150 0.8 10 Yes -
EnD2

+AUX 5×10−4 200 150 0.8 10 Yes CIFAR-10
PN 5×10−4 100 70 0.7 - No CIFAR-10

To create the transfer set Dens, ensembles were evaluated on the unaugmented CIFAR-10 and
CIFAR-100 training examples. During distillation (both EnD and EnD2), models were trained on the
augmented examples with the ensemble predictions on the corresponding unaugmented inputs.
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A.1 NUMERICAL ISSUES WITH MAXIMUM LIKELIHOOD DIRICHLET TRAINING

As shown in equation 8, ensemble distribution distillation into a prior network via likelihood maximi-
sation is equivalent to minimising the loss function:

L(φ,Dens) = − 1

N

N∑
i=1

[
ln Γ(α̂

(i)
0 )−

K∑
c=1

ln Γ(α̂(i)
c ) +

1

M

M∑
m=1

K∑
c=1

(α̂(i)
c − 1) lnπ(im)

c

]
(11)

If, due to numerical precision of the implementation, one of the ensemble member sample terms
π
(im)
c gets rounded to 0.0, the log term lnπ

(im)
c in the above equation cannot be computed. To avoid

this, we apply a small amount of central smoothing to the ensemble predictions:

π
(im)
c,smoothed = (1− γ)π(im)

c + γ
1

K
(12)

Where the smoothing parameter parameter γ has been set to 1× 10−4 for all EnD2 experiments.
Note that after applying central smoothing, each ensemble member’s predictions still sum up to 1.0.

A.2 TEMPERATURE ANNEALING SCHEDULE

A fixed temperature of 2.5 was used for Ensemble Distillation as recommended in (Hinton et al.,
2015), and was found to yield the best classification performance out of {1, 2.5, 5, 10}. Temperature
annealing resulted in worse classification performance for Ensemble Distillation, and hence was not
used in the experiments. For the temperature annealing schedule, the temperature was kept fixed
to initial temperature T0 for the first half-cycle. For the second half-cycle we linearly decayed the
initial temperature T0 down to 1.0. Then, the temperature was kept constant at 1.0 for the remainder
of the epochs. For Ensemble Distribution Distillation, we found that an initial temperature of 10
performed best out of {5, 10, 20}. The choice of the particular annealing schedule used has not been
tested extensively, and it is possible that other schedules that lead to faster training exist. However,
we must point out that it was necessary to use temperature scaling to train models on the CIFAR-10,
CIFAR-100 and TinyImageNet datasets.

APPENDIX B ASSESSING MISCLASSIFICATION DETECTION PERFORMANCE

In this work measures of uncertainty are used for two practical applications of uncertainty - mis-
classification detection and out-of-distribution sample detection. Both can be seen as an outlier
detection task based on measures of uncertainty, where misclassifications are one form of outlier and
out-of-distribution inputs are another form of outlier. These tasks can be formulated as threshold-
based binary classification (Hendrycks & Gimpel, 2016). Here, a detector IT (x) assigns the label 1
(uncertain prediction) if an uncertainty measureH(x) is above a threshold T , and label 0 (confident
prediction) otherwise. This uncertainty measure can be any of the measures discussed in sections 2
and 3.

IT (x) =

{
1, H(x) > T

0, H(x) ≤ T (13)

Given a set of true positive examples Dp = {x(i)
p }Np

i=1 and a set of true negative examples Dn =

{x(j)
n }Nn

j=1 the performance of such a detection scheme can be evaluated at a particular threshold
value T using the true positive rate tp(T ) and the false positive rate fp(T ):

tp(T ) =
1

Np

Np∑
i=1

IT (x(i)
p ) fp(T ) =

1

Nn

Nn∑
j=1

IT (x(j)
n ) (14)

The range of trade-offs between the true positive and the false positive rates can be visualized
using a Receiver-Operating-Characteristic (ROC) and the quality of the possible trade-offs can be
summarized using the area under the ROC curve (AUROC) (Murphy, 2012). If there are significantly
more negatives than positives, however, this measure will over-estimate the performance of the model
and yield a high AUROC value (Murphy, 2012). In this situation it is better to calculate the precision
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and recall of this detection scheme at every threshold value and plot them against each other on a
Precision-Recall (PR) curve (Murphy, 2012). The recall R(T ) is equal to the true positive rate tp(T ),
while precision measures the number of true positives among all samples labelled as positive:

P (T ) =

∑Np

i=1 IT (x
(i)
p )∑Np

i=1 IT (x
(i)
p ) +

∑Nn

j=1 IT (x
(j)
n )

R(T ) =
1

Np

Np∑
i=1

IT (x(i)
p ) (15)

The quality of the trade-offs can again be summarized via the area under the PR curve (AUPR).
For both the ROC and the PR curves an ideal detection scheme will achieve an AUC of 100%. A
completely random detection scheme will have an AUROC of 50% and the AUPR will be the ratio of
the number of positive examples to the total size of the dataset (positive and negative) (Murphy, 2012).
Thus, the recall is given by the error rate of the classifier. This makes it difficult to compare different
models with different base error rates, as AUPR can increase both due to better misclassification
detection and worse error rates.

Below we provide AUPR numbers for all models and datasets in order to illustrate how it can
challenging to compare models using this metric. The difference in AUPR between models within
a dataset is typically similar to the difference in classification performance. Thus, it is challenging
to assesses whether a higher AUPR is due to better misclassification detection or higher error rate.
Additionally, this table illustrate that confidence of the prediction is a better measure of uncertainty
than entropy for this task. At the same, knowledge uncertainty yield much worse misclassification
detection performance. These results are consistent with (Malinin & Gales, 2018; Malinin, 2019).

In this work we consider an alternative to using AUPR to assess misclassification detection per-
formance proposed in (Malinin, 2019). Consider the task of misclassification detection - ideally
we would like to detect all of the inputs which the model has misclassified based on a measure of

Table 7: Mean Misclassification detection using AUPR using different measures of uncertainty for
C10/C100/TIM across three models ±2σ.

Dataset Model Total Uncertainty Knowledge % ErrorConfidence Entropy Uncertainty

C10

DNN 48.2 ±2.7 47.0 ±3.4 - 8.0 ±0.4

ENS 43.9 ± NA 41.1 ± NA 36.8 ± NA 6.2 ± NA

EnD 44.6 ±3.3 44.1 ±3.9 37.6 ±2.7 6.7 ±0.3

EnD2 46.8 ±1.2 46.1 ±1.0 43.6 ±0.9 7.3 ±0.2

EnD+AUX 44.5 ±2.0 43.8 ±1.7 37.7 ±1.1 6.7 ±0.2

EnD2
+AUX 46.5 ±3.9 44.3 ±3.5 39.4 ±3.0 6.9 ±0.2

PN-RKL 40.5 ±3.0 38.5 ±2.7 35.0 ±2.3 7.5 ±0.3

C100

DNN 69.8 ±1.5 69.4 ±1.4 - 30.4 ±0.3

ENS 67.2 ± NA 64.0 ± NA 57.6 ± NA 26.3 ± NA

EnD 68.1 ±0.8 67.6 ±1.1 62.2 ±1.8 28.0 ±0.4

EnD2 68.3 ±1.6 66.8 ±1.5 63.4 ±1.2 27.9 ±0.3

EnD+AUX 69.3 ±0.3 66.9 ±0.2 58.0 ±0.2 28.2 ±0.3

EnD2
+AUX 68.9 ±0.4 66.7 ±0.2 62.0 ±1.0 28.0 ±0.5

PN-RKL 60.1 ±1.8 58.0 ±1.8 52.8 ±2.2 28.0 ±0.7

TIM

DNN 77.9 ±1.3 78.3 ±1.2 - 41.8 ±0.6

ENS 76.5 ± NA 74.8 ± NA 71.8 ± NA 36.6 ±NA

EnD 76.6 ±0.5 77.3 ±0.8 70.5 ±1.1 38.3 ±0.2

EnD2 77.0 ±1.0 76.4 ±0.9 74.8 ±1.3 37.6 ±0.2

EnD+AUX 76.9 ±1.8 77.1 ±2.1 69.9 ±1.2 38.5 ±0.3

EnD2
+AUX 76.4 ±1.7 75.8 ±1.6 74.3 ±2.1 37.3 ±0.5

PN-RKL 73.0 ±1.2 71.1 ±1.1 60.7 ±1.3 40.0 ±0.6
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uncertainty. Then, the model can either choose to not provide any prediction for these inputs, or they
can be passed over or ‘rejected’ to an oracle (ie: human) to obtain the correct prediction. The latter
process can be visualized using a rejection curve depicted in figure 5, where the predictions of the
model are replaced with predictions provided by an oracle in some particular order based on estimates
of uncertainty. If the estimates of uncertainty are ‘useless’, then, in expectation, the rejection curve
would be a straight line from base error rate to the lower right corner. However, if the estimates of
uncertainty are ‘perfect’ and always bigger for a misclassification than for a correct classification,
then they would produce the ‘oracle’ rejection curve. The ‘oracle’ curve will go down linearly to 0%
classification error at the percentage of rejected examples equal to the number of misclassifications.
A rejection curve produced by estimates of uncertainty which are not perfect, but still informative,
will sit between the ‘random’ and ‘oracle’ curves.

(a) Shaded area is ARorc. (b) Shaded area is ARuns.

Figure 5: Prediction Rejection Curves

The quality of the rejection curve can be assessed by considering the ratio of the area between the
‘uncertainty’ and ‘random’ curves ARuns (orange in figure 5) and the area between the ‘oracle’ and
‘random’ curves ARorc (blue in figure 5). This yields the prediction rejection area ratio PRR:

PRR =
ARuns

ARorc

(16)

A rejection area ratio of 1.0 indicates optimal rejection, a ratio of 0.0 indicates ‘random’ rejection. A
negative rejection ratio indicates that the estimates of uncertainty are ‘perverse’ - they are higher for
accurate predictions than for misclassifications. An important property of this performance metric is
that it is independent of classification performance, unlike AUPR, and thus it is possible to compare
models with different base error rates. Note, that similar approaches to assessing misclassification
detection were considered in (Lakshminarayanan et al., 2017; Malinin et al., 2017)

APPENDIX C APPROPRIATENESS OF DIRICHLET DISTRIBUTION

Section 5.1 explored the behaviour of measures of uncertainty predicted by models trained on the
CIFAR-10 dataset. In this appendix we provide the same for models trained on CIFAR-100 and
TinyImageNet. In general, the trends detailed in section 5.1 hold for these datasets as well - EnD2

consistently yield higher uncertainties than the original ensemble, likely as a consequence of the
limitations of the Dirichlet distribution.

In addition, we have also provided histograms of total uncertainty for EnD and EnD+AUX models
trained on CIFAR-10, CIFAR-100 and TinyImageNet relative to the ensemble for both in-domain
and OOD data. Figure 7 shows that while all EnD models match the uncertainty of the ensemble
on in-domain data for all datasets, EnD consistently under-estimates the uncertainty for OOD data.
The only exception is EnD+AUX on CIFAR-100, where it matches the ensemble’s predictions well.
This generally agrees with the results from section 5, where EnD+AUX is able to almost match the
ensemble’s OOD detection performance.
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(a) C100 Total Uncert. - ID (b) C100 Data Uncert. - ID (c) C100 Knowledge Uncert. - OOD

(d) C100 Total Uncert. - OOD (e) C100 Data Uncert. - OOD (f) C100 Knowledge Uncert. - OOD

(g) TIM Total Uncert. - ID (h) TIM Data Uncert. - ID (i) TIM Knowledge Uncert. - OOD

(j) TIM Total Uncert. - OOD (k) TIM Data Uncert. - OOD (l) TIM Knowledge Uncert. - OOD

Figure 6: Histograms of measures of uncertainty derived from ensemble, EnD2 and EnD2
+AUX on

in-domain (ID) and test out-of-domain (OOD) data from CIFAR-100 and TinyImageNet.

APPENDIX D ABLATION STUDIES

In this paper we made several important design choices. Firstly, we chose to use rich ensembles of
100 models, in order to generate a good estimate of the empirical distribution of the ensemble on
the simplex and assess whether the Dirichlet distribution was flexible enough to model it. Secondly,
we used a temperature annealing schedule with an initial temperature of 10. In this section we
conduct two ablation studies. Firstly, we assess whether Ensemble Distribution Distillation is possible
when using an ensemble of 5, 20, 50 and 100 models. Secondly, we investigate a range of initial
temperatures (1, 2, 5, 10, and 20) for temperature annealing for the models trained on the CIFAR-10
and CIFAR-100 datasets. Here, only the EnD2

+AUX model is considered. Results are presented in
figures 8-13. All figures depict the mean across 3 models (for each configuration) ± 1 standard
deviation.

Overall, the results show two important trends. Firstly, using using 20 models does better than using
5 models, but there are no conclusive gains for ensemble distribution distillation from using more
than 20 models. This suggests that it is sufficient to use ensemble of fewer models for Ensemble
Distribution Distillation with models which parameterize the Dirichlet Distribution. This is beneficial
in terms computation and memory savings. It is possible, however, that if a more flexible distribution
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(a) C10 Total Uncertainty - ID (b) C100 Total Uncertainty - ID (c) TIM Total Uncertainty - ID

(d) C10 Total Uncertainty - OOD (e) C100 Total Uncertainty - OOD (f) TIM Total Uncertainty - OOD

Figure 7: Histograms of measures of total uncertainty derived from ensemble EnD, and EnD+AUX on
in-domain (ID) and test out-of-domain (OOD) data.

is used, such as a Mixture of Dirichlets, then it might be possible to derive further gains from a
larger ensemble. The second trend is that it is necessary to use a temperature of at least 5 in order to
successfully distribution-distill the ensemble. Using initial temperatures of 10 and 20 did not result in
any significant further increase in performance. These results show that the temperature annealing
process is important for Ensemble Distribution Distillation to work well.

(a) % Classification Error (b) Negative Log-likelihood

(c) Expected Calibration Error (d) Prediction Rejection Ratio

Figure 8: CIFAR-10 Model Ablation
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(a) % Classification Error (b) Negative Log-likelihood

(c) Expected Calibration Error (d) Prediction Rejection Ratio

Figure 9: CIFAR-100 Model Ablation

(a) C10 Total Uncertainty (b) C10 Knowledge Uncertainty

(c) C100 Total Uncertainty (d) C100 Knowledge Uncertainty

Figure 10: CIFAR-10 and CIFAR-100 Model Ablation - Uncertainties
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(a) % Classification Error (b) Negative Log-likelihood

(c) Expected Calibration Error (d) Prediction Rejection Ratio

Figure 11: CIFAR-10 Temperature Ablation
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(a) % Classification Error (b) Negative Log-likelihood

(c) Expected Calibration Error (d) Prediction Rejection Ratio

Figure 12: CIFAR-100 Temperature Ablation

(a) CIFAR-10 Uncertainties (b) CIFAR-100 Uncertainties

Figure 13: CIFAR-10 and CIFAR-100 Temperature Ablation - Uncertainties
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